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We reanalyze the condition for metallic ferromagnetism in the framework of the tight-binding
approximation and investigate the consequences of the inter-site Coulomb interactions using the
Hartree-Fock approximation. We first consider a non-degenerate s band and we show that the
inter-site interactions modify the occurrence of ferromagnetism, and we derive a generalized Stoner
criterion. We analyze the main effects due to the renormalization of the hopping integrals by the
inter-site Coulomb interactions. These effects are strongly dependent on the relative values of the
inter-site electron-electron interactions and on the shape of the density of states as illustrated by a
study of cubic crystals from which we establish general trends. We then investigate a realistic spd
tight-binding model, including intra (Coulomb and exchange) and inter-site charge-charge Coulomb
integrals. This model is used to study the electronic structure (band structure, densities of states,
magnetic moment) of bulk ferromagnetic 3d transition metals Fe(bcc), Co(hcp and fcc) and Ni(fcc).
An excellent agreement with local spin density functional calculations is obtained for the three
metals, in particular concerning the relative widths of the majority and minority spin bands. Thus
our tight-binding Hartree-Fock model provides a consistent interpretation of this effect.

PACS numbers: 75.10.Lp, 75.30.-m, 71.15.-m, 71.20.Be.

I. INTRODUCTION

The origin of ferromagnetism in itinerant systems re-
mains one of the open questions in the condensed mat-
ter theory. Even though spin-density functional theory
gives correctly several predictions concerning the stabil-
ity of ferromagnetism,1 it is interesting to develop simple
models which point out the important physical parame-
ters governing the ferromagnetic instabilities. Ferromag-
netism may occur in two ways: either the paramagnetic
(PM) state gets unstable against the ferromagnetic (FM)
state for particular values of parameters (so-called Stoner
instability), or the strongly polarized FM state, in most
cases saturated ferromagnetic (SF) state, has the lowest
energy beyond some values of electron-electron interac-
tions, but the PM state is still locally stable in a range
of parameters.

It is certainly instructive to understand first the pos-
sible mechanisms of ferromagnetism in the case of a nar-
row s band studied in the tight-binding model using the
Hartree-Fock approximation (HFA). When only the on-
site matrix element U of the Coulomb interaction are
taken into account the Stoner instability occurs when U
satisfies the well known Stoner criterion UN(EF ) > 1,
where N(EF ) is the density of states at the Fermi level
per spin, and the majority and minority spin bands are
rigidly shifted relative to each other. The influence of the
two-site matrix elements of the Coulomb interaction has

been thoroughly studied in the pioneering work by Hirsch
et al. already over a decade ago.2,3 These ideas were fur-
ther developed and qualitatively new effects were found,
both within the HFA, and by going beyond it.4,5,6,7,8 In
particular, Hirsch et al.2,3,4,5 have pointed out that the
renormalization of the hopping integrals resulting from
the Hartree-Fock decoupling of the two-body inter-site
term of the hamiltonian plays a role in the occurrence of
ferromagnetism by changing the bandwidths of majority
and minority spin bands in a different way, thus modi-
fying the Stoner condition. However, Hirsch et al.2,3,4,5

have mainly emphasized the effect of exchange integrals
and have only considered a constant density of states or
that of a linear chain. Indeed, the non-degenerate model
with exchange interactions was proposed to provide ex-
planation of certain itinerant systems, such as EuB6.

9

Obviously, the conclusions that can be drawn from such
a model depend critically on the numerical values of the
parameters and we expect the classical charge-charge
inter-site Coulomb interaction V to be larger than the
exchange one.7 Consequently, we have found interesting
to revisit this model by considering more realistic relative
values of the Coulomb matrix elements first in the case
of a constant density of states, then for the densities of
states of real cubic lattices. We will see that in this last
case the physics of FM instabilities is significantly mod-
ified. Therefore a quantitative study of the influence of
inter-site Coulomb interactions in FM transition metals
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needs an accurate description of the density of states and
realistic interaction parameters.

However ferromagnetism is found usually in systems
with degenerate orbitals and since the early work of
Hubbard10 a variety of theoretical attempts have been
undertaken to understand to what extent the orbital de-
generacy might play an essential role in particular in the
ferromagnetism of Fe, Co and Ni. The dominating point
of view at present is that the degeneracy of d orbitals is
crucial,11,12,13 since local moments can form14 and sur-
vive above the Curie temperature due to intra-atomic
exchange integrals. Here we will investigate the effect
of on-site and inter-site interactions in degenerate spd
bands, considering realistic parameters. It is clear that
the most important matrix elements of the Coulomb in-
teraction involved in FM instabilities contain four d or-
bitals centered on at most two neighboring sites. The
relative values of the matrix elements can be inferred
from the results of explicit calculations using atomic wave
functions. From these calculations15 it turns out that
the largest on-site matrix elements are those introduced
already in our previous paper,16 while the only non neg-
ligible inter-site Coulomb interactions are of electrostatic
(i.e., charge-charge) type, arising from the interaction be-
tween two electrons in orbitals centered at two neighbor-
ing sites. As for an s band, the Hartree-Fock decoupling
of these latter terms renormalizes the hopping integrals
and we will show that they are responsible for the differ-
ent d bandwidths for up and down spins which are ob-
tained in local spin density functional calculations for the
3d FM elements (Fe, Co, Ni). Furthermore, the nearest
neighbor distances being very close for the three metals,
it is expected that the nearest neighbor Coulomb inter-
actions should not vary significantly from Fe to Co and
Ni. It will be seen that, under this assumption, an excel-
lent agreement is found between local spin density and
our tight-binding Hartree-Fock (TBHF) calculations for
the band structure, the densities of states, as well as the
magnetic moment of the three elements.

