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1. Introduction

One of the major problems affecting the Standard Model (SM) is the so called hierar-

chy problem, that is the enormous difference between the electroweak and the Planck

scales. In fact, since within the SM the Higgs gets a quadratically divergent contri-

bution to its mass, that would imply a Higgs mass of the order of the Planck mass.

On the other hand LEP and SLC, together with other low energy experiments, have

clearly shown that the physics behind the SM is perturbative in nature. This means

that the Higgs mass cannot be very large. This requires fine tuning from the Planck

scale to the electroweak scale. Clearly the situation is not satisfactory and there

have been various proposals to avoid the problem. One is supersymmetry, where the

quadratic divergence in the Higgs mass is cancelled by the fermions. Another one is

technicolor, where the problem is solved lowering the relevant scale from the Planck

mass to values of the order of TeV. Recently it has been proposed [1] to consider

the Higgs fields as Nambu Goldstone Bosons (NGB) [2] of a global symmetry which

is spontaneously broken at some higher scale f by an expectation value. The Higgs
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field gets a mass through symmetry breaking at the electroweak scale. However since

it is protected by the approximate global symmetry it remains light. An important

point is that the cancellation of the quadratic divergence is realized between particles

of the same statistics.

Of course all models containing new physics are highly constrained by the elec-

troweak precision tests. Aim of this paper is to consider the electroweak precision

data constraints on Little Higgs models by using a general method based on the ef-

fective Lagrangian approach. The idea is simple: we eliminate the heavy fields from

the Lagrangian via their classical equations of motion in the limit of infinite mass,

which means in practice that their mass must be much bigger than mW . We obtain

an effective Lagrangian in terms of the Standard model fields, from which we can

directly read off the deviations.

We shall consider in detail in the following a model which exhibits an approx-

imate SU(2) custodial symmetry. The method is quite general and can be easily

applied to other models. Similar ideas are discussed in [3] for the littlest Higgs

model and a class of other models. We study the electroweak precision constraints

in terms of the ǫ’s parameterization [4]. In order to fix our notations we shall briefly

review the littlest Higgs model in section 2. Section 3 will be devoted to the study

of electroweak corrections within a model which has an approximate custodial sym-

metry and in section 4 we will investigate the low energy precision data within both

models. In Appendix A we give the expressions for the couplings necessary for the

evaluation of g − 2 and in Appendix B those for the weak charge.

2. Littlest Higgs model

In order to fix our notations and make contact with the existing literature we briefly

consider here the littlest Higgs model. Note that our analysis in terms of the ǫ-

parameters focuses only on the oblique corrections. More complete investigations of

the constraints imposed by electroweak precision data on the littlest Higgs model

have already been presented in the literature, using various methods [3]. We discuss

it here mainly in order to show the differences with the model incorporating custodial

symmetry in the following section.

The model is based on a SU(5) symmetry with a [SU(2) × U(1)]2 subgroup

gauged. This symmetry is broken down to SO(5) by a vev of the order f . This

vev also breaks the gauge symmetry to SU(2)W × U(1)Y . This symmetry breaking

patterns leads to 14 Goldstone bosons. Four of them are eaten up by the gauge

bosons of the broken gauge group. The Goldstone boson matrix contains a Higgs

doublet and a triplet under the unbroken SM gauge group. More details about this

specific model and the corresponding notations can be found in Ref. [3, 5].
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The kinetic term for the scalar sigma model fields Σ is given by

Lkin =
1

2

f 2

4
Tr[DµΣDµΣ] , (2.1)

with the covariant derivative defined as

DµΣ = ∂µΣ − i(AµΣ + ΣAT
µ ) . (2.2)

With Aµ we denote the gauge boson matrix:

Aµ = g1W
1a
µ Qa

1 + g2W
2a
µ Qa

2 + g′

1B
1
µY1 + g′

2B
2
µY2 , (2.3)

where the Qa
i are the generators of the two SU(2) groups and the Yi are the generators

of the two U(1) groups, respectively. After symmetry breaking the gauge boson

matrix can be diagonalized by the following transformations:

