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Abstract

A remote sensing-based surface energy balance model is developed to explic-

itly represent the energy fluxes of four surface components of agricultural

fields including bare soil, unstressed green vegetation, non-transpiring green

vegetation, and standing senescent vegetation. Such a four-source representa-

tion (SEB-4S) is achieved by a consistent physical interpretation of the edges

and vertices of the polygon (named T − fvg polygon) obtained by plotting

surface temperature (T ) as a function of fractional green vegetation (fvg) and

the polygon (named T − α polygon) obtained by plotting T as a function of

surface albedo (α). To test the performance of SEB-4S, a T −α image-based

model and a T − fvg image-based model are implemented as benchmarks.

The three models are tested over a 16 km by 10 km irrigated area in north-

western Mexico during the 2007-2008 agricultural season. Input data are

composed of ASTER (Advanced Spaceborne Thermal Emission and Reflec-
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tion Radiometer) thermal infrared, Formosat-2 shortwave, and station-based

meteorological data. The fluxes simulated by SEB-4S, the T−α image-based

model, and the T − fvg image-based model are compared on seven ASTER

overpass dates with the in situ measurements collected at six locations within

the study domain. The evapotranspiration simulated by SEB-4S is signifi-

cantly more accurate and robust than that predicted by the models based

on a single (either T − fvg or T − α) polygon. The improvement provided

with SEB-4S reaches about 100 W m−2 at low values and about 100 W m−2

at the seasonal peak of evapotranspiration as compared with both the T −α

and T − fvg image-based models. SEB-4S can be operationally applied to ir-

rigated agricultural areas using high-resolution solar/thermal remote sensing

data, and has potential to further integrate microwave-derived soil moisture

as additional constraint on surface soil energy and water fluxes.

Key words: Evapotranspiration, thermal, reflectance, temperature, albedo,

partitioning, irrigation.

1. Introduction1

Evapotranspiration (ET) plays a crucial role in predicting soil water avail-2

ability (Oki and Kanae, 2006), in flood forecasting (Bouilloud et al., 2010),3

in rainfall forecasting (Findell et al., 2011) and in projecting changes in the4

occurence of heatwaves (Seneviratne et al., 2006) and droughts (Sheffield and Wood,5

2008). The partitioning of ET into its surface components including soil6

evaporation, plant transpiration and canopy evaporation is important for7

modeling vegetation water uptake, land-atmosphere interactions and climate8

simulations. Large bare or partially covered soil surfaces especially occur in9
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many cultivated areas. The soil evaporation term corresponds to the por-10

tion of ET that is unusable for crop productivity (Wallace, 2000) and its11

participation as a component of water balance may become dominant over12

bare or partially vegetated soils (Allen et al., 1998). Moreover, knowledge of13

ET partitioning would provide a powerful constraint on the physics of land14

surface models (Gutmann and Small, 2007). However, field measurements of15

both soil evaporation and plant transpiration are very sparse, and the current16

solar/thermal remote sensing techniques do not fully address the partition-17

ing issue. This is notably due to the difficulty in separating the soil and18

vegetation components at the different phenological stages of crops from re-19

flectance and thermal infrared data alone (Moran et al., 1994; Merlin et al.,20

2010, 2012a).21

A number of models have been developed to estimate ET from ther-22

mal remote sensing data (Courault et al., 2005; Gowda et al., 2008). Actual23

ET has been estimated by weighting the potential ET using reflectance-24

derived fractional photosynthetically-active (green) vegetation cover (fvg)25

(Allen et al., 1998; Cleugh et al., 2007). fvg-based modeling approaches are26

useful to provide ET estimates over integrated time periods e.g. the agri-27

cultural season. The point is that fvg is not sensitive to vegetation water28

stress until there is actual reduction in biomass or changes in canopy geome-29

try (Gonzalez-Dugo et al., 2009). As a result fvg-based ET methods are not30

adapted to operational irrigation management when the objective is to de-31

tect the onset of water stress. Instead, canopy temperature can detect crop32

water deficit (Idso et al., 1981; Jackson et al., 1981). Operational ET mod-33

els have hence been developed to monitor ET and soil moisture status from34
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remotely sensed surface temperature (T ) (Boulet et al., 2007; Hain et al.,35

2009; Anderson et al., 2012). Note that T -based ET models may also use fvg36

to partition soil and vegetation components (Norman et al., 1995), and sur-37

face albedo (α) as additional constraint on net radiation (Bastiaanssen et al.,38

1998). Among the T -based ET methods reviewed in Kalma et al. (2008)39

and Kustas and Anderson (2009), one can distinguish the single-source mod-40

els (Bastiaanssen et al., 1998; Su, 2002, e.g.) and the two-source models41

(Moran et al., 1994; Norman et al., 1995, e.g.), which implicitly and explic-42

itly represent soil evaporation and plant transpiration, respectively. Al-43

though both model representations may perform similarly in terms of ET44

estimates given they are correctly calibrated (Timmermans et al., 2007), the45

two-source models are of particular interest for ET partitioning.46

Among T -based two-source ET models, one can distinguish the residual-47

based models (Norman et al., 1995; Anderson et al., 2007; Cammalleri et al.,48

2012, e.g.), which estimate ET as the residual term of an aerodynamic49

resistance surface energy balance equation, and the image-based models50

(Moran et al., 1994; Roerink et al., 2000; Long and Singh, 2012, e.g.), which51

estimate ET as a fraction (named surface evaporative efficiency or EE) of po-52

tential ET (Moran et al., 1994), or as a fraction (named surface evaporative53

fraction or EF) of available energy (Roerink et al., 2000; Long and Singh,54

2012). In image-based models, EF (or EE) is estimated as the ratio of55

the maximum to actual surface temperature difference to the maximum56

to minimum surface temperature difference. In Moran et al. (1994) and57

Long and Singh (2012), maximum and minimum temperatures are estimated58

over the dry and wet surface edges of a polygon drawn in the T − fvg space,59
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respectively. In Roerink et al. (2000), maximum and minimum tempera-60

tures are estimated over the dry and wet surface lines drawn in the T − α61

space, respectively. As clearly stated by Tang et al. (2010), the advantages62

of image-based models over the residual-based models are 1) absolute high63

accuracy in remotely sensed T retrieval and atmospheric correction are not64

indispensable, 2) complex parameterization of aerodynamic resistance and65

uncertainty originating from replacement of aerodynamic temperature by re-66

motely sensed T is bypassed 3) no ground-based near surface measurements67

are needed other than remotely sensed T , fvg and α, 4) a direct calculation68

of EF (or EE) can be obtained without resort to surface energy balance,69

and 5) estimations of EF (or EE) and available energy (or potential ET) are70

independent from each other by this method. Therefore, the overall errors71

in ET can be traced back to EF (EE) and available energy (potential ET)72

separately. Limitations of image-based models mainly lie in the determina-73

tion of the maximum and minimum surface temperatures. Specifically, the74

dry and wet edges can be placed accurately in the T − fvg or T − α space75

if 1) the full range of surface (soil moisture and vegetation cover) conditions76

is met within the study domain at the sensor resolution, 2) meteorological77

conditions are uniform in the study domain (Long et al., 2011, 2012), 3) the78

study domain is flat. In the case where all three conditions are not satisfied,79

alternative algorithms can be implemented to filter outliers in the T − fgv80

space (Tang et al., 2010), to estimate the maximum vegetation temperature81

from the T − α space (Merlin et al., 2010, 2012b), to estimate extreme tem-82

peratures using a formulation of aerodynamic resistance (Moran et al., 1994;83

Long et al., 2012), or to correct remotely sensed T for topographic effects84
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(Merlin et al., 2013).85