The paper is organized as follows. We recall (Sec. II)
the s band (extended Hubbard Hartree-Fock) model in
which all interactions are limited to first nearest neigh-
bors and derive an analytic generalized Stoner criterion.
including electrostatic as well as exchange interactions.
Then we revisit the simple model of a constant density of
states which can be solved analytically,2,4,5 and we show
that the onset of the Stoner instability and the condition
of occurrence of saturated ferromagnetism are strongly
dependent on the ratio of the two-site electrostatic in-
teraction and exchange interaction. Finally, in order to
illustrate the role of the shape of the density of states,
we consider the case of three-dimensional lattices: sim-
ple (sc), body centered (bcc) and face centered (fcc) cubic
lattice for reasonable parameters, with particular empha-
sis on the role played by inter-site Coulomb interactions.
In Sec. III, the multi-band spd TBHF model, already
described by Barreteau et al.,16 is extended by including
the electrostatic inter-site Coulomb matrix elements, and

the determination of the parameters is discussed. This
model is finally used in Sec. IV to analyze the band
structures of FM transition metals: Fe, Co and Ni. We
will show that the main effects which can be understood
for the s band using some analytic arguments apply also
qualitatively to 3d transition metals. The paper is con-
cluded in Sec. V.

II. FERROMAGNETISM IN A

NON-DEGENERATE s BAND

A. The tight-binding Hartree-Fock model

We start from a tight-binding model for an s band and
assume that the set of atomic (s) orbitals φi(r) centered
at each site i is orthogonal. We consider the same Hamil-
tonian as Hirsch5 with inter-site interactions limited to
first nearest neighbors which, in the second quantization
formalism, can be written:

Hs = −t
∑

i,j 6=i,σ

a†
iσajσ +

U

2

∑

i,σ

niσni−σ

+
V

2

∑

i,j 6=i,σ,σ′

a†
iσa†

jσ′ajσ′aiσ

+
J

2

∑

i,j 6=i,σ,σ′

a†
iσa†

jσ′aiσ′ajσ

+
J ′

2

∑

i,j 6=i,σ

a†
iσa†

i−σaj−σajσ, (1)

where a†
iσ is the creation operator of an electron with spin

σ in the atomic orbital centered at site i, niσ = a†
iσaiσ,

and −t is the hopping integral between nearest neighbors.
The Coulomb interactions are described by the leading
on-site term ∝ U , and by the two-site terms: charge-
charge interactions ∝ V , exchange interactions ∝ J , and
the ’pair hopping’ term ∝ J ′,

U = 〈φi(r)φi(r
′)|

1

|r − r′|
|φi(r)φi(r

′)〉, (2)

V = 〈φi(r)φj(r
′)|

1

|r − r′|
|φi(r)φj(r

′)〉, (3)

J = 〈φi(r)φj(r
′)|

1

|r − r′|
|φj(r)φi(r

′)〉, (4)

J ′ = 〈φi(r)φi(r
′)|

1

|r − r′|
|φj(r)φj(r

′)〉. (5)

We will consider in most cases the realistic relation J =
J ′, as obtained for real wave functions from Eqs. (4) and
(5).

In the HFA the two-body terms are decoupled in the
following way:

a†
αa†

βaγaδ = 〈a†
αaδ〉a

†
βaγ + 〈a†

βaγ〉

− 〈a†
αaγ〉a

†
βaδ − 〈a†

βaδ〉a
†
αaγ
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− 〈a†
αaδ〉〈a

†
βaγ〉 + 〈a†

αaγ〉〈a
†
βaδ〉, (6)

where the indices denote an atomic spin-orbital. Note
also that the spin conservation implies that any average
〈a†

αaβ〉 vanishes when α and β have different spins.
Consequently the HFA leads to a one-particle Hamil-

tonian:

HHF
s = −

∑

i,j 6=i,σ

tσa†
iσajσ +

∑

iσ

εσniσ − Edc, (7)

with the following spin-dependent hopping integrals and
orbital energies,

tσ = t + (V − J)Iσ − (J + J ′)I−σ, (8)

εσ = z(V − J)n + (U + zJ)n−σ, (9)

Edc stands for the double counting energy terms and z is
the number of nearest neighbors. Here we assume that
the system consists of equivalent atoms, then the occu-
pation numbers: nσ = 〈niσ〉 for electrons of spin σ and
the total band filling n =

∑

σ nσ are the same at each

site i. In this model Iσ = 〈a†
iσajσ〉 do not depend on

the bond and can be easily obtained from the density of
states (per atom) Nσ(E). Indeed, choosing the origin of
energies at the center of gravity of Nσ(E), it follows from
Eq. (7) that:

∑

nocc

Enσ =

∫ EF σ

−∞

ENσ(E) dE = −ztσIσ, (10)

where Enσ are the eigenenergies for spin σ. Note that
Iσ = I(nσ) since the renormalization of the hopping in-
tegrals leads to a simple energy rescaling of the density
of states without changing its shape.

