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-a-                                                         -b-

Figure 10. (a) Shear experiment, (b) comparison between gauge response and measurements by a

digital image correlation technique (l = 64 pixels and δ = 32 pixels).

Figure 11a shows the displacement field on the surface of the specimen just before the

failure of the specimen. One can note the good symmetry of the displacement field about the two

loading directions. The strain maps (Figs. 11b-c) show heterogeneities, which is a first indication

that the material is not homogeneous on the scale of the measurements (of the order of 2-3 mm).

It is worth remembering that the uncertainties related to the correlation technique are negligible

for strain levels greater than 10
−3

. Therefore, it can be stated that the strain field fluctuations are

mainly due to material imperfections.

                    -a-                                            -b-                                                   -c-

Figure 11. (a) Displacement field prior to failure (a). An amplification factor of 34 is used for the

in-plane displacement vectors. Corresponding strain maps ε11 and ε22.

To analyze the experimental results, one uses all the experimental points within the ROI

(i.e., all the centers of the ZOIs, Fig. 11a). The strain field is directly deduced from the measured

displacement field by a numerical derivation (e.g., Figs. 11b-c). As mentioned earlier, the

damage fields can be used to predict the onset of failure related to the degradations in both plies.

The damage field inside each layer within the ROI is obtained by a computation using a damage

post-processor.
30

 Figure 12 shows shear damage fields (d12) in the +45° and −45° plies. As

anticipated by the a priori computations (Fig. 9), shear damage increases more in the central part



of the specimen than near the edges. The damage field is heterogeneous and indicates a high

degradation of the matrix, even more important (i.e., 0.6) than that observed in a tensile test at

±45° (i.e., 0.5
30

). However, this damage field does not correspond to the actual failure pattern

(Fig. 13c). Matrix damage is probably not the prevalent mechanism leading to the final failure of

the specimen.

                                   -a-                                                                 -b-

Figure 12. Matrix damage contours d12 in both ply directions predicted by a damage post-

processor using strains deduced from full-field displacement measurements.

To predict failure, the relevant variable to consider is damage of the fibers (d1), i.e., fiber

breakage is likely to be the mechanism responsible for the final failure. Figures 13a-b show the

damage field for the two ply orientations. The analysis of the damage contours in both ply

directions can reproduce the overall failure pattern. This failure pattern is induced by the

anisotropy of the material, and fiber breakage caused by the heterogeneity of the material on the

scale of the measurements. 

-a-                                                    -b-                                                  -c-

Figure 13. Fiber damage contours d1 in both ply directions (a-b) predicted by a damage post-

processor using strains deduced from a full-field displacement measurement and the final failure

pattern (c).



These results show that a damage meso-model is able to capture the overall failure pattern (i.e.,

damage maps in both ply directions) and to conclude that fibers in both directions are damaged at

the inception of a macrocrack. It also important to note that these conclusions can be drawn only

thanks to a full-field strain measurement (on the macro scale) used as input to a post-processor to

evaluate the damage variables on the ply level (i.e., on the meso scale). Therefore, this test could

be analyzed and a damage scenario could be proposed by combining full-field kinematic

measurements and a damage model identified earlier.

SUMMARY

Digital image correlation is a well-suited technique for mechanical investigations dealing

with brittle materials such as ceramics and ceramic-matrix composites. In particular, no special

preparation of the surface is needed except for some applications that require a coating by a

random black and white pattern. From experimental comparisons with conventional gauges, the

strain uncertainty of the technique is shown to be equal to 2 x 10
-4

 when few measurement points

are considered with an 8-bit CCD camera and can decrease to levels of the order of 10
-5

 or even

10
-6

 in favorable conditions with a 12-bit CCD camera for a larger gauge zone.

Two applications have been considered in the present paper. In a first study, local

analyses were performed to determine elastic constants of a silicon-based joint. The DIC method

allowed for accurate estimates of longitudinal displacements and strain fields even in extreme

conditions, namely, low displacement and strain levels, high digital image magnification. The

BraSiC elastic properties could be estimated and are comparable with those evaluated by a

nanoindentation technique.

The second analysis deals with interactions between experimental data obtained on a C/C

composite and mechanical investigations (here a shear experiment on a plate). The entire

displacement field is considered to derive the strain field. A damage post-processor is applied to

the experimental results to evaluate different damage fields describing matrix and fiber

degradations. It is shown that fiber breakage causes the failure even when the overall load pattern

is shear at ± 45°.
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