Moran et al. (1994) proposed the T −fvg image-based water deficit index86

(WDI) to estimate a most probable range of crop water stress over partially-87

vegetated pixels. The different steps of the WDI method are: 1) the tem-88

peratures of the four vertices of the T − fvg polygon are estimated using89

an energy balance model, 2) the minimum and maximum probable vegeta-90

tion temperatures are estimated from the measured composite T , together91

with the maximum and minimum simulated soil temperatures, and 3) the92

minimum and maximum probable water stress indices are computed by nor-93

malizing the minimum and maximum probable vegetation temperatures from94

the vegetation temperature extremes simulated by the energy balance model.95

Note that the WDI approach does not allow estimating a single crop water96

stress index value because the canopy temperature retrieval problem is ill-97

posed using solely T and fvg. As mentioned in Moran et al. (1994) and98

Merlin et al. (2012a), knowledge of soil temperature would remove the un-99

derdetermination of the T−fvg polygon approach. A second limitation of the100

T − fvg polygon approach is that fvg does not allow distinguishing between101

soil and senescent vegetation, whereas the energy fluxes over bare soil and102

full-cover senescent vegetation may significantly differ. Separating vegetated103

areas according to the fraction of green versus senescent vegetation could be104

done by introducing additional information based on α (Merlin et al., 2010)105

or a vegetation index such as the Cellulose Absorption Index (Nagler et al.,106

2003; Krapez and Olioso, 2011). Note that optical data provide information107

on the surface skin only, which inherently prevents from separating green and108

senescent vegetation in the vertical dimension.109
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Roerink et al. (2000) proposed the Simplified Surface Energy Balance In-110

dex (S-SEBI) to estimate ET from the T − α space. S-SEBI determines the111

wet and dry lines by interpreting the observed correlations between T and α112

(Menenti et al., 1989). The wet line is defined as the lower limit of the T −α113

space. It generally has a positive slope as a result of an evaporation control on114

T . The dry line is defined as the upper limit of the T −α space. It generally115

has a negative slope as a result of a radiation control on T (Roerink et al.,116

2000). One main advantage of the T −α space over the T − fvg space is that117

α is sensitive to the total vegetation cover including green and senescent veg-118

etation, whereas fvg is sensitive to the green vegetation only (Merlin et al.,119

2010). One drawback is that unstressed green vegetation, non-transpiring120

vegetation and senescent vegetation are not easily separable in the T − α121

space, which makes identifying green crop water stress more difficult than122

using the T − fvg space. Moreover the slope of both wet and dry lines may123

be difficult to determine when the full physical range of α (∼0.1-0.4) is not124

covered within the study domain.125

Although T − fvg and T −α image-based models have been applied sepa-126

rately (Choi et al., 2009), or intercompared (Galleguillos et al., 2011), there127

is no model that combines the strength of each polygon notably in terms of128

ET partitioning. The objective of this study is thus to develop an image-129

based surface energy balance model (SEB-4S) that builds on advantages of130

both T − fvg and T − α spaces by 1) adequately constraining four surface131

components of agricultural fields including bare soil, unstressed green vegeta-132

tion, non-transpiring green vegetation and standing senescent vegetation, 2)133

partitioning ET into soil evaporation and unstressed green vegetation tran-134
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spiration, and 3) developing an automated algorithm for estimating tem-135

perature endmembers from joint T − fvg and T − α spaces. The modeling136

approach is tested over a 16 km by 10 km irrigated area in northwestern137

Mexico using ASTER (Advanced Spaceborne Thermal Emission and Reflec-138

tion Radiometer) and Formosat-2 data collected on seven dates during the139

2007-2008 agricultural season. Experimental data are described in Section140

2. SEB-4S is described in Section 3, and two common (T − fvg and T − α)141

image-based models are reminded in Section 4. In Section 5, the surface142

fluxes simulated by SEB-4S, the T − fvg image-based model and the T − α143

image-based model are compared with in situ measurements at six locations.144

2. Data collection and pre-processing145

The Yaqui experiment was conducted from December 2007 to May 2008146

over an irrigated area (27.25◦N, 109.88◦W) in the Yaqui valley (Sonora State)147

in northwestern Mexico. The campaign focused on a 4 km by 4 km area in-148

cluding 50% of wheat, the other 50% being composed of beans, broccoli,149

chickpea, chili pepper, corn, orange, potatoes, safflower and sorghum. The150

objective of the experiment was to characterize the spatial variability of sur-151

face fluxes from the field (hectometric) to kilometric scale. More details about152

the Yaqui experiment can be found in Merlin et al. (2010), Fieuzal et al.153

(2011) and Chirouze et al. (2013). In this paper, the study area is defined154

as a 16 km by 10 km area containing the 4 km by 4 km Yaqui experimental155

area and included in all satellite images. During the 2007-2008 agricultural156

season, 7 cloud-free ASTER images were collected over the Yaqui area at157

around 11:00 am local solar time on December 30, February 23, March 10,158
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April 11, April 27, May 6 and May 13 and 26 cloud-free Formosat-2 images159

were obtained from December 27, 2007 to May 13, 2008.160

2.1. Flux stations161

Seven micro-meteorological stations equipped with eddy covariance flux162

measurement system were installed in different fields. For each of the seven163

sites, the net radiation was acquired with CNR1 or Q7.1 (REBS) radiometers164

depending on the stations (see Table 1). The soil heat flux was estimated165

with HUKSEFLUX HFP-01 plates buried at 0.05 m at the top and bottom166

of the furrow (when applicable). Those data were acquired at a frequency of167

10 s and then averaged and recorded each 30 min. Latent and sensible heat168

fluxes were measured with KH20 fast response hygrometers (Campbell) and169

Campbell CSAT3 or RM Young 81000 3-D Sonic Anemometer at a frequency170

of 10 Hz and converted to 30 min average, respectively. Meteorological data171

including air temperature, solar radiation, relative humidity and wind speed172

were monitored throughout the agricultural season at a semi-hourly time step173

from December 27, 2007 until May 17, 2008. Details about the automated174

data acquisition and flux data quality can be found in Chirouze et al. (2013).175

In this paper, the six stations listed in Table 1 with at least four (among a176

total of seven) ASTER overpass dates of data including the four energy fluxes177

(Rn, G, LE, H) are used in the comparison analysis.178

2.2. ASTER thermal infrared data179

ASTER was launched in 1999 on a sun-synchronous platform (NASA’s180

Terra satellite) with 11:00 am descending Equator crossing and a 16-day181

revisit cycle. The ASTER thermal sensor provides scenes of approximately182
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60 km by 60 km. Data are collected on request over specified areas. There183

are five thermal bands centered at 8.30, 8.65, 9.05, 10.60 and 11.63 µm with184

a 90 m resolution. ASTER official products were downloaded from the Earth185

Observing System Data Gateway and extracted over the 16 km by 10 km186

study area.187

2.2.1. Surface temperature188

The 90 m resolution surface skin temperature (T ) retrieved by the “tem-189

perature and emissivity separation” algorithm (Gillespie et al., 1998; Schmugge et al.,190