B. Generalized Stoner criterion and condition for

saturated ferromagnetism

The magnetic energy as a function of the magnetic
moment m = n↑ − n↓:

Emag(m) = 〈HHF
s (m)〉 − 〈HHF

s (0)〉, (11)

where 〈HHF
s (m)〉 is the Hartree-Fock energy of a state

with magnetic moment m, is easily expressed in terms of
the function I. Let us introduce the following notations:

Iσ = I(nσ) = I
(n + σm

2

)

, (12)

with σ = +1(−1) for up(down) spin. Then the magnetic
energy per atom is given by:

Emag(m) = 2zt
[

I0 −
1

2
(I↑ + I↓)

]

−
1

4
(U + zJ)m2

−
1

2
z(V − J)(I2

↑ + I2
↓ − 2I2

0 )

+ z(J + J ′)(I↑I↓ − I2
0 ), (13)

where I0 refers to the PM state, i.e., I0 = I(n/2).
Let us first derive the condition under which the PM

state becomes unstable (Stoner instability). This insta-
bility is obtained from the Taylor expansion of Iσ for
small magnetization m. Substituting this expansion for
I↑ and I↓ into (13) one finds to second order in m:

Emag(m) = [−ztI ′′0 − z(V − J)(I ′
2

0 + I0I
′′
0)

+ z(J + J ′)(I0I
′′
0 − I ′

2

0)

− (U + zJ)]
m2

4
, (14)

where I ′0 and I ′′0 are the first and second derivatives of
Iσ at nσ = n/2. The Stoner instability occurs when the
coefficient of m2 is negative, i.e.,

zI ′′0 [t+(V −2J−J ′)I0]+z(V +J ′)I ′20 +U +zJ > 0. (15)

¿From Eq. (8) it is seen that the term between brackets
is the hopping integral tPM in the PM state. Using now
Eq. (10) it can be shown, with obvious notations, that:

I ′0 = −
EF

zt
= −

EPM
F

ztPM

,

I ′′0 = −
1

ztN(EF )
= −

1

ztPMNPM(EPM
F )

, (16)

where NPM(EPM
F ) is the density of states per spin in the

PM state at the Fermi level EPM
F . Note that in these

equations the energies must be referred to the center of
gravity of the band. The inequality (15) can be now
rewritten as a generalized Stoner criterion:

UeffNPM(EPM
F ) > 1, (17)

with:

Ueff = U + zJ + z(V + J ′)
(EPM

F

ztPM

)2

. (18)

This generalizes the criterion derived by Hirsch (Eq.
(22)) in Ref. 5] for the particular case of a constant den-
sity of states. Accordingly the influence of the inter-site
exchange integral J is to act in favor of the FM state for
any band filling since it increases Ueff and decreases the
bandwidth of the PM state [see Eq. (8)]. Let us now
examine the effect of V and J ′. At low and high band
fillings the renormalization of the hopping integral in the
PM state tends to zero since I0 vanishes. As a conse-
quence, due to the term proportional to V + J ′ in Ueff

the PM state is more easily destabilized for low values of
n since, in this case, the ratio (EPM

F /ztPM)2 is close to
unity, the bottom of the band being at E = −ztPM. This
is also true when n approaches n = 2 for simple and body
centered cubic lattices and this tendency is weakened for
the face centered cubic lattice since (EPM

F /ztPM)2 = 1/9.
Around half filling EPM

F is small so that Ueff ≃ U + zJ
and for realistic values of V (i.e., V > 2J + J ′) the PM
band is broadened. Moreover its width, like I0, is there
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at its maximum and increases with V . Consequently, the
PM state is less easily destabilized around half filling.

Finally it is also interesting to derive the value of U
above which the SF state with moment ms (ms = n when
n ≤ 1, ms = 2−n when n ≥ 1) becomes the most stable.
This is done simply by looking for the minimum value
of U for which the function Emag(m) (Eq.(13)) takes its
minimum value at ms in the domain [0, ms].

C. The magnetic instabilities for a constant density

of states revisited

In order to obtain a physical insight into the mecha-
nism of FM instability in the s band model (Eq. (7)), we
discuss first the case of a constant density of states (per
spin, with the zero of energy at εσ),

Nσ(E) =
1

Wσ

, for |E| < Wσ/2, (19)

with Wσ = 2ztσ (in the following we assume z = 6).
Using Eq. (10) it is found that Iσ has a very simple
analytical expression:

Iσ = nσ(1 − nσ). (20)

Let us first discuss the renormalization of the hopping
integrals for a more than half-filled band, as in the late
3d transition metals, in the PM phase as well as in the SF
phase which becomes stable when U is large enough. It is
clear that the majority spin up band is narrower than the
minority spin down one and it can be shown easily that
the hopping integral found in the PM phase lies always in
between the ones for the majority and minority spins in
the SF phase at least in the realistic case7 where V > J .
We will see in Sec. III that this holds also qualitatively
for Fe, Co and Ni.