W = sW1 + cW2 W ′ = −cW1 + sW2

B = s′B1 + c′B2 B′ = −c′B1 + s′B2 . (2.4)

s, c, s′, and c′ denote the sines and cosines of two mixing angles, respectively. They

can be expressed with the help of the coupling constants:

c′ = g′/g′

2 s′ = g′/g′

1

c = g/g2 s = g/g1 , (2.5)

with the usual SM couplings g, g′, related to g1, g2, g′

1 and g′

2 by

1

g2
=

1

g2
1

+
1

g2
2

,
1

g′2
=

1

g′

1
2 +

1

g′

2
2 . (2.6)

The equations of motion for the heavy gauge bosons can now easily be obtained

from the complete Lagrangian. We neglect, at the lowest order in the momenta,

derivative contributions, i.e., the contributions from the kinetic energy vanish. Up

to the order v2/f 2 we obtain:

W ′±µ =
cs

2
(c2 − s2)

v2

f 2
W±µ − 4c3s√

2gf 2

(

J±µ − (1 − cL)J±µ
3

)

(2.7)

W ′3µ =
cs

2
(c2 − s2)

v2

f 2
(W 3µ +

g′

g
Bµ) − 4c3s

gf 2

(

J0µ − s2
Lt̄LγµtL

)

(2.8)

B′µ = 2c′s′(c′2 − s′2)
v2

f 2
(
g

g′
W 3µ + Bµ)

+
4c′s′

g′f 2

[

(3c′2 − 2s′2)(Jµ
em + J0µ) − 5

2
c′2s2

Lt̄LγµtL − s2
Rt̄RγµtR

]

, (2.9)

where we have used the notation of Ref. [5] for the diagonalisation of the top sector.

The currents are defined as usual and J±µ
3 describes the current of quarks of the
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third generation, i.e., bottom and top. Due to the mixing with the heavy top for the

quarks of the third generation the neutral current is modified, too:

−Zµ

√

g2 + g′2

[

J0µ(1 − v2

f 2
(
c2

2
(c2 − s2) +

2

5
(3c′2 − 2s′′2)(c′2 − s′2)))

+Jµ(
g′2

g2 + g′2
− 2g

5g′

v2

f 2
(3c′2 − 2s′2)(c′2 − s′2))

−s2
L

2
t̄LγµtL(1 − v2

f 2
(
c2

2
(c2 − s2) + 2(c′2 − s′2))) +

v2

f 2

s2
R

5
(c′2 − s′2)t̄RγµtR

]

.(2.10)

However this modification is irrelevant for the analysis of the precision electroweak

data, as tt̄ production at LEP was kinematically not possible. Therefore we we will

discard the tt̄ correction in the following evaluations. The heavy Higgs particles

completely decouple at that order.

To determine the ǫ-parameters we proceed in the same way as in Ref. [6] and first

look at the modification to GF . We have two types of modifications: one directly

from the mixing of the heavy W ′ bosons to the coupling of the charged current

and the second one form the contribution of the charged current to the equations

of motion of the heavy gauge bosons. The input parameters in the analysis of the

electroweak data are the Fermi constant GF , the mass of the Z vector boson mZ and

the fine–structure coupling α(mZ). In terms of the model parameters we obtain:

GF√
2

=
απ(g2 + g′2)

2g2g′2m2
Z

(

1 − c2(c2 − s2)
v2

f 2
+ 2c4 v2

f 2
− 5

4
(c′2 − s′2)2 v2

f 2

)

. (2.11)

We define the Weinberg angle as [6]:

GF√
2

=
απ

2s2
θc

2
θm

2
Z

. (2.12)

In terms of the model parameters the mass of the Z-boson is given by

m2
Z = (g2 + g′2)

v2

4

[

1 − v2

f 2

(

1

6
+

(c2 − s2)2

4
+

5

4
(c′2 − s′2)

)

+ 8
v′2

v2

]

, (2.13)

whereas the W -mass is

m2
W =

g2v2

4

[

1 − v2

f 2

(

1

6
+

(c2 − s2)2

4

)

+ 4
v′2

v2

]

. (2.14)

The expression for the Z-mass can be used to determine the value of v for a given

ratio v/f .