1998) was used. The absolute registration of temperature data was performed191

using a background 8 m resolution Formosat-2 image (Merlin et al., 2010).192

2.2.2. Broad-band surface emissivity193

The 90 m resolution ASTER channel emissivity retrieved by the “temper-194

ature and emissivity separation” algorithm was used. The absolute registra-195

tion of emissivity data was set to that of temperature data on the same dates.196

The broad-band surface emissivity (ǫ) was expressed as a linear combination197

of ASTER channel emissivities using the coefficients in Ogawa and Schmugge198

(2004).199

2.3. Formosat-2 red and near-infrared data200

Formosat-2 is an Earth observation satellite launched in 2004 by the Na-201

tional Space Organization of Taiwan. It provides high (8 m) resolution im-202

ages of a particular area every day (9:30 am equator-crossing time) for four203

bands (blue, green, red and near-infrared) and with the same view angle204

(Chern et al., 2008). In this paper, the Formosat-2 data collected on the205

nearest date from each of the seven ASTER overpass dates were used to206
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estimate fvg and α from the red and near-infrared reflectances aggregated207

at ASTER thermal sensor resolution. The reason why Formosat-derived in-208

stead of ASTER-derived α was used is mainly because the ASTER shortwave209

infrared data were unusable on four out of the seven ASTER overpass dates210

(Chirouze et al., 2013).211

2.3.1. Fractional green vegetation cover212

Fractional green (photosynthetically active) vegetation cover (fvg) is es-213

timated using the expression of Gutman and Ignatov (1998):214

fvg =
NDVI−NDVIs

NDVIvg −NDVIs
(1)

with NDVIvg (for clarity all the variables defined at the 16 km by 10 km215

scale are written in bold) corresponding to fully-covering green vegetation216

and NDVIs to bare soil or to bare soil partially covered by senescent (non-217

photosynthetically active) vegetation. In the paper, NDVIvg and NDVIs218

are set to the maximum (0.93) and minimum (0.18) value of the NDVI (Nor-219

malized Difference Vegetation Index) observed during the agricultural season220

within the study domain. NDVI is computed as the ratio of the difference221

between re-sampled Formosat-2 near-infrared and red reflectances to their222

sum.223

2.3.2. Surface albedo224

Surface albedo (α) is estimated as a weighted sum of re-sampled Formosat-225

2 red and near-infrared reflectances with the coefficients given by Weiss et al.226

(1999) and validated in Bsaibes et al. (2009), and in Chirouze et al. (2013)227

over the study area.228
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3. SEB-4S model229

SEB-4S is based on the classical surface energy balance equation ap-230

plied to four surface components: bare soil, unstressed green vegetation,231

non-transpiring green vegetation and senescent vegetation. ET is computed232

as the sum of the four component latent heat fluxes. A key step in the233

modeling approach is therefore to estimate the component fractions. While234

subsections 3.1 and 3.2 set the physical basis of SEB-4S, the following sub-235

sections 3.3-7 translate the physical interpretation of both T −α and T −fvg236

spaces into geometrical problems for solving the four component fractions.237

Along this section, the reader may refer to the definition of component frac-238

tions in Table 2, and to the schematic chart presented in Figure 1.239

3.1. Surface energy balance240

The surface energy balance can be written as:241

Rn−G = H + LE (2)

with Rn (Wm−2) being the surface net radiation, G (Wm−2) the ground242

heat flux, H (Wm−2) the surface sensible heat flux and LE (Wm−2) the243

surface latent heat flux. In SEB-4S, the surface net radiation is decomposed244

into four components:245

Rn = Rns +Rnvgu +Rnvgn +Rnvss (3)

with Rns (Wm−2) being the soil net radiation, Rnvgu (Wm−2) the net246

radiation of unstressed green vegetation, Rnvgn (Wm−2) the net radiation247
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of non-transpiring green vegetation, and Rnvss (Wm−2) the net radiation of248

standing senescent vegetation.249

Component net radiations are estimated as a fraction of surface net ra-250

diation:251

Rni = fiRn (4)

with fi (-) being the fraction of i component, with i = s, vgu, vgn and252

vss.253

The decomposition of surface sensible heat flux into four components254

gives:255

H = Hs +Hvgu +Hvgn +Hvss (5)

with Hs (Wm−2) being the soil sensible heat flux, Hvgu (Wm−2) the sen-256

sible heat flux over unstressed green vegetation, Hvgn (Wm−2) the sensible257

heat flux over non-transpiring green vegetation, and Hvss (Wm−2) the sensi-258

ble heat flux over standing senescent vegetation. We assume that the temper-259

ature of well-watered/unstressed green vegetation is close to air temperature260

meaning that the unstressed green vegetation sensible heat flux is neglected.261

This assumption is one of the main hypotheses of most contextual models262

such as S-SEBI (Roerink et al., 2000) or SEBAL (Bastiaanssen et al., 1998).263

SEB-4S is thus expected to overestimate sensible heat flux and reciprocally264

to underestimate ET in the case where leaf temperature is below air tem-265

perature especially under low vapor pressure deficit. Further developments266

of SEB-4S may address this issue by replacing EF with EE (Moran et al.,267

1994) or using the Priestley-Taylor formulation (Jiang and Islam, 1999).268
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Similarly, the decomposition of surface latent heat flux into four compo-269

nents gives:270

LE = LEs + LEvgu + LEvgn + LEvss (6)

with LEs (Wm−2) being the soil latent heat flux, LEvgu (Wm−2) the271

latent heat flux over unstressed green vegetation, LEvgn (Wm−2) the latent272

heat flux over non-transpiring green vegetation, and LEvss (Wm−2) the latent273

heat flux over standing senescent vegetation. Consistent with the definition274

of non-transpiring green and senescent vegetation, LEvgn and LEvss are both275

set to zero.276

Over bare soil, the energy budget can be written as:277

Rns −G = Hs + LEs (7)

with278

LEs = SEF(Rns −G) (8)

with SEF being the soil evaporative fraction.279

Over unstressed green vegetation, the energy budget can be written as:280

Rnvgu = LEvgu (9)

Over non-transpiring green vegetation, the energy budget can be written281

as:282

Rnvgn = Hvgn (10)
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Over standing senescent vegetation, the energy budget can be written as:283

Rnvss = Hvss (11)

Surface net radiation in Equation (4) is estimated as:284

Rn = (1− α)Rg + ǫ(Ra − σT 4) (12)

with Rg (Wm−2) being the incoming shortwave radiation, σ (Wm−2K−4)285

the Boltzmann constant, and Ra (Wm−2) the atmospheric longwave radiation286

computed as:287

Ra = ǫaσT
4
a (13)

with Ta (K) being the air temperature, and ǫa (-) the air emissivity esti-288

mated as in Brutsaert (1975):289

ǫa = 1.24
( ea
Ta

)0.143

(14)

with ea (hPa) being the air vapor pressure.290

Two different expressions are proposed to estimate ground heat flux. A291

first formulation is given by Su (2002):292

G = ΓRn (15)

with293

Γ = Γvg + (1− fvg)(Γs − Γvg) (16)

15



with Γvg and Γs being empirical parameters set to 0.05 (Monteith, 1973)294

and 0.32 (Kustas and Daughtry, 1989) respectively (Su, 2002). To take ad-295

vantage of the four-source representation of SEB-4S, a second formulation is296

tested:297

Γ′ = Γvg + (1− fvgu − fsSEF)(Γs − Γvg) (17)

The physical rationale of Γ′ is that G is expected to vary with soil tem-298

perature gradient, which is inversely related to soil moisture availability. In299

