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Abstract

In a k-dimensional system of weakly interacting Bose atoms trapped by a
spherically symmetric and harmonic external potential, an exact expression is
obtained for the rotating ground states at a fixed angular momentum. The re-
sult is valid for arbitrary interactions obeying minimal physical requirements.
Depending on the sign of a modified scattering length, it reduces to either
a collective rotation or a condensed vorter state, with no alternative. The
ground state can undergo a kind of quantum phase transition when the shape

of the interaction potential is smoothly varied.

The phenomenon of Bose-Einstein condensation [1-3] observed in the magnetically
trapped alkali metal vapors cooled to nanokelvin temperatures T', is extremely interest-
ing when the system rotates [3-13]: at some critical angular velocity, the bulky irrotational
condensate admits the built-in vortex lines. This signal of superfluidity, already detected in
atomic gases [3], has important links to the physics of strongly interacting Bose liquids like
“He where the vortices are seen directly in the density images [4,10]. The problems of vortex
nucleation, their life and death (critical rotational velocities, density profiles, condensate
depletion etc) require the knowledge of ground states at given angular momenta L, the so-

called yrast states [8,12-17]. Using Feshbach resonance [2], the superfluid rotation can now



be probed with controllably weak effective interatomic forces, v—40. The dimensionless
parameter ’U:% zNas/(%)% characterizes the effects of the interaction V' with scattering
length as in a system of N atoms of mass m in a harmonic trap of frequency w. In this
limit, opposite to the Thomas-Fermi regime [5,11] metastability against collapse holds even
for as;<0 (as far as |v|<0.6 [11]). The similarity of this rotating ground state problem at
T=0 to many others (fractional quantum Hall effect [18], rotating nuclei [14], cold Fermi
atoms [19]) makes it interesting in a general context.

The exact ground states were usually studied in the contact approximation V~asd(7).
The case a;<0 was solved analytically by Wilkin et al. [§], while the case a;>0 was studied
numerically by Bertsch and Papenbrock [15]. The conjecture [15] for the ground state was
confirmed analytically in [16]. Refs. [16], [17] establish universal properties of the repulsive
and attractive cases.

Emerging possibilities to manipulate the strength, sign [2] and range [20] of the effective
forces and the dimensionality [21] of the system raise natural questions: What kind of
ground states can arise when the form of the interaction is arbitrarily changed? Can one
classify all possible patterns, and relate them to the interaction? How do they depend on
dimensionality? This Letter answers these questions, solving the ground states ezactly for
arbitrary two-body central forces V(r) in k& dimensions. The main results are the following.
In the functional space {V'} of all possible interactions V(r), we may restrict our attention

v

to those of physical interest, {Vpnys}, of which we require that the force =~ changes sign

only once
dV/dr <0, r<R; dV/dr>0, r>R; R<I. (1)

Since the crossover occurs for atomic reasons, R is assumed smaller than the trapping

size, (%)%:1, in natural units. The entire functional space {V pys} is divided into two

distinct classes of (effectively) attractive {V,

hys) and repulsive {V} 1 interactions (Fig.1).

(The meaning of ’effective’ in this context involves dimensionality.) Within each class the

energies of the yrast states depend in a simple way on the interaction while their wave



functions remain the same. The two are qualitatively distinct: {V ™} leads to collective
rotation, while {V*} yields vortical states. Variation of the interaction form can result in a
quantum phase transition in the ground state, with the interparticle angular momentum as
a vorticity order parameter. These exact analytical results are exemplified by the analysis
of Morse potentials with variable scattering length.

The Hamiltonian in a k-dimensional symmetric trap is

H= Z( ) Zvr” )= Ho+V, (2)

1>/
Hg describes harmonic trapping, 7,={z;,yi,x;,..-} and p; are the i-th boson’s position and

momentum, V' is the two-body interaction with r;;=|r;—7;|. By |0z) we denote the ground
state with the conserved angular momentum component L,,=L and the total angular mo-
mentum EQZL(L—H{—Z), and we use the notations z=x+1y, z*=x—1y. Finding |0) requires
the diagonalization of H within the space of symmetrized products

-Q

Stzp. (o), 0)=eEER N =11, (3)

S is the symmetrization operator. We set h=m=w=1 [22]. Admixtures of the states other
=2

than ¢, =2'e™ cost energy >hw, they are neglected for |v|< 1. Within the subspace (3) the