– 4 –



Our result for the corrections to the ǫi parameters to the order v2/f 2 is given

by:

ǫ1 = −v2

f 2

(

5

4
(c′2 − s′2)2 +

4

5
(c′2 − s′2)(3c′2 − 2s′2) + 2c4

)

+ 4
v′2

v2
(2.15)

ǫ2 = −2c4 v2

f 2
(2.16)

ǫ3 = −v2

f 2

(

1

2
c2(c2 − s2) +

2

5
(c′2 − s′2)(3c′2 − 2s′2)

c2
θ

s2
θ

)

(2.17)

Notice that the corrections, as they should, depend only on the parameters c, c′, v/f

and v′/v. Using the values of the ǫi parameters given in [7]

ǫ1 = (5.1 ± 1.0) × 10−3

ǫ2 = (−9.0 ± 1.2) × 10−3

ǫ3 = (4.2 ± 1.0) × 10−3

(2.18)

one can easily compare the model with data. These values only assume lepton

universality and the derivation of the ǫi is otherwise completely model independent.

There are no stringent limits on the values of the triplet vev, such that a priori

v′/v can be treated as completely arbitrary. The authors of Ref. [5] obtain a bound

of v′2/v2 < v2/(16f 2) in order to maintain a positive definite triplet mass for the

Higgs. Throughout our analysis we assumed as a reasonable guideline v′/v being at

least of the order v/f .

Our results are in agreement with those reported in the literature [3]. In par-

ticular for large values of v/f the allowed regions are very small, whereas for small

values practically the entire parameter space is excluded. For large values of v/f

this is mainly due to the fact that this model exhibits no custodial symmetry and

that it is therefore difficult to satisfy the experimental constraint on ǫ1 without fine

tuning of the parameters. For small values of v/f we approach the SM limit which

itself is not in agreement with the values for the ǫ-parameters. A variation of the

triplet vev does in this case only slightly modify the results but does not change the

general conclusions.

3. Little Higgs with custodial SU(2)

We now examine a “little Higgs” model which has an approximate custodial SU(2)

symmetry [8]. The model is based on a SO(9)/[SO(5) × SO(4)] coset space, with

SU(2)L × SU(2)R × SU(2) × U(1) subgroup of SO(9) gauged.

One starts with an orthogonal symmetric nine by nine matrix, representing a

nonlinear sigma model field Σ which transforms under an SO(9) rotation by Σ →
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V ΣV T . To break the SO(4)’s to the diagonal, one can take Σ’s vev to be

〈Σ〉 =





0 0 114

0 1 0

114 0 0



 (3.1)

breaking the SO(9) global symmetry down to an SO(5) × SO(4) subgroup. This

coset space has 20 = (36 − 10 − 6) light scalars. Of these 20 scalars, 6 will be eaten

in the higgsing of the gauge groups down to SU(2)W × U(1)Y . The remaining 14

scalars are : a single higgs doublet h, an electroweak singlet φ0, and three triplets

φab which transform under the SU(2)L × SU(2)R diagonal symmetry as

h : (2L, 2R) φ0 : (1L, 1R) φab : (3L, 3R). (3.2)

These fields can be written

Σ = eiΠ/f 〈Σ〉eiΠT /f = e2iΠ/f 〈Σ〉 (3.3)

with

Π =
−i

4







04×4

√
2~h −Φ

−
√

2~hT 01×1

√
2~hT

Φ −
√

2~h 04×4






(3.4)

where the Higgs doublet ~h is written as an SO(4) vector; the singlet and triplets are

in the symmetric four by four matrix Φ

Φ = φ0 + 4φab T l aT r b , (3.5)

and the would-be Goldstone bosons that are eaten in the higgsing to SU(2)W ×U(1)Y

are set to zero in Π. The global symmetries protect the higgs doublet from one-loop

quadratic divergent contributions to its mass. However, the singlet and triplets are

not protected, and are therefore heavy, in the region of the TeV scale. The theory

contains the minimal top sector with two extra coloured quark doublets and their

charge conjugates. Further details and formulas can be found in [8].