Equation (17), soil moisture availability is approximated by a first-guess EF300

computed as fvgu + fsSEF. Note that Γ and Γ′ formulations are equal in301

the case where fvgn = fsSEF. Tanguy et al. (2012) have recently proposed a302

parameterization of G as a function of EF consistent with Equation (17).303

3.2. Model assumptions304

The component fractions in Equation (4) and (17) and SEF in Equations305

(8) and (17) are derived from seven endmembers: the soil temperature Ts,max306

corresponding to SEF = 0, the soil temperature Ts,min corresponding to307

SEF = 1, the temperature of well-watered/unstressed vegetation Tv,min, the308

temperature of non-transpiring green or senescent vegetation Tv,max, the309

soil albedo αs, the green vegetation albedo αvg, and the senescent vegetation310

albedo αvs. Below is a summary of the assumptions made in the following311

subsections to derive the seven parameters from solar/thermal remote sensing312

data.313

The assumptions common to other image-based approaches such as WDI314

and S-SEBI are:315
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• Atmospheric conditions are relatively homogeneous over the study area316

(Tang et al., 2010; Long and Singh, 2012, e.g.).317

• The minimum temperature of green vegetation is close to air tempera-318

ture (Carlson et al., 1995; Prihodko and Goward, 1997; Bastiaanssen et al.,319

1998). Note that this assumption relates both to well-watered green320

vegetation, which may have a physical temperature slightly below air321

temperature due to the evaporation of intercepted water and/or ad-322

vection phenomenon, and to unstressed (fully transpiring) vegetation,323

which may have a physical temperature slightly above air temperature324

due to minimum stomatal resistance.325

• The four temperature endmembers are representative of extreme con-326

ditions over the study area at the time of thermal sensor overpass. This327

notably implies that the aerodynamic resistance to heat transfer is as-328

sumed to be approximately uniform by fractional vegetation cover class.329

Although this assumption is implicit in all image-based algorithms, it330

is rarely mentioned in the literature.331

• The impact of the spatial variability of surface soil moisture (Idso et al.,332

1975) and roughness (Matthias et al., 2000) on soil albedo is neglected,333

meaning that the soil albedo over dry or wet soil surfaces can be ap-334

proximated to αs. This assumption is implicit in S-SEBI because the335

EF is computed for a fixed (not variable) α value (Roerink et al., 2000).336

• Component temperatures are linearly related to component fractions337

(Merlin and Chehbouni, 2004; Anderson et al., 2007; Long and Singh,338

2012).339
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The three assumptions specific to SEB-4S are:340

• αvg is approximately the same for different crops. Green crop albedo341

varies mainly within 0.16-0.22, with a mean value of about 0.19 (Kondratyev et al.,342

1982; Hansen, 1993; Campbell and Norman, 1998).343

• αs is not larger than αvg. As described in the following subsections, the344

assumption αs ≤ αvg is essential for drawing the polygon in the T − α345

space. This assumption generally applies to brown agricultural soils,346

especially to the Yaqui area where the top 0-20 cm soil was classified347

as clay. Soil albedo typically ranges from 0.08 to 0.14 for clay and from348

0.10 to 0.20 for clay loam (Ten Berge, 1986). Further developments349

of SEB-4S will integrate the effects of bright soils (e.g. sands) in the350

modelling approach.351

• αvs is larger than αvg. Most plants change color when they mature and352

enter senescence stage, which is generally associated with an increase of353

vegetation albedo under dry conditions (Kondratyev et al., 1982). In354

particular, the albedo of cereal stubble (straw stalks left standing in the355

paddock) typically reaches values larger than 0.30 (Piggin and Schwerdtfeger,356

1973; Merlin et al., 2010).357

3.3. Estimating albedo endmembers358

αs is estimated as the minimum α at the time of satellite overpass. The359

mean and standard deviation of αs is estimated as 0.09 and 0.01 respec-360

tively, which is fully consistent with values reported in the literature for clay361

(Ten Berge, 1986). αvg is estimated as the temporal mean (over different362
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dates) of the α corresponding to the minimum T within the observation363

scene (αvg = 0.19). Note that the standard deviation of daily green veg-364

etation albedo is estimated as 0.03, which is fully consistent with values365

reported in the literature for fully covering green crops (Kondratyev et al.,366

1982; Hansen, 1993; Campbell and Norman, 1998). αvs is estimated as the367

maximum α within the observation scene and for the entire agricultural sea-368

son (αvs = 0.39). Note that the mean and standard deviation of daily max-369

imum albedo is 0.29 and 0.07, respectively. The large temporal variability370

of daily maximum albedo is explained by the great increase in α during the371

senescence period. Figure 2 plots T as a function of α and illustrates the372

location of αs, αvg, and αvs for T and α data on 27 April 2008.373

3.4. Estimating temperature endmembers374

The four temperature endmembers composed of Ts,max, Ts,min, Tv,min,375

and Tv,max are estimated by providing an original consistent interpretation376

of the T − α and T − fvg polygons. In particular, a correspondance is built377

between the four vertices of the T −α and T − fvg polygons as illustrated in378

Figure 2 and explained below. For clarity, a schematic chart is presented in379

Figure 3.380

The four edges of the T−α polygon are interpreted as “bare soil” between381

A and B, “wet surface” between B and C, “full-cover vegetation” between382

C and D, and “dry surface” between D and A. The four edges of the T −fvg383

polygon are interpreted as “bare soil or mixed soil and senescent vegetation”384

between A and B, “wet surface” between B and C, “full-cover green vege-385

tation” between C and D, and “dry surface” between D and A. Note that386

the segments [AB] and [CD] are interpreted differently in the T − α and387
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T−fvg polygons cover because α is a signature of total (green plus senescent)388

vegetation cover while fvg (via the NDVI) is a signature of green vegetation389

cover only.390

Each polygon can provide an estimate of the four temperature endmem-391

bers. In the T − α polygon, Ts,max can be set to the maximum T , Ts,min to392

the minimum T at minimum α, Tv,min to the minimum T , and Tv,max to393

the T at maximum α. Similarly, in the T − fvg polygon, Ts,max can be set394

to the maximum T , Ts,min to the minimum T at minimum fvg, Tv,min to395

the minimum T , and Tv,max to the maximum T at maximum fvg. However,396

a different approach is preferred herein to improve the robustness, especially397

in the environments where all surface conditions (dry, wet, bare, full-cover)398

are not necessarily met. In this paper, the procedure for automatically esti-399

mating temperature endmembers is based on the consistency between both400

T − α and T − fvg polygons:401

• in the T − α polygon, estimates of the minimum soil temperature402

(Ts,min,1 at α = αs) and minimum vegetation temperature (Tv,min,1403

at α = αvg) are obtained by drawing a line passing through the two404

points belonging to the “wet surface” edge, and estimates of maxi-405

mum soil temperature (Ts,max,1 at α = αs) and maximum vegetation406

temperature (Tv,max,1 at α = αvs) are obtained by drawing a line pass-407

ing through the two points belonging to the “dry surface” edge. The408

“wet surface” edge is defined as the line passing through the point409

(αvg,Tmin), with Tmin being the minimum T , and the point with410

α < αvg and fvg < fvg,ENDMB such as the slope of the line is max-411

imum (meaning that all the other data points are located above the412
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“wet surface” edge). fvg,ENDMB is a threshold value (set to 0.5 in413