Hamiltonian (2) becomes
H=L+ (NEk)/2+W, (4)

where W is the interaction V', projected onto the subspace (3). With the ladder operators
ai=z;/2—0/0z;, a; =27 [24+0]dz; we have L=Y;a a;, and using the Fourier transform of

arbitrary interaction V(r) [23], we get

W = Szw(@j)& L = (af —af)(a —a;)/2, (5)
%) I+k/2—-1
o) = [ VVEEE, €)=

lAij is the relative angular momentum of two atoms. The sum ,u:ﬁ EM‘ZAZ']-:O,Z,?),..,L is

an additional quantum number [p, H]=[p,L]=0. The relation L=p+ > a] Y ;a; reflects
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distribution of the angular momentum between the vortical and other internal modes (u)
and the collective surface-type modes (second term). The structure of (5) is universal,
dimensionality is hidden in w(l).

As usual in a many-body system, the number of states (3) grows exponentially with L.
Complete diagonalization of (5) is hardly possible. Instead, we seek the exact ground state
by splitting [16] the interaction into W=Wy+W g such that Wy is simple enough to find its

lowest eigenvalue £, and its associated eigenstate |0), and such that |0) is destroyed by W
Ws|0) = &10), Ws|0) = 0. (6)

The state |0) will also be the ground state of Wo+W g with the eigenvalue &y if Wy is

non-negative definite,

Ws=5) ws(ly)s>0, (7)

having no negative eigenvalues. This condition is the most problematic in solving (6,7) as
the eigenvalues of W cannot be evaluated in general. It will be controlled exactly as follows.
First, we write the operator W as

Wo=5 wolli)S, wo(l)= Y eal”, (8)

i>j 0<n<m

where ¢,, are hitherto unknown coefficients that need to be fixed to satisfy (6) and (7). The
operator vs(l;;) is diagonalized in the states 2/ 22...2/¥|0) via the substitution z—z_,z;— 2.,
z1=(2;£2;)/V/2. Tts eigenvalues are w(l)—vo(l), with I=0,1,2,..., L the eigenvalue of ZAZ] Odd-
[ eigenvectors are antisymmetric (ocz') and they are annihilated by S [24]. Therefore, a
reasonable choice of ¢, is to cancel the first m even-[ eigenvalues A\, =w(2n)—vo(2n) keeping
A,>0 for all n. This will be sufficient for (7): a sum of non-negative operators is also
non-negative, and a projector S preserves this property. Superpositions of vectors with
[<2m, |a), can be tried to construct the symmetrized state |0) obeying (6). One can start
with low m, increasing it if necessary. If m=2, Eqgs.(6,8) give Eo=coN —c10(—c)NL/2
with 0(x)= é:i;g and N'=(N?—N)/2. The trial state is |a>:HfEf\;1(zi—zjozj)|0> with
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a; real numbers. If all a; are 0 or 1, S|a) becomes eigenstate of W, with eigenvalue
E=w(0)N+[w(2)—w(0)]NY_;a;/4. The minimum of £ with respect to {a;} coincides with

Eo, and the corresponding S|a) obeys both conditions (6), if

Cop = LU(O), Ccp = _AQQ(AQ)/27 CnZQ = 0,

Ay, = w(0) —w(2n) = /000 b fdt,  boy = if(z) (9)

With fE—dV(\/E)/dt the “force”, Aj, can be viewed as the work needed to produce
vorticity. Now (7) holds for all V.5 defined in (1): A,=nf(A2)A;—A,, and

A, = /0 (RB(Ay) — hy)bofdt >0,  hy = bon/dn. (10)

Indeed, by (1) the integrand of Ay in (9) is positive at t<T7=R*/2 and negative at ¢t>7, see
Fig.1b. If negative area prevails in the elementary work A,, then all A,50>0, because A,
increase with ¢ monotonously. In the opposite case (Ay>0) the positive area (1<7) prevails
in A,. Positive contribution from this area will then also prevail in A, 5; because %<0.
In fact, the factors n—h,, become negative for t>t,, with all ¢,>1>7, thereby reducing the
dangerous contribution to A, from ¢>7. Thus the proper choice of |a) gives exact ground
state of (4) and its energy Eq as functions of L (L<N)

L N
00) = e 2 ZES T [z — 20(As)er], (11)