The study of the stability of the PM and FM states can
be done analytically for the constant density of states.
For this density of states the magnetic energy (Eq.(13))
is a quadratic function of m2:

Emag(m) =

[

A(n) + B

(

m2

4

)] (

m2

4

)

, (21)

with, assuming J = J ′,

A(n) = W − U,

−
1

2
z

[

V (3n2−6n+2)− J(n2−2n−4)
]

, (22)

B = −z(V − 3J). (23)

and W = 2zt. For a given value of n, the minimum
of Emag(m) depends on the actual parameters A(n) and
B. The PM state is unstable against the FM state when
A(n) < 0; in the absence of inter-site interactions the well
known Stoner criterion for the constant density of states,
U > W is recovered. In the general case with V 6= 0

0.0 0.5 1.0 1.5 2.0
n

0.0

0.5

1.0

1.5

2.0

U
/W

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

U
/W

0.0 0.5 1.0 1.5 2.0
n

0.0

0.5

1.0

1.5

2.0
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0
(a)

(b)

(c)

(d)

bcc

fccsc

FIG. 1: Critical value of U/W (W : unrenormalized band
width) for the onset of the Stoner instability as a function
of the band filling n for an s band and: (a) constant density
of states, (b) sc lattice, (c) bcc lattice, and (d) fcc lattice.
Different lines correspond to: V = J = 0 (dotted lines); V =
0.15U , J = 0 (dashed lines); V = 0.15U , J = 0.03U (J ′ = J)
(solid lines).

and J 6= 0 the value of U/W above which the PM state
becomes unstable depends on n, as seen in Fig. 1(a).

As shown above, the inter-site Coulomb interaction V
promotes FM states for low numbers of electrons or holes,
while around half filling (0.5 <

∼ n <
∼ 1.5), it tends to

stabilize the PM state. The inter-site exchange matrix
element J always favors the FM state since n2−2n−4 < 0
when 0 < n < 2.

If A(n) < 0 and B > 0, as considered by Hirsch5 who
assumes J > V , the PM state is unstable, and Emag(m)
has a minimum at mm. If mm < ms the most stable
solution is a non-saturated FM state. In this case the
condition dEmag(m)/dm = 0, with Emag given in Eq.
(21), is equivalent to the condition of equal Fermi energies
for the majority and minority spin sub-bands considered
instead in Ref. 5. If mm > ms, the most stable solution
is the SF state.

However, for realistic V and J parameters7,15 one has
V > 3J , thus B is negative. In this condition if A(n) > 0
Emag(m) has a minimum at m = 0, a maximum at mM

and vanishes at m = m0. When m0 > ms the PM state is
stable and when m0 < ms the SF state is the most stable
solution but the PM state is metastable. If A(n) < 0 the
PM state becomes unstable while the SF state remains
the most stable solution. Thus if B < 0 weak FM states
are rigorously excluded and, as U/W increases, the SF
state is stable before the Stoner instability of the PM
state. The critical value of U/W above which the SF
state becomes stable is given by:

A(n) +
1

4
Bm2

s = 0. (24)

The variation with n of this critical value is shown in
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0.0 0.5 1.0 1.5 2.0
n

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
n

0.0

0.5

1.0

1.5

2.0

U
/W

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
U

/W

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

bcc

fccsc

(a)

(b)

(c)

(d)

FIG. 2: Critical value of U/W (W : unrenormalized band
width) above which the SF phase becomes stable as a function
of the band filling n and for: (a) constant density of states,
(b) sc lattice, (c) bcc lattice, and (d) fcc lattice. The meaning
of different lines and the parameters are the same as in Fig.
1.

Fig. 2 for the same set of parameters as in Fig. 1(a),
and it can be verified that these curves are always below

the corresponding ones for the Stoner instability, except
at both ends where the values of U/W are the same.

D. Magnetic instabilities in cubic lattices

In the previous section we have discussed the FM in-
stability for an s band assuming a constant density of
states. However this density of states cannot be asso-
ciated with any existing lattice. We now consider the
case of cubic lattices: simple , body centered and face
centered cubic lattices with a hopping integral −β lim-
ited to nearest neighbors. The corresponding dispersion
relation is then:

E(k) = −β
∑

j

exp(ik.Rj), (25)

where Rj (j = 1, ...z) denote the set of vectors connect-
ing an atom to its nearest neighbors. In this case the
density of states, and consequently I(nσ), must be cal-
culated numerically. The densities of states have been
obtained from this dispersion relation by carrying out
the summation over the Brillouin zone using the linear
tetrahedron method.17

However, in order to account accurately for the singu-
larities of N(E) we have also used the analytical expres-
sions given by Jelitto18 which approximate the actual
densities of states with an excellent relative error (less
than 10−4). The function I(nσ) is derived from Eq. (10)
and its derivatives I ′(nσ) and I ′′(nσ), which are neces-
sary to study the Stoner instability (Eq. (15)) are deter-
mined by means of the relations (16). In the following

0.0 0.5 1.0 1.5 2.0
0.8
0.9
1.0
1.1
1.2
1.3

t σ
/t

0.0 0.5 1.0 1.5 2.0
n

0.8
0.9
1.0
1.1
1.2
1.3

t σ
/t

fcc

(a)

bcc

(b)

FIG. 3: Effective hopping integrals tσ (in units of t) as a
function of the band filling n of an s band for: (a) bcc and (b)
fcc lattices. Different lines refer to: PM phase (long dashed
lines), t↑/t (full lines) and t↓/t (dashed lines) in the SF phase
(stable at sufficiently large U , see Fig. 2). The parameters
are: V = 0.15W (W = 16t), J ′ = J , and: J = 0 (thin lines),
J = 0.03W (heavy lines).

we will always assume J = J ′ and V > 3J .