The kinetic energy for the pseudo-Goldstone bosons is

Lkin =
f 2

4
Tr [DµΣDµΣ] (3.6)

and the covariant derivative is

DµΣ = ∂µΣ + i [Aµ, Σ] (3.7)

where the gauge boson matrix Aµ is defined as

A ≡ gLW la
SO(4)τ

l a + gRW ra
SO(4)τ

r a + g2W
laηl a + g1W

r3ηr 3. (3.8)
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The τa and ηa are the generators of two SO(4) subgroups of SO(9). For details see

Ref. [8].

The vector bosons can be diagonalized with the following transformations:

B = c′W r3 − s′W r3
SO(4) B′ = W ′ r3 = s′W r3 + c′W r3

SO(4) (3.9)

W a = cW la + sW la
SO(4) W ′a = W ′ la = −sW la + cW la

SO(4) (3.10)

where the cosines and the sines of the mixing angles can be written in terms of the

couplings

c′ = g′/g1 s′ = g′/gR

c = g/g2 s = g/gL. (3.11)

Again g and g′ are defined in terms of g1, gR and g2, gL respectively, as in equation

(2.6). Neglecting possible corrections to the currents from the top sector, we obtain

the following equations of motion up to the order v2/f 2

W ′ 1,2 = −v2 cs

2f 2

(

c2 − s2
)

W 1,2 +
s3c

f 2 g
J1,2 (3.12)

W ′ 3 = −v2 cs

2f 2

(

c2 − s2
)

(W 3 − g′

g
B) +

s3c

f 2 g
J3 (3.13)

B′ =
v2 c′s′

2f 2

(

c′ 2 − s′ 2
)

(
g

g′
W 3 − B) +

s′ 3c′

f 2 g′
J0 (3.14)

W 1,2
R =

v2

2f 2
W 1,2 . (3.15)

We now proceed in exactly the same way as in the previous section and look first at

the modifications to GF . The expression for GF in terms of the model parameters is

GF√
2

=
απ(g2 + g′2)2

2g2g′2

(

1 +
v2

f 2

s2(c2 − s2) − s4

2

)

, (3.16)

and for the neutral current we obtain

−Zµ

√

g2 + g′2

(

J0µ(1 +
v2

f 2

c2s2 − s4 + c′2s′2 − s′4

2
) + Jµ(

g′2

g2 + g′2
+

v2

f 2

s′2(c′2 − s′2)

2
)

)

.

(3.17)

In this case the masses of Z- and W -bosons are given by

m2
Z = (g2 + g′2)

v2

4

(

1 + 4
v′2
1

v2

)

(3.18)

m2
W =

g2v2

4

(

1 + 2
v′2
0 + v′2

1

v2

)

, (3.19)

where v′

0 stands for a vev for the triplet with hypercharge Y = 0 and v′

1 for the

triplet with hypercharge Y = 1. Note that, in contrast to the littlest Higgs model
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Figure 1: 90% and 50% CL exclusion contours in the plane c-c′ of the cosines of the two

mixing angles for three values of the ratio v/f of the vev’s of the SO(9)/[SO(5) × SO(4)]

model. The allowed region lies inside the 90% and 50% bands, respectively.

discussed in Sec. 2, the masses of Z- and W -bosons are only modified with respect

to their standard (tree level) model by the triplet vevs. If the triplet vevs are similar

in magnitude, custodial symmetry violating effects on the ρ paramter remain small

at all orders. This is a consequence of the approximate custodial symmetry of the

model.
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The corrections to the ǫ parameters to the order v2/f 2 are

ǫ1 =
v2

4f 2

[

4s′ 2
(

c′ 2 − s′ 2
)

+ 2c2s2 − s4
]

+ 2
v′2

v2
(3.20)