7=1 1=1

Nk N2_—N NLAO(A
Eo(L) = L+7+ 5 w(())—eL 42(2),

with e,=0(L—1). The wave functions depend on V(r) only via the sign of the vortical work

quantum
A B y 1_1#:%
Asy(k) = —d = —_— 12
0) = oy [ VP V==, (12)

which has the form of Born scattering length by the potential V. The interactions Vpohys

satisfying the equation

Ay(k) =0, (13)



form the separatriz manifold: it divides the interactions V ppys(r) into the two classes {V ;  }

and {Vpﬁys}, with qualitatively different ground state: If A,<0, (11) gives
0p) = e s 225 pop) =0,
where Z=3Y"1 % [25] while for Ay>0 and L>1 it gives
0}) = e 227 855,72, pl0F) = L|07),

with z;,=Z—z;. Here y can be viewed as an order parameter; in fact, the major difference
between [07) and |0%) is their vortical correlations. The condensation signatures can be
studied from the occupancies v¥ of the single-particle orbits ¢,ocz" in the ground states

0%) and the density profiles p(F)=Y v, |0, ?. We obtain
| yp p @

v _ (No? — ok + NPn)pp_ . (£) + (1 + 20 + k)pp i (x)

NE(N + 1)+ Inlpy 1= N)

where k=—N?/(N+1), o=N(1-n)—L and p’(s)= I'(a—b)L;’(s) with L£°(s) the Laguerre

_ LY(N-—1)L-n

polynomial [26]. Similarly, we have Vi =TTy iNT In the limit N>>1 of primary experi-

mental interest, the quantities depend on L and N via the angular momentum per particle

I=L/N

+ \/7(% + n)? = \/?(u2 + ) Io(u) + 2suly(u)

vV =
n vl-nplev ’ 4rhkl2pevexp(r?) ’

where v=VI-I, s=2(I-1), u=2\/v|z|, and I, is the modified Bessel function [26];
p~=Is(2V1|z])/(x*/2e+™) and vo= €'l "/n!. This scaling limit works for N>10. The
density profiles p are shown in Fig.2a. The reduced central density at [—1 signals vortex
formation in the state |07). We call the branch |0]) condensed vortex states. As L grows,
the atoms leave the state z° for 2%, and next z! takes over, see Fig.2b. For L—N>>1 they
condense in the state z!, forming a vortex. The sum V{)"—I—Vi"—l—z/z"' never drops below 0.97:
v describes a kind of fragmented [10] condensate. The distribution v is systematically

broader, see Fig.2c. At high L there are no preferred occupancies. We call |07) a collective

rotation state: Its angular momentum is due to the collective factor Z¥ corresponding to a
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rotation of a non-interacting condensate [27]. Indeed, both |0;) and |0) are seen to have the
same two-body correlation function f(F):<EZ-#/5(F—Fw)>-

The expectation value of the contact interaction in the ground state coincides, up to
the strength factor ocas, with ((0). Both are minimal in the state [0%) if a;>0: repulsion
tends to maximize vorticity, producing hole in ((7) and pi,, (7). The opposite is typical for
attraction (as<0). This sheds light on the universality of the solutions: the wave functions
for arbitrary V(r) and k are simple generalizations of the results for +4(7) [8], [15] and
the corresponding universality classes [16], [17]. The control parameter Ay(k) measures the
balance between repulsion and attraction in a realistic interaction V ,pys(r).

Let the infinitesimally deformed trap rotate in the x,y plane with angular velocity €. In
the co-rotating frame, we have H—H—QL [12]. By (7,9), the minimum of Eo(L)—QL at
L=0 is shifted to L>0 for 0>, with

0. = 1 — NO(Aq(k))Ay(k) /4, (14)

the vortex nucleation threshold in terms of V(r) and k. Eq.(14) generalizes the result for
contact interaction [13].
Tuning the interaction, one observes a controllable phase transition in the ground state,

as is illustrated in Fig.3a,b for the Morse potential VM:€2 " 2% For the critical