this study) which stabilizes the determination of the slope. The use414

of fvg,ENDMB is needed to avoid defining a line (the wet edge in this415

case) from two data points very close together (Merlin et al., 2012b).416

Similarly, the “dry surface” edge is defined as the line passing through417

the point (αs,Tmax), with Tmax being the maximum T , and the point418

with α > αvg such as the slope of the line is maximum (meaning that419

all the other data points are located below the “dry surface” edge).420

• in the T − fvg polygon, alternative estimates of the minimum soil tem-421

perature (Ts,min,2 at fvg = 0) and minimum vegetation temperature422

(Tv,min,2 at fvg = 1) are obtained by drawing a line passing through423

the two points belonging to the “wet surface” edge, and alternative424

estimates of maximum soil temperature (Ts,max,2 at fvg = 0) and max-425

imum vegetation temperature (Tv,max,2 at fvg = 1) are obtained by426

drawing a line passing through the two points belonging to the “dry427

surface” edge. The “wet surface” edge is defined as the line passing428

through the point (1,Tmin) and the point with fvg < fvg,ENDMB such429

as the slope of the line is maximum (meaning that all the other data430

points are located above the “wet surface” edge). Similarly, the “dry431

surface” edge is defined as the line passing through the point (0,Tmax)432

and the point with fvg > fvg,ENDMB such as the slope of the line is433

maximum (meaning that all the other data points are located below434

the “dry surface” edge).435

• an estimate of the four temperature endmembers is obtained by aver-436
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aging the two temperature endmembers sets 1 and 2:437

Ts,max = Ts,max,1 = Ts,max,2 = Tmax (18)

Ts,min = (Ts,min,1 +Ts,min,2)/2 (19)

Tv,min = Tv,min,1 = Tv,min,2 = Tmin (20)

Tv,max = (Tv,max,1 +Tv,max,2)/2 (21)

3.5. Estimating component temperatures438

Component temperatures are defined in Table 2. They are derived from439

the temperature and albedo endmembers estimated previously. The green440

vegetation temperature Tvg is computed from the T −fvg polygon. The total441

(green plus senescent) vegetation temperature Tv is computed from the T−α442

polygon. The soil temperature Ts is computed as the residual term.443

Component temperatures Tvg and Tv are estimated as the most probable444

green and total vegetation temperature, respectively. Most probable tem-445

peratures are defined as in the hourglass approach in Moran et al. (1994),446

Merlin et al. (2012b) and Merlin et al. (2013). They correspond to the aver-447

age of the minimum and maximum physically acceptable temperatures, given448

the constraints imposed by the vertices of the polygons. Below is explained449

how in practice the minimum and maximum acceptable green (or total) veg-450

etation temperatures are determined from the location of a given data point451
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(fvg, T ) in the T −fvg space (or from the location of a given data point (α, T )452

in the T − α space).453

3.5.1. Estimating Tvg in the T − fvg polygon454

By plotting the diagonals of the quadrilateral defined in the T − fvg455

space, four areas are distinguished (Merlin et al., 2012b). The procedure456

for estimating Tvg from the T − fvg polygon is illustrated in Figure 4 and457

described below:458

• For a given data point located in zone Z1:459

Tvg = (Tv,min +Tv,max)/2 (22)

• For a given data point located in zone Z2:460

Tvg = (Tv,min + Tvg,max)/2 (23)

with Tvg,max being the green vegetation temperature associated with461

fvss = 0 and SEF = 1 (Ts = Ts,min).462

• For a given data point located in zone Z3:463

Tvg = (Tvg,min + Tvg,max)/2 (24)

with Tvg,min being the green vegetation temperature associated with464

fvss = 0 and SEF = 0 (Ts = Ts,max).465
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• For a given data point located in zone Z4:466

Tvg = (Tvg,min +Tv,max)/2 (25)

In zone Z1, T is mainly controlled by Ts (via soil evaporation) and the associ-467

ated Tvg is uniform. In zone Z3, T is mainly controlled by Tvg (via vegetation468

transpiration) and the associated Ts is uniform. In zones Z2 and Z4, T is469

controlled by both Ts and Tvg (Merlin et al., 2012b).470

3.5.2. Estimating Tv in the T − α polygon471

The T − α polygon is used to estimate Tv. The rationale for choosing472

the T − α instead of the T − fvg polygon is that α is sensitive to both473

green and senescent vegetation whereas fvg (via NDVI) does not differentiate474

between soil and senescent vegetation (Merlin et al., 2010). The procedure475

for estimating Tv from the T−α polygon is similar to the hourglass approach.476

It is illustated in Figure 5 and described below:477

• For a given data point located in zone Z1:478

Tv = (Tv,min +Tv,max)/2 (26)

• For a given data point located in zone Z2, vegetation temperature is:479

Tv = (Tv,min + Tv,max)/2 (27)

with Tv,max being the vegetation temperature associated with SEF = 1480

(Ts = Ts,min).481
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• For a given data point located in zone Z3:482

Tv = (Tv,min + Tv,max)/2 (28)

with Tv,min being the vegetation temperature associated with SEF = 0483

(Ts = Ts,max).484

• For a given data point located in zone Z4:485

Tv = (Tv,min +Tv,max)/2 (29)

3.5.3. Estimating Ts486

Ts is estimated as the residual term:487

Ts =
T − fvTv

1− fv
(30)

Soil temperature from Equation (30) is expected to be more accurate for488

fv ≤ 0.5 than for fv > 0.5, and is undetermined for fv = 1. In particular,489

the soil temperature may get unphysical large values when fv is close to 1.490

To make the algorithm numerically stable, the upper limit of retrieved Ts is491

set to Ts,max. Note that uncertainties in Ts for large fv values do not impact492

ET estimates because fs is close to zero in this case.493

3.6. Estimating SEF494

SEF in Equations (8) and (17) is estimated as:495

SEF =
Ts,max − Ts

Ts,max −Ts,min

(31)

25



3.7. Estimating component fractions496

The four component fractions fs, fvgu, fvgn, and fvss in Equation (4) are497

derived by solving four equations.498

Green vegetation fractions fvgu and fvgn are expressed as a function of499

fvg, Tvg and vegetation temperature endmembers:500

fvgTvg = fvguTv,min + fvgnTv,max (32)

with Tvg being computed in Equations (22-25). Since fvgu + fvgn = fvg,501

one is able to solve fvgu:502

fvgu =
Tv,max − Tvg

Tv,max −Tv,min

fvg (33)

and fvgn:503

fvgn = fvg − fvgu (34)

The total fractional vegetation cover fv (equal to fvgu plus fvgn plus fvss)504

is expressed as a function of Tv, α, and albedo and temperature endmembers.505

In Figure 6, fv is equal to the ratio IJ/IK with J being located at (α, T ), I506

located at (αs, Ts), and K located at (αv, Tv) with αv being the vegetation507

albedo, and Tv the vegetation temperature computed in Equations (26-29).508

Both I and K are placed on the polygon of Figure 6 using the same approach509

adopted to compute Tv. Given that (AB) is parallel to y-axis, one can deduce510

that:511

fv =
α− αs

αv − αs

(35)
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with αv being a function of Tv. On the full-cover edge [CD], one writes:512

Tv = Tv,min +
αv − αvg

αvs − αvg

(Tv,max −Tv,min) (36)

By inverting Equation (36), one obtains:513

αv = αvg +
Tv −Tv,min

Tv,max −Tv,min

(αvs − αvg) (37)