ǫ2 =
v2

4c2θ f 2

[

4s′ 2
(

c′ 2 − s′ 2
)

c2
θc2θ + 2s2

(

c2 − s2
) (

c4
θ − 3c2

θs
2
θ + 2c2

θ − s2
θ

)

+ s4(c4
θ + s4

θ)
]

(3.21)

ǫ3 =
v2

2s2
θ f 2

[

s2
(

c2 − s2
) (

−c2θ + 2s2
θc

2
θ

)

− s4c2
θs

2
θ

]

− 2c2
θ

s2
θ

v′2

v2
, (3.22)

where we have again used the definition of sθ and cθ via Eq. 2.12. The effective

triplet vev, v′, has been defined as v′ =
√

v′2
0 − v′2

1 .

The results of the analysis are illustrated in Fig. 1 for three different values of v/f .

The left panels correspond to v′/v = v/(4f) and the right panels to v′/v = v/(32f),

respectively. Note that in principle v′2/v2 could also become negative (if v′

0 < v′

1),

but this possibility is almost excluded by the data as in particular the constraint on

ǫ3 becomes difficult to satisfy. The allowed region lies inside the bands. Similarly to

the littlest Higgs model the allowed region increases first with decreasing v/f and

disappears completely upon reaching some limiting value. The latter is almost the

same as in the littlest Higgs model and corresponds to the SM limit. However, in

contrast to the littlest Higgs model we find reasonable agreement already for rather

large values of v/f for not too large values of v′/v. This clearly shows the enhanced

custodial symmetry of the model which makes it easier to satisfy the experimental

constraint on ǫ1. One can argue that the two different triplet vevs should be similar

in size and at least partially compensate their effects and that consequently v′/v

always remains small. A precise evaluation of this effect is, however, not possible

in the effective theory since there are unknown order one factors in the radiatively

generated potential. As can be already inferred from the expression of the W - and

Z-masses, Eqs. (3.18,3.19), a large value for the difference of the triplet vevs spoils

the custodial symmetry. Therefore we find qualitative changes in the results when

varying v′/v. If the difference becomes too large, the constraints on ǫ1 can no longer

be satisfied easily and much more fine tuning is needed in order to remain consistent

with existing experimental data.

4. Low energy precision data

Precision experiments at low energy allow a precise determination of the g−2 of the

muon and of the weak charge of cesium atoms. We will analyse these data in order to

see whether they can put constraints on our models. In a first step we will examine

g − 2 within the littlest Higgs model. To that end we will use a somewhat different

technique than in the previous sections. Instead of deriving an effective Lagrangian
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by integrating out the heavy degrees of freedom we will use the linearized version of

the model as presented in Ref. [5] and explicitly include corrections from the heavy

bosons.

4.1 g − 2 of the muon in the littlest Higgs model

We can use the results of Ref. [9] to calculate the corrections to g − 2 of the muon

which we will denote by aµ. The relevant contributions are discussed in App. A.

The difference between experiment and the standard model prediction for aµ

is [11]

δaµ = aexp
µ − aSM

µ = 17(18) × 10(−10) . (4.1)

The numerical results within the littlest Higgs model are relatively insensitive to the

choice of parameter values of the model. We obtain a difference from the standard

model value of at most δaµ = aLH
µ − aSM

µ of the order of 1× 10−10. The contributions

of the additional heavy particles are thereby completely negligible and the dominant

contributions arise from the corrections to the light Z and W couplings. Thus the

analysis of Ref. [10] is not complete. In Fig. 2 we display δaµ for two different values

of the symmetry breaking scale f as a function of the cosines of the mixing angles

c, c′. For larger values of f the corrections become even smaller. We thereby took

the Higgs mass to be 113 GeV and used as experimental input mZ , α, and GF as

before. A variation of the triplet vev does not change these findings. The results

in the model with custodial symmetry are in general closer to the SM limit than in

the littlest Higgs model. Thus we expect even smaller corrections in that case and

we shall not give an explicit evaluation of g − 2 within the model with approximate

custodial symmetry.
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Figure 2: Corrections to g − 2 of the muon as a function of c, c′ for v′2/v2 = v2/(24f2).
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4.2 Weak charge of cesium atoms