The effective hopping integral in the PM state tPM has
a maximum at n = 1 for the sc and bcc lattices, for which
N(E) has a particle-hole symmetry, while the maximum
is shifted to n ≃ 0.76 in the case of fcc lattice having
asymmetric N(E) [see Fig. 3]. In all cases, the effective
hopping integral is reduced by J > 0. At different filling
of spin sub-bands, as for instance in SF states, the ef-
fective up- and down-spin hopping elements and the cor-
responding bandwidths are different. For instance, for
n < 1 the up-spin bandwidth increases when this sub-
band is gradually filled, has a maximum at n ≃ 0.38 for
the fcc lattice, and then decreases back to the unrenor-
malized value at n = 1, while the down-spin sub-band
is unrenormalized (narrowed) when J = 0 (J > 0), as
shown in Fig. 3(b). The renormalization of spin sub-
bands is interchanged for n > 1 when the up-spin sub-
band is filled and thus weakly narrowed in the SF states.

To illustrate the general trends we have determined the
Stoner instabilities for sc, bcc, and fcc lattices using Eq.
(15), and for three sets of parameters: (i) V = J =0, (ii)
V = 0.15U , J = 0, and (iii) V = 0.15U , J = 0.03U . The
results are given in Fig. 1 and are in perfect agreement
with the qualitative predictions derived above (see Sec.
IIB). Indeed, V tends to stabilize the FM state for low
and high band fillings, while the reverse is found around
half-filling. Moreover, when J is taken into account, it
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a) b)

FIG. 4: Magnetic energy Emag (in units of the unrenormalized
band width W) as a function of the magnetic moment m for a
fcc lattice with an s band for two band fillings (a)n = 0.9 (b)
n = 1.4 and increasing values of U/W . The other parameters
are V = 0.15U , J = J ′ = 0. The inset shows the case n = 1.4,
U/W = 0.418 with an enlarged energy scale, proving that the
PM state is metastable.

acts in favor of FM states for any band filling. This result
confirm the earlier findings of Hirsch.2,5

The regions of stability of the SF phase are shown in
Fig. 2. When n approaches 0 or 2 the curves of Figs. 1
and 2 corresponding to the same values of V and J be-
come closer and closer to each other since the magnetic
moment is infinitesimal in both limits and the second
order expansion of Iσ is valid for any value of m ≤ ms.
Furthermore, it is found that for all lattices and band fill-
ings, except for the fcc lattice with n >

∼ 1.3, the Stoner
instability is found for a smaller value of U/W than that
needed to stabilize the SF state. This means that, con-
trary to the case of the constant density of states, the
PM state is never metastable except for the fcc lattice
with n >

∼ 1.3 where a very narrow domain of metasta-
bility exists. This is illustrated for the fcc lattice in Fig.
4 where we have plotted Emag(m) for several values of
U/W (V = 0.15U , J = J ′ = 0) and two values of the
band filling: n = 0.9 and 1.4. It is clearly seen that, when
n = 0.9, as U/W increases the most stable phase is suc-
cessively the PM, unsaturated FM and SF phase while,
when n = 1.4, the PM phase is immediately followed by
the SF phase but there is a narrow range of U/W where
the PM phase is metastable.

It is important to realize that the above results were
derived using a rather small value of V/U and, conse-
quently, the effect of V is also small. However, it in-
creases rapidly with V as shown in Fig. 5 for the Stoner
instability in the fcc lattice. Note that the onset of the
Stoner instability is independent of V for two band fill-
ings since, as seen in Eq. (14), Emag does not depend on

V when I ′
2
0 + I0I

′′
0 = 0.

Finally, we must emphasize that all our results dis-
cussed so far have been obtained assuming interactions
limited to first nearest neighbors. When hopping inte-
grals between farther neighbors are taken into account,
the study of the influence of interatomic Coulomb inte-

0.0 0.5 1.0 1.5 2.0
n

0.0

0.5

1.0

1.5

2.0

U
/W

FIG. 5: Critical value of U/W (W : unrenormalized band
width) for the onset of the Stoner instability in a bcc lattice
with an s band as a function of the band filling n for increasing
values of V/U (0: full line, 0.35: dashed line, 0.55: dotted line)
and J = J ′ = 0.

grals on the electronic structure becomes more involved.
Indeed, whereas in the first nearest neighbor case the Iσ

function in Eq. (8) can be calculated once for all since
the density of states N(E) scales with the hopping in-
tegral without changing its shape, this is no longer true
when farther neighbor interactions are included and the
solution of the problem becomes more tricky. Thus we
have carried it out only in the study of the realistic va-
lence spd band of transition metals presented in the next
section.

III. FERROMAGNETISM FOR HYBRIDIZED

spd BANDS

In the previous section we presented the effect of inter-
atomic Coulomb interactions on the electronic structure
and their influence on the onset of ferromagnetism in
a tight-binding s band with interactions limited to first
nearest neighbors. From this study we can draw several
conclusions. First, the relative numerical values of the
parameters are critical to determine the FM instabilities.
Then the shape of the density of states has also a strong
influence. Thus in order to derive reliable conclusions for
FM transition metals we must now generalize this model
to hybridized s, p and d bands with farther interactions
as well as realistic Coulomb matrix elements.