Hence, fv is derived by injecting Equation (37) into Equation (35).514

fvss is estimated as the residual term of fv:515

fvss = fv − fvg (38)

fs is estimated as the residual term:516

fs = 1− fv (39)

4. Image-based models517

Two common image-based models are implemented as benchmarks to518

evaluate the performance of SEB-4S in estimating EF/ET. Although the519

T − α image-based model is similar to S-SEBI and the T − fvg image-based520

model similar to WDI, the objective is not to intercompare SEB-4S, S-SEBI521

andWDI, but rather to compare SEB-4S with image-based ET models having522

the same general structure as SEB-4S. In particular, the wet and dry edges523

are determined from the same temperature endmembers set in each case,524

and both image-based models express ET as a function of EF as in SEB-4S525

(instead of EE for WDI).526
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4.1. T − α image-based model527

The T − α image-based model is derived from S-SEBI (Roerink et al.,528

2000). In S-SEBI, linear relationships are established between T and α for529

the wet and the dry surface cases. The wet and dry surface lines are defined530

as the lower and upper limit of the T − α space, respectively. In this study,531

the wet and dry lines are set to (CD) and (AD), respectively (see Figure532

2). ET is then estimated as EF times the surface available energy (Rn−G),533

with EF being computed as:534

EF =
Tmax − T

Tmax − Tmin

(40)

with Tmax being the T if the pixel surface was fully dry, and Tmin the T535

if the pixel surface was fully wet. Tmax and Tmin are computed at α on the536

dry and wet line, respectively (see Figure 7a).537

4.2. T − fvg image-based model538

The T − fvg image-based model is derived from the WDI (Moran et al.,539

1994). In WDI, linear relationships are established between T and fvg for540

the wet and the dry surface cases. The wet and dry surface lines are defined541

as the lower and upper limit of the T − fvg space, respectively. In this study,542

the wet and dry lines are set to (BC) and (AD), respectively (see Figure 2).543

In WDI, ET is estimated as:544

LE = (1−WDI)LEp (41)

with LEp (Wm−2) being the potential ET. Herein, LEp is replaced by545

Rn−G in Equation (41) to be consistent with both SEB-4S and the T − α546
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image-based model. The factor (1 − WDI) is estimated as EF in Equation547

(40) with Tmax and Tmin being computed at fvg on the dry and wet line,548

respectively (see Figure 7b).549

5. Application550

The simulation results of SEB-4S, the T − α image-based model, and551

the T − fvg image-based model are compared with the in situ measurements552

collected by the six flux stations. The objective is to evaluate model perfor-553

mances in terms of ET estimates in a range of surface conditions. Compar-554

isons are made at the pixel scale by extracting the ASTER thermal pixels555

including a flux station.556

5.1. Temperature endmembers and component fractions557

The algorithm for estimating temperature endmembers is run on the558

seven ASTER overpass dates. To assess the consistency between the tem-559

perature endmembers set 1 (derived from the T − α polygon) and 2 (de-560

rived from the T − fvg polygon), Figure 8 plots Ts,min,2 versus Ts,min,1 and561

Tv,max,2 versus Tv,max,1 (remind that by definition Ts,max,2 = Ts,max,1 and562

Tv,min,2 = Tv,min,1). In terms of minimum soil temperature, temperature563

endmembers sets 1 and 2 are remarkably consistent with a correlation co-564

effient and slope of the linear regression between Ts,min,2 and Ts,min,1 of565

0.91 and 0.83, respectively. In terms of maximum vegetation temperature,566

temperature endmembers sets 1 and 2 are still consistent but the difference567

between both data sets is larger with a correlation coeffient and slope of the568

linear regression between Tv,max,2 and Tv,max,1 of 0.50 and 0.39, respectively.569

Overall the temperature endmembers estimated from the T − α and T − fvg570
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polygons have an absolute mean difference of 0.5◦C and 2.5◦C for Ts,min and571

Tv,max, respectively. These results justify the strategy to derive Ts,min and572

Tv,max from the average of temperature endmembers sets 1 and 2.573

Figure 9 plots side by side the T −α and T −fvg spaces overlaid with the574

polygons drawn from the retrieved temperature endmembers Ts,max, Ts,min,575

Tv,min and Tv,max. One observes that the shape of both the T − α and576

T − fvg spaces significantly varies from date to date. In particular, the577

shape of the T − α space at the end (on 13 May 2008) and at the beginning578

(on 30 December 2007) of the agricultural season are very distinct due to579

a different range of α values. This is notably explained by the presence580

of bright senescent vegetation towards the end of the agricultural season.581

However, despite the strong temporal variability of T − α spaces, the T − α582

polygons automatically retrieved by the temperature endmembers algorithm583

are relatively stable, meaning that the four edges are robustly estimated584

across the entire agricultural season. When comparing the T − α with the585

T − fvg spaces, each polygon consistently describes the contour of the data586

points in both the T − α and T − fvg spaces. This justifies the approach for587

estimating temperature endmembers based on a synergistic use of T −α and588

T − fvg spaces.589

Given the previously retrieved four temperature endmembers, one is able590

to estimate the four component fractions at ASTER thermal sensor resolution591

over the 16 by 10 km area. Figure 10 presents the images of fs, fvgu, fvgn,592

and fvss on each of the seven ASTER overpass dates. They illustrate both593

the seasonality of canopies throughout the agricultural period and the high594

variability of vegetation cover within the study area. The estimated fraction595
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of non-transpiring green vegetation (fvgn) is generally low over the irrigated596

area, with a mean maximum on 11 April before the senescence starts for the597

majority of crops.598

5.2. Net radiation and ground heat flux599

Figure 11 plots the simulated versus observed net radiation at the six600

flux stations. Since wheat is the dominant cropping type within the area,601

results for station 5 and 6 are highlighted with black markers. Statistics602

are reported in Table 3 in terms of correlation coefficient, root mean square603

difference, mean difference, and slope of the linear regression between simu-604

lated and observed data. A positive bias of 24 Wm−2 on Rn was found in605

Chirouze et al. (2013). In this paper, the absence of bias (estimated as −3606

Wm−2) on Rn can be explained by the use of ASTER-derived emissivity.607

The mean ASTER-derived ǫ is about 0.95, which is significantly smaller that608

the default value (0.98) used in Chirouze et al. (2013). The slight difference609

in Rn estimates can also be explained by the fact that in this paper Ra was610

modeled using the formulation in Brutsaert (1975), whereas the observed Ra611

was used in Chirouze et al. (2013).612

Ground heat flux is computed as a fraction (Γ or Γ′) of net radiation.613

In order to identify the impact on G of uncertainties in Rn and in Γ or Γ′,614

four different expressions of G are derived using Γ or Γ′, and observed or615

simulated Rn. Figure 12 plots the simulated versus observed ground heat616

flux at the six flux stations, and error statistics are provided in Table 3.617

One observes that the Γ′ formulation provides more accurate G estimates618

than the Γ formulation. Consequently, the explicit representation in SEB-619

4S of bare soil, its water status (via SEF), and unstressed green vegetation620
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helps model soil heat flux. By comparing the error statistics for G simulated621