At low energy, parity violation in atoms is due to the electron-quark effective La-

grangian

Leff =
GF√

2
(ēγµγ5e)(C1uūγµu + C1dd̄γµd) . (4.2)

The experimentally measured quantity is the so-called “weak charge” defined as

QW = −2 (C1u(2Z + N) + C1d(Z + 2N)) , (4.3)

where Z, N are the number of protons and neutrons of the atom, respectively.
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Figure 3: Corrections to the weak charge of cesium atoms as a function of c and c′ in the

littlest Higgs model.

The effective Lagrangian, Eq. 4.2, can be derived from the interaction of Z, ZH,

and AH with the fermions by integrating out the heavy degrees of freedom. The

corresponding expressions for the littlest Higgs model as well as for the model with

approximate custodial symmetry are given in Appendix C.

Recently precise data on cesium atoms have been reported in Ref. [12]:

QW (Cs)exp = −72.2 ± 0.8 . (4.4)

The standard model prediction is [13]

QW (Cs)SM = −73.19 ± 0.13 . (4.5)
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Figure 4: Corrections to the weak charge of cesium atoms as a function of c and c′ in the

little Higgs model with approximate custodial symmetry.

Thus

δQW (Cs) = QW (Cs)exp − QSM
W = 0.99 ± 0.93 . (4.6)

The difference of the weak charge of Cs in the littlest Higgs model and the standard

model is shown in Fig. 3 for different values of f in the littlest Higgs model and in

Fig. 4 for the model with approximate custodial symmetry. As experimental input

for our analysis we have again used mZ , GF , and α. In order to discuss the weak

charge result, let’s consider the value δQW (Cs) = 1 which is close to the present

experimental central value. It is clear from Fig. 3 and 4 that the value of the high

scale f should be in the range of few TeV in order to obtain the measured deviation.

The allowed scale is slightly lower in the custodial model with respect to the non-

custodial one as the custodial model is closer to the standard model in its predictions.

When the scale f is too large the new physics effects become negligible. The scale

f in the few TeV range is consistent with what is expected on the model-building

side and from the LEP data for little Higgs models. Obviously this result should be

taken only as a first indication as the error on δQW (Cs) is large.

5. Conclusions

In this paper we have studied the low energy limit of a Little Higgs model incor-

porating an approximate custodial symmetry. For illustrational purposes we briefly

– 12 –



presented in Sec. 2 the corresponding analysis for the “littlest Higgs” model which has

no custodial symmetry. In order to study the constraints coming from the LEP/SLC

experiments we have used a method which consists in eliminating the heavy degrees

of freedom. We find, in agreement with earlier studies in the literature [3, 5], rather

stringent limits on the littlest Higgs model imposed by existing electroweak preci-

sion data. This is mainly due to the difficulty of the model to accommodate for

the experimental results of the ρ parameter. Our main focus lied on the study of a

model where custodial symmetry is approximately fulfilled. As long as the value of

the effective Higgs triplet vev, which violates custodial symmetry, does not become

too large, we need much less fine tuning than in the littlest Higgs model in order

to satisfy the experimental constraints. As the effective triplet vev is related to the

difference of the vevs for the Y = 1 and the Y = 0 Higgs triplet, this can always

be achieved if the two vevs are of similar size. Custodial symmetry seems to be an

essential ingredient for little Higgs models.