A. The Hamiltonian

In the basis of real s, p, and d atomic orbitals (denoted
by λ and µ indices) the Hamiltonian is determined by the
bare atomic levels ελ, the bare hopping integrals −tiλ,jµ,
and by the matrix elements of the Coulomb interaction.
In the following we keep the most important of these lat-
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ter terms which can be selected by comparing the numer-
ical values of all the Coulomb matrix elements obtained
using explicit expressions of the s, p, and d atomic or-
bitals. From these calculations,15 it turns out that the
leading intra-atomic Coulomb matrix elements are:

Uλµ = 〈φiλ(r)φiµ(r′)|
1

|r − r′|
|φiλ(r)φiµ(r′)〉, (26)

Jλµ = 〈φiλ(r)φiµ(r′)|
1

|r − r′|
|φiµ(r)φiλ(r′)〉, (27)

i.e., the intra-atomic Coulomb and exchange integrals
involving two orbitals that we already introduced in a
previous paper.16 These parameters satisfy an important
relation for any pair of orbitals with the same orbital
quantum number l:

Uλλ = Uλµ + 2Jλµ. (28)

Note also that all Uλλ elements are equal for orbitals λ
with the same l. In what follows we consider six Coulomb
integrals: Uss, Usp, Usd, Upp′ , Upd, Udd′ , and five ex-
change integrals: Jsp, Jsd, Jpp′ , Jpd, Jdd′ , with p′ 6= p
and d′ 6= d, i.e., we have taken the average value of some
sets of Coulomb integrals; for instance, Udd′ is the av-
erage of all Coulomb integrals involving two different d
orbitals. The corresponding values of Upp and Udd are
determined from Eq. (28).

The most important Coulomb interatomic interactions
are:

V λµ
ij = 〈φiλ(r)φjµ(r′)|

1

|r − r′|
|φiλ(r)φjµ(r′)〉, (29)

i.e.,the electrostatic inter-site interactions. From atomic
orbital calculations,15 it is found that their bare value
(before screening) is almost independent of the consid-
ered pair of orbitals and close to e2/Rij , Rij being the
spacing between atoms i and j, so that we can approxi-
mate them by:

Vij = V0

R0

Rij

, ∀R < Rc, (30)

where R0 is a reference distance which is chosen to be
the first nearest neighbor bulk equilibrium spacing, V0 is
a parameter to be determined in order to take screening
effects into account, and Rc a cut-off distance. We must
stress that in this calculation the other two-site matrix
elements involving four d orbitals (which are the most im-
portant in this problem), and in particular the exchange
integrals, are at least two orders of magnitude smaller
than Vij .

The spd band Hamiltonian is then written as follows,

H = −
∑

iλ,jµ,σ
i6=j

tiλ,jµa†
iλσajµσ +

∑

iλσ

ελniλσ

+
∑

iλ

Uλλniλ↑niλ↓ +
1

2

∑

iλµ,λ 6=µ

σσ′

Uλµniλσniµσ′

+
1

2

∑

iλµ,λ 6=µ

σσ′

Jλµa†
iλσa†

iµσ′aiλσ′aiµσ

+
1

2

∑

iλµ,λ 6=µ
σ

Jλµa†
iλσa†

iλ−σaiµ−σaiµσ

+
1

2

∑

ijλµ,i6=j

σσ′

Vija
†
iλσa†

jµσ′ajµσ′aiλσ . (31)

a†
iλσ and aiλσ are the creation and annihilation opera-

tors of an electron in the spin-orbital |iλσ〉; niλσ is the
corresponding occupation number operator. The above
multi-band Hubbard Hamiltonian can be solved in the
framework of the HFA (Eq. (6)) which leads to a one
particle TBHF Hamiltonian:

HHF =
∑

iλσ

εiλσniλσ +
∑

iλµ,λ 6=µ
σ

hiλ,iµ,σa†
iλσaiµσ

−
∑

iλjµσ
i6=j

tiλ,jµσa†
iλσajµσ − Edc, (32)

which is the direct generalization of Eq. (7) except for
the appearance of new terms hiλ,iµ,σ , i.e., on-site but
interorbital hopping integrals. The latter terms vanish
in the bulk for cubic symmetry, and also in hexagonal
symmetry except for small sp contributions. They should
be taken into account when the symmetry is reduced.19

The renormalized matrix elements are given by:

εiλσ = ελ + Uλλ〈niλ−σ〉 +
∑

µ6=λ

σ′

Uλµ〈niµσ′ 〉

−
∑

µ6=λ

Jλµ〈niµσ〉 +
∑

j

Vij〈nj〉, (33)

hiλ,iµσ = −Uλµ〈a
†
iµσaiλσ〉

+ Jλµ(〈a†
iµσaiλσ〉 + 2〈a†

iµ−σaiλ−σ〉), (34)

tiλ,jµσ = tiλ,jµ + Vij〈a
†
jµσaiλσ〉. (35)

Note that there is a renormalization of on-site levels
due to the charge interaction Vij , but in an homogeneous
system where each site has the same charge 〈nj〉 = n, it
simply produces a rigid shift of the levels and can there-
fore be ignored for bulk calculations. Actually the most
important effect of Vij is the renormalization of hopping
integrals, and thus of the bandwidth, which is different
for up and down spins in the FM case.