using observed and simulated Rn, one observes that errors in modeled Rn622

are responsible for a 10% error on simulated G.623

Note that the slope of the linear regression between simulated and ob-624

served G is generally low. This can be explained by a significant overesti-625

mation of G measurements at station 3 (chickpea) (Chirouze et al., 2013).626

By removing data from station 3, the root mean square difference between627

simulated and observed G decreases from 46 to 34 Wm−2 (for the case Γ′
628

and observed Rn). The low slope of the linear regression between simulated629

and observed G can also be explained by uncertainties in fs and SEF. Even630

if SEB-4S provides an estimate of fs and SEF, it is worth reminding that631

fs is computed as the residual term of component fractions, which may in-632

tegrate several error sources, and SEF is computed from the retrieved soil633

temperature Ts, which systematically integrates errors in Tv estimated as634

the most probable (not the actual) vegetation temperature. In fact, bet-635

ter constraining soil heat fluxes would require knowledge of soil temperature636

(Moran et al., 1994), or soil evaporative efficiency or near-surface soil mois-637

ture (Merlin et al., 2012a).638

The G formulation corresponding to Γ′ and simulated Rn is used in the639

following subsections as the G component of all three (SEB-4S, T −α image-640

based, T − fvg image-based) surface energy balance models.641

5.3. ET642

Figure 13 plots the ET simulated by the T − α image-based model, the643

T − fvg image-based, and SEB-4S versus measurements at the six stations.644

To quantify the impact of the modeling of available energy (Rn−G) on ET645
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predictions, Figures 13a,b,c present the ET modeled from the observed avail-646

able energy, and Figures 13d,e,f present the ET modeled from the modeled647

available energy. Error statistics are provided in Table 4 in terms of corre-648

lation coefficient, root mean square difference, mean difference, and slope of649

the linear regression between simulated and observed LE. One observes that650

uncertainties in modeled available energy slightly degrade model predictions,651

but the approach for estimating EF has a much more significant impact on652

LE estimates. In terms of correlation coefficient for instance, modeled avail-653

able energy is responsible for a 0.00−0.03 difference, while modeled evapora-654

tive fraction is responsible for a 0.08−0.14 difference. Hence, improving EF655

representation is a key step in improving ET models. Overall, SEB-4S im-656

proves the correlation coefficient and slope of the linear regression between657

simulated and observed ET from 0.78-0.81 to 0.89, and from 0.55-0.63 to658

0.90, respectively. The improvement reaches about 100 W m−2 at low values659

and about 100 W m−2 at the seasonal peak of ET as compared with both660

T − fvg and T − α image-based models.661

Figure 14 presents the images on the seven ASTER overpass dates of662

the ET simulated by the T − α image-based model, the T − fvg image-663

based, and SEB-4S. A visual comparison indicates that the main differences664

between the three models occur during the second half of the agricultural665

season when the evaporative demand and the mean fraction of senescent666

vegetation are larger. The T − fvg image-based model and SEB-4S have a667

similar behavior before the ET peak in April. However, significant differences668

between T − α image-based model and SEB-4S are observable all along the669

agricultural season, including the period before the ET peak. Especially670
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the T − α image-based model seems to lack sensitivity over the full ET671

range, thus systematically overestimating low values and underestimating672

large values. These differences are interpreted as resulting from the physical673

reasoning underlying the estimation of EF in each of the three models. In674

the T − α image-based model, EF is computed by assuming that the wet675

surface edge is (CD) instead of [BC] in SEB-4S. In the T − fvg image-based676

model, EF is computed by assuming that the energy fluxes over senescent677

vegetation behave as those over bare soil. In SEB-4S, EF is computed from678

on a consistent physical interpretation of both T −α and T −fvg spaces, and679

an explicit representation of four surface components including bare soil and680

senescent vegetation.681

5.4. Sensitivity to αvg and αvs682

In the current version of SEB-4S, the green and senescent vegetation albe-683

dos are set to constant values (0.19 and 0.39) for all crop types. One needs to684

assess the impact of variabilities (and uncertainties) in green and senescent685

vegetation albedos on ET estimates. A sensitivity analysis is undertaken by686

setting αvg and αvs to daily values. Daily αvg is estimated as the α value687

corresponding to the minimum T on each date separately. Daily αvs is esti-688

mated as the maximum α value observed on each date separately. The ET689

simulated by SEB-4S for each parameter set is then compared with the ET690

simulated using the constant αvg and αvs values (originally estimated as the691

average of daily αvg, and as the maximum value of daily αvs over the entire692

time series, respectively). The root mean square difference is estimated as693

24, 36 and 47 Wm−2 in the case of daily αvg and constant αvs, daily αvs694

and constant αvg, and both parameters estimated daily, respectively. When695
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comparing simulated ET with in situ measurements, the root mean square696

difference and correlation coefficient are 75 Wm−2 and 0.92 for constant (orig-697

inal) parameters, 75 Wm−2 and 0.92 for daily αvg and constant αvs, 87 Wm−2
698

and 0.91 for constant αvg and daily αvs, and 88 Wm−2 and 0.91 for both699

parameters estimated daily. To evaluate the impact of potential differences700

of the albedo values (αvg, αvs) for different crops, an additional sensitivity701

analysis is undertaken in space by artificially applying a Gaussian noise to702

αvg and αvs for each pixel independently. The noise amplitude (0.03 for αvg703

and 0.07 for αvs) is set to the standard deviation over the entire time series704

of the albedo endmembers estimated on a daily basis. The root mean square705

difference between the ET simulated using original (undisturbed) parameters706

and the ET simulated using the noised parameters is estimated as 7 Wm−2.707

Moreover, the root mean square difference and correlation coefficient between708

simulated and observed ET is 77 Wm−2 and 0.91 for the noised dataset (as709

compared with 75 Wm−2 and 0.92 for the original dataset). Hence the sensi-710

tivity analysis reveals that 1) the assumption that αvg and αvs are relatively711

constant is deemed acceptable in terms of simulated ET, and 2) SEB-4S is712

quite robust with respect to uncertainties in αvg and αvs. In case a time713

series of solar/thermal data is not available across the agricultural season,714

estimating αvg and αvs on a daily basis seems to be a satisfying option.715

6. Conclusions716

An operational image-based surface energy balance model (SEB-4S) is717

developed from a consistent physical interpretation of the polygons obtained718

in the T − α and T − fvg spaces. The strength of the modeling approach719
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relies on the synergy between both T −α and T − fvg polygons. Specifically,720

the combination of T − α and T − fvg image-based approaches allows to721

explicitly separate the energy fluxes of four surface components of agricul-722

tural fields including bare soil, unstressed green vegetation, non-transpiring723