In the second part of this paper we look at the constraints from low energy

precision data., i.e., g − 2 of the muon and to the atomic ”weak charge” of the

cesium. To that end we apply a slightly different method: To evaluate the corrections

to these quantities the contributions of the heavy degrees of freedom have directly

been taken into account. The analysis of the low energy precision data does not

change the above conclusions. For g − 2 of the muon the corrections are simply too

small to impose any new constraints on the model parameters. The actual state of

precision for the weak charge does not allow for establishing new constraints either,

even if the corrections are not negligible.
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A. Details for the calculation of g − 2 of the muon in the

Littlest Higgs model

The relevant one-loop Feynman diagrams are shown in Fig. 5. For graph a we have

contributions from the exchange of a light and a heavy Z and a light and a heavy

photon. Since we have no flavour mixing interaction the fermion in the intermediate

state can only be a muon. The contribution of the photon is not modified with

respect to its standard model value (note that U(1)em is not broken so that this

should be the case).
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Figure 5: Loop graphs contributing to the weak correction to ∆g. a) and b) correspond to

the exchange of a vector boson X while c) and d) are the Higgs sector contributions.

Explicitly we have

[aµ]a =
1

8π2

{

C2
V

[

z

3
+ z2

(

25

12
+ ln(z)

)

+ z3

(

97

10
+ 6 ln(z)

)

+ z4

(

208

5
+ 28 ln(z)

)]

+C2
A

[

−5
z

3
− z2

(

19

12
+ ln(z)

)

− z3

(

77

15
+ 4 ln(z)

)

− z4

(

173

10
+ 14 ln(z)

)]

}

+O(z5) , (A.1)

where z = m2
µ/M

2
g . With Mg we denote the mass of the exchanged gauge boson, i.e.,

mZ , MZH
or MAH

. CV and CA can be extracted from the vector and axial couplings

of the corresponding gauge bosons to the muons, see Ref. [9]. The corresponding

expressions are listed in appendix B.

For graph b we obtain contributions from light and heavy charged W bosons.

The intermediate fermion has to be neutral, i.e., it is a neutrino. If we neglect the

mass of the neutrino we obtain

[aµ]b =
C2

V

4π2

(

5
z

3
+

z2

3
+ 3

z3

20
+

z4

12

)

+ O(z5) , (A.2)

where we note again z = m2
µ/M2

g . Mg can be the mass of the light or the heavy W

bosons. We also used the fact that CV = −CA.
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Graph c receives contributions from singly charged scalars and a neutrino in the

intermediate states. There are no contributions from doubly charged scalars since

they do not couple to the corresponding fermions. Neglecting again the neutrino

mass the result can be written

[aµ]c =
C2

S

8π2

(

z

6
+

z2

12
+

z3

20
+

z4

30

)

+ O(z5) , (A.3)

with z = m2
µ/M

2
H . The pseudoscalar coupling (CP ) vanishes.

For graph d we have to consider muons and a neutral scalar as intermediate

states. The result is

[aµ]d =
1

8π2

{

− C2
S

[

z

(

7

6
+ ln(z)

)

+ z2

(

39

12
+ 3 ln(z)

)

+ z3

(

201

20
+ 9 ln(z)

)

+ z4

(

484

15
+ 28 ln(z)

)

]

+ C2
P

[

z

(

11

6
+ ln(z)

)

+ z2

(

89

12
+ 5 ln(z)

)

+ z3

(

589

20
+ 12 ln(z)

)

+ z4

(

1732

15
+ 84 ln(z)

)

]}

+ O(z5) , (A.4)

where z = m2
µ/M

2
h , with Mh being the mass of the neutral scalar.

B. Couplings for the calculation of g − 2 in the littlest Higgs

model

The vector and axial vector couplings are given as follows. For the Z we obtain up

to the order O(v2/f 2):

CV =
g

2cθ

[

2s2
θ −

1

2
+

v2

f 2

(

3sθ
xB

Z

s′c′

(

c′2

2
− 1

5

)

− cθx
W
Z

c

2s

)]

(B.1)

CA =
g

2cθ

[

1

2
+

v2

f 2

(

sθ
xB

Z

s′c′

(

c′2

2
− 1

5

)

+ cθx
W
Z

c

2s

)]

. (B.2)

For the heavy Z we obtain:

CV = CA =
gc

4s
. (B.3)