B. The parametrization of the TBHF Hamiltonian

In order to perform realistic calculations for the FM
3d transition metals, we combined the tight-binding
approach of Mehl and Papaconstantopoulos20 for the
PM state with corrections originating from the electron-
electron interactions in the FM states. At this point,
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it is important to note that for any bulk geometri-
cal configuration the HF renormalization of the energy
levels and of the hopping integrals in the PM state
are implicitly included in the parameters of Mehl and
Papaconstantopoulos.20 Indeed, these parameters have
been fitted on electronic structure calculations carried
out in the density functional formalism. It is therefore
convenient to take the PM state as a reference. The
Hamiltonian H can then be written in the following way:

H = H0 + ∆H − ∆Edc, (36)

where H0 is the PM Hamiltonian parametrized in Ref. 20
and ∆H is the perturbation due to the onset of ferromag-
netism. More details can be found in Ref. 16. Finally,
∆Edc is the variation of double counting terms between
the FM and PM states. Note that this parametriza-
tiom assumes a non-orthogonal basis set. Consequently
n = 〈nj〉 is the net population at site j and not the band
filling which is given by the gross atomic population as
defined in Ref. 21. However, it is this latter population
which should be used to calculate the magnetic moment
per atom.

The Coulomb (Uλµ) and exchange (Jλµ) integrals have
been determined from their atomic values and then re-
duced by appropriate screening factors as explained in
Ref. 16. It is at present not possible to get a well
controlled procedure which would describe the screening
of the atomic interactions when atoms build a crystal.
Therefore, we introduce two multiplicative screening fac-
tors, αU and αJ , operating on the U and J atomic values,
respectively. It is known that Coulomb interactions are
strongly screened, while exchange interactions remain al-
most unscreened.22 This is the reason why we have kept
the same value of αJ (αJ = 0.70) as in Ref. 16. Let
us now discuss the values of αU and V0. From Sec. II
it is clear that the interaction Vij modifies the onset of
ferromagnetism and, consequently, αU and V0 should be
determined in a correlated way. In addition these pa-
rameters should not vary significantly between Fe, Co
and Ni which have almost the same interatomic spacing.
We will see in Sec. IV that the values αU = 0.12 and
V0 = 0.5eV lead to bulk spin magnetic moments close
to the experimental values and to bulk electronic struc-
tures (in particular bandwidths and splitting of the two
spin sub-bands) in good agreement with local spin den-
sity calculations for the three ferromagnetic 3d elements.
Note that the resulting values of Uλµ and Jλµ are small
(see Table I) as usual in the HFA to simulate the corre-
lation effects and that the ratio Udd/V0 ≃ 4 seems quite
reasonable.

IV. APPLICATION TO FERROMAGNETIC

TRANSITION METALS

We have performed TBHF calculations on the three
FM 3d transition metals Fe(bcc), Co(hcp) and Ni(fcc) at
their experimental equilibrium structure, i.e, abcc = 2.87

TABLE I: Coulomb Uλµ and exchange Jλµ on-site integrals
(in eV) obtained from an atomic calculation and screened,
respectively, by the factors: αU = 0.12 and αJ = 0.7. The
intraorbital integrals are given by: Upp = Upp′ + 2Jpp′ , and
Udd = Udd′ + 2Jdd′ .

Uλµ Fe Co Ni Jλµ Fe Co Ni

Uss 0.263 0.284 0.304 - - - -

Usp 0.158 0.170 0.182 Jsp 0.184 0.198 0.213

Usd 0.367 0.367 0.417 Jsd 0.105 0.104 0.101

Upp′ 0.158 0.170 0.182 Jpp′ 0.230 0.248 0.266

Upd 0.294 0.294 0.334 Jpd 0.084 0.084 0.081

Udd′ 0.823 0.886 0.950 Jdd′ 0.571 0.595 0.625
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FIG. 6: Density of states as obtained for bcc Fe in the tight-
binding Hartree-Fock model with (solid lines, V0 = 0.5eV) and
without (dashed lines) Coulomb inter-site interaction, for ↑-
spin electrons (top), and ↓-spin electrons (bottom) in the FM
ground state.

Åfor Fe(bcc), ahcp = 2.51 Å, c/ahcp = 1.62 for Co(hcp),

and afcc = 3.52 Åfor Ni(fcc). The cut-off radius Rc for
the interatomic Coulomb interaction was chosen between
second and third nearest neighbors.
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FIG. 7: Variation of the magnetic moment of bcc Fe as a
function of the Coulomb inter-site interaction V0.

A. Ferromagnetic states of bcc Fe

As we have shown in Sec. II, the main effect of the
Coulomb inter-site interaction is to modify the width
of the majority spin band with respect to the minority
one. To illustrate this effect in the case of Fe we have
performed a self-consistent TBHF calculation with and
without this interaction, as shown in Fig. 6. It appears
very clearly that the bandwidth of the majority spin d
electrons is significantly smaller than that of the minority
one when the Coulomb interaction is ”switched on”.

The other effect of the Coulomb inter-site interaction
is to modify the Stoner instability. In particular, it was
shown in Sec. II in the analytic treatment of the s band
model that Vij tends to play in favor of the destabilization
of the PM states for nearly filled bands. Consequently
we expect an increase of the magnetic moment when Vij

increases. This can be seen in Fig. 7, where the evolution
of the magnetic moment is plotted for different values of
V0 ranging from 0 to 0.75 eV and fixed values of Uλµ

corresponding to αU = 0.12. The spin magnetic moment
obtained for V0 = 0.5eV is in very good agreement with
the experimental results23 (see Table II).

Finally, in Figs. 8 and 9 we have compared the den-
sities of states and band structures as obtained from
our TBHF calculation with V0 = 0.5eV and from an
FLAPW LSDA calculation using the WIEN code.24 The
agreement is almost perfect proving that the set of intra
and inter-site Coulomb and exchange interactions that
we chose, not only reproduces integrated quantities such
as the magnetic moment (see Table II) but is also able
to describe very accurately the splitting and change of
bandwidth between majority and minority spins (see Ta-
ble III).