green vegetation, and standing senescent vegetation, and to robustly retrieve724

temperature endmembers regardless of crop phenological stages. SEB-4S op-725

erates in five steps: 1) estimating albedo and temperature endmembers, 2)726

estimating component temperatures, 3) estimating SEF, 4) estimating com-727

ponent fractions, and 5) computing component turbulent heat fluxes as a728

fraction of available energy.729

To test the performance of SEB-4S, a T − α image-based model and730

a T − fvg image-based model are implemented as benchmarks. The three731

models are tested over a 16 km by 10 km irrigated area in northwestern732

Mexico during the 2007-2008 agricultural season. Input data are composed733

of ASTER thermal infrared, re-sampled Formosat-2 shortwave, and station-734

based meteorological data. The fluxes simulated by SEB-4S, the T − α735

image-based model, and the T − fvg image-based model are compared on736

seven ASTER overpass dates with the in situ measurements collected at six737

locations in the study domain. The ET simulated by SEB-4S is significantly738

more accurate and robust than that predicted by the models based on a single739

(either T − fvg or T −α) polygon. Overall, SEB-4S improves the correlation740

coefficient and slope of the linear regression between simulated and observed741

ET from 0.78-0.81 to 0.89, and from 0.55-0.63 to 0.90, respectively. The742

improvement reaches about 100 W m−2 at low values and about 100 W743

m−2 at the seasonal peak of ET as compared with both T − fvg and T − α744

36



image-based models. These differences result from the physical reasoning745

underlying the estimation of EF in each of the three models. In the T − α746

image-based model, EF is computed by assuming that the wet surface edge747

is the full-cover edge of the T − fvg polygon. In the T − fvg image-based748

model, EF is computed by assuming that the energy fluxes over senescent749

vegetation behave as those over bare soil. In SEB-4S, EF is computed from a750

consistent physical interpretation of the edges and vertices of both T −α and751

T − fvg polygons, and an explicit representation of four surface components752

including bare soil and senescent vegetation.753

In this paper, SEB-4S was successfully tested over a range of surface754

conditions in terms of ET. However, the energy partitioning between soil755

evaporation and plant transpiration was not directly validated over partially756

covered pixels. This point will be addressed in the near future using soil757

evaporation and plant transpiration measurements made independently from758

the tower ET observations. Although SEB-4S can be operationally applied759

to irrigated agricultural areas using ASTER or Landsat remote sensing data,760

several improvements are foreseen to extend its validity domain:761

• Temperature endmembers: in this study, SEB-4S is applied to an irri-762

gated area including a large variability of soil moisture and vegetation763

cover conditions. Application to other less heterogeneous (e.g. rainfed764

agricultural) areas or to thermal data collected at coarser spatial res-765

olutions may induce significant uncertainties in temperature endmem-766

bers. To extend the validity domain of the temperature endmembers767

algorithm, one may constrain the minimum vegetation temperature by768

setting Tv,min = Ta (Merlin, 2013), and/or by using a formulation of769
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aerodynamic resistance.770

• Representing the sensible heat flux of a wet surface: in the current771

version of SEB-4S, EF is assumed to be equal to EE. This means that772

Hs and Hvgu for a well watered-surface are neglected and set to zero.773

Further studies may use a relationship between EF and EE.774

• Linearity assumptions: SEB-4S is derived from a linearity assumption775

between EF and T , and a linearity assumption between T and Ts, Tvgu,776

Tvgn, and Tvss. Moreover, the net radiation of surface components are777

simply expressed as a fraction of surface net radiation. The linearity778

assumptions are consistent with the image-based approaches, and are779

supported by the good results obtained in terms of ET estimates. How-780

ever, further studies should investigate step-by-step the validity of these781

assumptions. Especially, knowledge of component radiative properties782

(component emissivities, albedos, temperatures) may help improve the783

representation of surface fluxes.784

• Soil heat and water fluxes: as indicated in the paper, better constrain-785

ing the soil (temperature and fraction) component would improve the786

estimation of soil heat and water fluxes. We will address this issue787

in future studies by integrating via a soil evaporative efficiency model788

(Merlin et al., 2011) the near-surface soil moisture derived from passive789

L-band SMOS (Kerr et al., 2010, Soil Moisture and Ocean Salinity)790

data and subsequently disaggregated at the thermal sensor resolution791

(Merlin et al., 2013) and/or a near-surface soil moisture index directly792

derived at high resolution from active C-band Sentinel-1 data.793
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Table 1: Flux stations and instrumentation.

Station Crop Rn H LE G

1 Safflower CNR1 Young KH2O HFP-01

2 Chili Pepper Q7 CSAT3 KH2O HFP-01

3 Chickpea Q7 CSAT3 KH2O HFP-01

4 Potatoes - Sorghum Q7 Young KH2O HFP-01

5 Wheat CNR1 CSAT3 KH2O HFP-01

6 Wheat Q7 CSAT3 KH2O HFP-01
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Table 2: Definition of component fractions. Note that fvgu and fvgn are numerical (instead of analogical) representations

of the water stress of green vegetation, which can be estimated as fvgn/fvg. For instance, a field crop undergoing a water

stress of 0.5 within a given pixel would be represented by 50% of fully unstressed green vegetation (Tvg = Tv,min) and 50% of

non-transpiring vegetation (Tvg = Tv,max).

Component fraction Surface component Component temperature

fs bare soil (= 1− fv) Ts

fvg total green vegetation (= fvgu + fvgn) Tvg

fvgu unstressed green vegetation Tv,min

fvgn non-transpiring green vegetation Tv,max

fvss standing senescent vegetation Tv,max

fv total vegetation (= fvg + fvss) Tv
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Table 3: Correlation coefficient (R), root mean square difference (RMSD), bias and slope

of the linear regression between simulated and observed Rn and G fluxes.

Rn G/Rn R RMSD Bias Slope

Flux source formulation (-) Wm−2 Wm−2 (-)

Rn SEB-4S NA 0.88 40 −3 0.87

G Station Γ 0.59 50 4 0.49

G Station Γ′ 0.67 44 1 0.42

G SEB-4S Γ 0.51 54 2 0.40

G SEB-4S Γ′ 0.59 48 −1 0.34
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Table 4: Correlation coefficient (R), root mean square difference (RMSD), bias and slope

of the linear regression between simulated and observed LE fluxes for the T − α image-

based model, the T − fvg image-based model and SEB-4S and for observed and simulated

available energy.

Rn&G R RMSD Bias Slope

Model source (-) Wm−2 Wm−2 (-)

T − α Station 0.82 100 −17 0.63

T − fvg Station 0.78 110 12 0.56

SEB-4S Station 0.92 75 −27 0.92

T − α SEB-4S 0.81 103 −16 0.63

T − fvg SEB-4S 0.78 110 12 0.55

SEB-4S SEB-4S 0.89 85 −24 0.90
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Figure 1: Data processing steps for determination of component fractions.
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Figure 2: Consistent interpretation of the edges and vertices of the T − α and T − fvg

polygons. Underlying grey points correspond to T , α, and fvg data on 27 April 2008.

56



Figure 3: Data processing steps for determination of temperature endmembers.
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Figure 4: Most probable Tvg is estimated by applying the hourglass approach to the T−fvg

polygon.
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Figure 5: Most probable Tv is estimated by applying the hourglass approach to the T −α

polygon.
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Figure 6: fv is estimated as the ratio IJ/IK = (α− αs)/(αv − αs).
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Figure 7: EF is computed as IJ/IK in the T − α image-based (a) and the T − fvg image-

based (b) model.
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Figure 8: Temperature endmembers set 1 (derived from the T−α space) and set 2 (derived

from the T − fvg space) are intercompared in terms of Ts,min and Tv,max.

62



Figure 9: Estimating temperature endmembers by a consistent interpretation of the T −α

and T − fvg spaces.
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Figure 10: Component fractions on the seven ASTER overpass dates.
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Figure 11: Modeled versus observed net radiation.
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Figure 12: The ground heat flux simulated using Γ and observed Rn (a), Γ′ and observed

Rn (b), Γ and simulated Rn (c), and Γ′ and simulated Rn (d) are plotted versus station

measurements.
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Figure 13: The ET simulated by the T − α image-based model (left), the T − fvg image-based model (middle), and SEB-4S

(right) is plotted versus station measurements. The top line corresponds to data simulated using observed available energy

(Rn−G), and the bottom line corresponds to data simulated using modeled available energy.
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Figure 14: ET images simulated on the seven ASTER overpass dates by the T −α image-

based model, the T − fvg image-based model, and SEB-4S.
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