. . 0
interaction Vphys

(r) (A2=0), the ground state becomes multiply degenerate: The states |u)=
Sla) with aj=0(u+1—7) discussed above have the same energy, see Fig.3b [28]. The states
|07 )=|p¢=0) and |0} )= |u=L) are unique ground states for A;<0 and A,;>0, respectively.
For A,20, |07) remain exact excited eigenstates. A sudden change of sign of A, allows

to observe them as metastable states. Fig.3c shows Vp(r) and the resulting even part

we(l)=w(l=2n) of its transform (5)
w(l) = {1/2},[eFds), —25d5)), g=1+k/2, (15)

for two sets @ and R. Here {oz}bzll:((zw and d;s) —e &/ D, (s) with Dy(s) the parabolic

cylinder function [26]. Near the critical point, w.(!) behaves like a thermodynamic potential
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in a second-order phase transition [29]: For A;<0, w, has a minimum at [=0. As repulsion
prevails, Ay>0, the minimum of w, is shifted to {>0. The factor § in the solutions (9,11)
results from this threshold behavior, generic within V;,s. This “phase transition” persists
for finite N and in all dimensions £>2.

The separatrices Ay(k)=0 between {V~} and {V*} define the curves vy;(a)=% on the
phase diagram for Vs in the parametric space (a,%), Fig.3d. The relation v3(a)>~v2(a)
reflects the dimensionality effect that is generic within {V s }: By the relations similar to
Eq.(10), the vortical work quantum Aj(k) decreases as k grows, so the phase space grabbed
by the condensed vortex states shrinks. (The long-range attraction works like surface tension,
preventing vortex nucleation at higher k.) Thus |0,)=|07F) for k<k. and |01)=|0; ) for k>k.,
where k. is defined by Eq.(13). If 2<k.<3, this dimensional destabilization of vortex can be
tested experimentally. This condition is met by V'3; with the parameters used in [30] for Li
atoms, see Fig.3d.

From (15) one can show that (7) holds throughout: A =—A,,>0 for %gfy(a) and
Ar=nAy—A,, >0 for %27(@). Thus all Morse potentials are covered by (11) and fall
into two classes decided by the sign of A,;. Other multiparametric potential families give
similar results.

Is this situation generic? The dense functional manifold {V s} is a part of the com-
plete functional space {V'} (see Fig.la), in general it cannot be described by a countable
number of parameters. Within {V'}, we can still define the subclasses that have A, >0 and
AF>0 with the ground states |07) and |07), respectively. Their boundaries A~ and A* can

"o

in general be distinct, leaving room marked by when the ground state is not (11). For
example, V=—|a|0(R—r) with R>2.8 gives |0p=n=4)=> i;j(zi—2;)*|0) for k=2. While ex-
tensions of Vs are possible (like V 3y with R>1, see also below), no general trends can be
readily established beyond (1). The absence of such nonuniversality gap within {V 4,5} is a

nontrivial consequence of the constraint (1): The coexistence region V9  (the separatrix)

phys

divides the interactions {V ;s } into two classes, with the ground states |07 ) and |0} ) with

no other alternative.



By similar arguments, one can append the class {V,n,s} (1) by potentials with con-
stant sign of f and %, like §(7), 1/r, log(r), e~"/*, e~ "/%/r, e 1% ete.  We obtain
sign[Ay(k)]=sign(f) and V°=0. Thus k.=occ: Dimensional destabilization of vortex is
impossible, such potentials do not share this property of V' pys.

The above results give complete description of what happens to the rotating ground states
of weakly interacting bosons. In the weak coupling limit, which can be easier approached
for moderate number of atoms (N~10*—10?), the system becomes an ideal laboratory to
study the rotational features of degenerate quantum gases, since direct comparison with
complete theory is available. With minor modifications, the above results are valid for
axially symmetric deformed trap. The same techniques allow to obtain universal results for
trapped Fermi atoms [31]; they can also be applied to Bose-Fermi mixtures.

The authors thanks L.P.Pitaevskii and M.Ploszajczak for discussion and comments. The

work was supported by CEA (France) and FAPESP (Brazil).
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FIG. 1. a) Global phase diagram in the functional space {V(r)}. b). Vortical work

balance (see Eq.(10)).
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FIG. 2. a) Ground-state matter distributions (k=2). b) Asymptotic condensate occupancies v,

n

versus [. ¢) v, as a function of n for Ay>0 (solid) and A;<0 (dashed), N=30.
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FIG. 3. (a) Energies of |0%) and the density profiles versus A,. (b) The interaction energy in
the states |u) versus R for the Morse potential. (c) The Morse potential Vas(r) (left) and w.(1),
vo(l) (right) in k=3 for two sets of parameters “1” and “2” which are shown on the g,a—plane of

the phase diagram (d). Curves are the separatrices .
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