B. Ferromagnetic states of Co

We now present our results for Co (hcp and fcc) keep-
ing the same values for αU and V0 as for Fe. The results
of our TBHF and FLAPW LSDA calculations on hcp Co
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FIG. 8: Density of states as obtained for bcc Fe in the tight-
binding Hartree-Fock model (solid lines, V0 = 0.5 eV), and in
the band structure calculation using the FLAPW method of
Ref. 24 (dashed lines) for ↑-spin electrons (top), and ↓-spin
electrons (bottom) in the FM ground state.
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FIG. 10: Same caption as in Fig. 8 but for hcp Co.

are shown in Fig. 10, where the densities of states ob-
tained with the two methods are represented. Once again
the agreement is excellent for the magnetic moment (see
Table II) and for the shape and the width of the majority
and minority spin densities of states. In particular the
difference in bandwidths between majority spin and mi-
nority spin d electrons is found to be almost the same as
with the WIEN code (see Table III). However, there is a
small quasi rigid shift of the d band for the majority spin
density of states. Note that, Co being a saturated ferro-
magnet, this small shift has almost no influence both on
the magnetic moment and on the total energy. We have
also carried out TBHF and FLAPW LSDA calculations
on fcc Co with a lattice parameter afcc = 3.55 Å, the
densities of states are presented in Fig. 11, showing the
same type of agreement between the two methods.

C. Ferromagnetic states of fcc Ni

The same values of αU and V0 were also used for Ni.
The result is extremely convincing since the magnetic
moment is exactly the same with TBHF and the WIEN
code (see Table II), and Fig. 12 shows an excellent agree-
ment for the electronic structure. As for cobalt, there is
a slight shift of the majority spin d sub-band without
consequences on the magnetic moment and total energy
since Ni is also a saturated ferromagnet, but the shape of
the densities of states and the changes of the bandwidths
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FIG. 11: Same caption as in Fig. 8, but for fcc Co.

TABLE II: Comparison of the spin magnetic moments (in
Bohr magnetons) obtained from tight-binding Hartree-Fock
(TBHF) method, and the WIEN code, compared with exper-
imental values23 for Fe, Co and Ni.

Element TBHF WIEN exp.

Fe 2.32 2.23 2.13

Co(hcp) 1.60 1.51 1.57

Co(fcc) 1.59 1.60 –

Ni 0.58 0.58 0.56

(Table III) are very similar.
To conclude this section, the introduction of the inter-

site Coulomb interaction and the subsequent renormal-
ization of the hopping integrals in the spd TBHF model
has enabled us to obtain an excellent overall agreement
with calculations based on the density functional formal-
ism for the band structure, the density of states and the
magnetic moment of the three 3d FM elements. How-
ever the splitting between up and down spin bands is
systematically slightly larger than in local spin density
calculations. This difference could be expected since
with TBHF the self-interaction is forbidden, as it should,
while it is allowed in the WIEN code, as usual in the
density functional theory. Indeed, if the self-interaction
term is included in Eq. (33), i.e., 〈niλ−σ〉 is replaced by
〈niλ−σ〉 + 〈niλσ〉, the term proportional to Uλλ no more
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FIG. 12: Same caption as in Fig. 8, but for fcc Ni.

TABLE III: Relative difference in d bandwidths (Wd↓ −
Wd↑)/〈Wd〉, in percentage, as obtained in the tight-binding
Hartree-Fock (TBHF) and WIEN code calculations. 〈Wd〉 is
the average bandwidth of both spins.

Element TBHF WIEN

Fe 15 12

Co(hcp) 16 17

Ni 11 7

contributes to the splitting between up and down spin
bands.

V. CONCLUSIONS

To summarize, we have used a tight-binding Hartree-
Fock model including the renormalization of the hopping
integrals due to inter-site Coulomb interactions in order

to put forward its influence on the appearance of fer-
romagnetism. First, we reconsidered the model of non-
degenerate s band and found a generalized Stoner cri-
terion (Eqs. (17-18)). As we have shown, the renor-
malization of the hopping integrals which originates from
the inter-site Coulomb elements strongly modify the con-
ditions for ferromagnetism. In agreement with earlier
studies,2,3,4,5 ferromagnetism is favored for nearly filled
or empty bands by the nearest neighbor Coulomb interac-
tions. As the actual FM instabilities are rather sensitive
to the system parameters, an accurate description of the
density of states and realistic interaction parameters are
of crucial importance to understand the behavior of 3d
transition metals.

Next we have shown that the behavior found for
the non-degenerate s band model has important conse-
quences in realistic transition metals. We extended the
model to the case of hybridized s, p and d bands and used
it to investigate the electronic structure of FM Fe, Co and
Ni. It was found that the width of the majority spin band
is always smaller than that of the minority spin one, as
obtained in electronic structure calculations performed
by ab initio methods. An excellent overall agreement
(band structure, densities of states, magnetic moment)
with the local spin density calculations is obtained for
the three elements.

Finally, it has to be emphasized that this renormaliza-
tion of the hopping integrals is also present in the non-
magnetic case and is a function of the environment of
the pair of atoms involved in the hopping. Here we have
only considered the bulk geometry. It would be interest-
ing to study the case of surfaces and especially of small
clusters in which the effect of the change of environment
is expected to be the strongest.
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