Note that it is sufficient to retain the leading order contributions for the couplings

of the heavy bosons since their contributions to g − 2 are already suppressed by one

order in v2/f 2 due to the mass. The heavy photon couplings are given by

CV = 3
g′

2s′c′

(

c′2

2
− 1

5

)

(B.4)

CA =
g′

2s′c′

(

c′2

2
− 1

5

)

. (B.5)
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For the W bosons we obtain:

CV = −CA =
g

2
√

2

(

1 − v2

f 2

c2

2
(c2 − s2)

)

, (B.6)

and for the heavy W -bosons:

CV = −CA =
gc

2
√

2s
. (B.7)

The relevant Higgs couplings are given by

CS =
mµ√
2v

(

v

f
− 4

v′

v

)

(B.8)

CP = 0 (B.9)

for the heavy Higgs and

CS =
mµ

v

(

1 − 4
v′2

v2
− 2

3

v2

f 2

)

(B.10)

CP = 0 . (B.11)

for the light higgs which contributes only to graph d) (see Fig. 3). Note that there

are no leading order contributions to the couplings of the heavy Higgs, i.e., at the

order we consider the heavy Higgs contribution vanishes.

C. Parameters of the effective Lagrangian for the weak charge

In the littlest Higgs model we obtain

CAH

1u = −
√

2

M2
AH

GF

απ

c2
θs

′2c′2

(

−1

5
+

c′2

2

) (

1

3
− 5

6
c′2

)

(C.1)

CAH

1d = −
√

2

M2
AH

GF

απ

c2
θs

′2c′2

(

−1

5
+

c′2

2

) (

− 1

15
+

1

6
c′2

)

(C.2)

CZH

1u = −CZH

1d = −
√

2

M2
ZH

GF

απc2

4s2
θs

2
(C.3)

CZ
1u = −

√
2

m2
ZGF

απ

s2
θc

2
θ

{

1

4
− 2

3
s2

θ +
v2

f 2

[

(

1

2
− 4

3
s2

θ

) (

cθx
W ′

Z

c

2s
+

sθx
B′

Z

s′c′

(

−1

5
+

c′2

2

))

+
1

2

(

cθx
W ′

Z

c

2s
+

sθx
B′

Z

s′c′

(

−1

3
− c′2

6

))

]}

(C.4)

CZ
1d = −

√
2

m2
ZGF

απ

s2
θc

2
θ

{

− 1

4
+

1

3
s2

θ +
v2

f 2

[

(

−1

2
+

2

3
s2

θ

) (

cθx
W ′

Z

c

2s
+

sθx
B′

Z

s′c′

(

−1

5
+

c′2

2

))

+
1

2

(

−cθx
W ′

Z

c

2s
+

sθx
B′

Z

s′c′

(

− 1

15
+

c′2

6

))

]}

, (C.5)
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with

xW ′

Z = −s c
c2 − s2

2cθ

(C.6)

xB′

Z = −5 c′ s′
c′2 − s′2

2sθ
. (C.7)

In the model with approximate custodial symmetry we get:

CAH

1u =

√
2

M2
AH

GF

απ

3c2
θc

′2

(

1 +
s′2

4

)

(C.8)

CAH

1d = −
√

2

M2
AH

GF

απ

6c2
θc

′2

(

1 − s′2

2

)

(C.9)

CZH

1u = −CZH

1d = −
√

2

M2
ZH

GF

απs2

4s2
θc

2
(C.10)

CZ
1u = −

√
2

m2
ZGF

απ

s2
θc

2
θ

[

1

4
− 2

3
s2

θ (C.11)

+
v2

24f 2
(−2(c′2 − s′2) + s′2(c′2 − s′2)(1 − 4s2

θ) − s2(c2 − s2)(1 − 4c2
θ))

]

CZ
1d = −

√
2

m2
ZGF

απ

s2
θc

2
θ

[

1

3
s2

θ −
1

4
+

v2

24f 2
(−s2(c2 − s2)(1 + 2c2

θ)

+ (c′2 − s′2)(1 − 2c2
θs

′2))

]

. (C.12)

Note that the expressions do not depend on the triplet vevs.
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