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ABSTRACT

Representing the image to be inpainted in an appropriate sparse

dictionary, and combining elements from bayesian statistics, we

introduce an expectation-maximization (EM) algorithm for im-

age inpainting. From a statistical point of view, the inpainting can

be viewed as an estimation problem with missing data. Towards

this goal, we propose the idea of using the EM mechanism in a

bayesian framework, where a sparsity promoting prior penalty is

imposed on the reconstructed coefficients. The EM framework

gives a principled way to establish formally the idea that missing

samples can be recovered based on sparse representations. We

first introduce an easy and efficient sparse-representation-based

iterative algorithm for image inpainting. Additionally, we derive

its theoretical convergence properties for a wide class of penal-

ties. Particularly, we establish that it converges in a strong sense,

and give sufficient conditions for convergence to a local or a

global minimum. Compared to its competitors, this algorithms

allows a high degree of flexibility to recover different structural

components in the image (piece-wise smooth, curvilinear, tex-

ture, etc). We also describe some ideas to automatically find the

regularization parameter.

1. INTRODUCTION

Inpainting is to restore missing image information based

upon the still available (observed) cues. The keys to suc-

cessful inpainting are to infer robustly the lost information

from the observed cues. The inpainting can also be viewed

as an interpolation or a desocclusion problem. The clas-

sical image inpainting problem can be stated as follows.

Suppose the ideal complete image X defined on a finite

domain Ω (the plane), and its degraded version (but not

completely observed) Y . The observed (incomplete) im-

age Yobs is the result of applying the lossy operator M on

Y :

M : Y 7→ Yobs = M [Y ] = M [X ¯ ε] (1)

where ¯ is any composition of two arguments (e.g. ’+’ for

additive noise, etc), ε is the noise. M is defined on Ω \E,

where E is a Borel measurable set. A typical example of

M that will be used throughout this paper is the binary

mask; a diagonal matrix with ones (observed pixel) or ze-

ros (missing pixel). Inpainting is to recover X from Yobs

which is an inverse ill-posed problem.

Recent wave of interest in inpainting was started from

the pioneering work of [1], where applications in the movie

industry, video, and art restoration were unified. These au-

thors proposed nonlinear PDE model for inpainting. Fol-

lowing their work, [2] then systematically investigated in-

painting based on the Bayesian and (possibly hybrid) vari-

ational principles with different penalizations (TV, l1 norm

on wavelets coefficients). Many other authors have also

proposed inpainting algorithms under the variational/PDE

framework. More recently, [3] introduced a novel inpaint-

ing algorithm that is capable of reconstructing both texture

and cartoon image contents, i.e. X = Φα, where Φ is a

dictionary of sparse transforms (e.g. curvelets for cartoon

and local cosines for locally stationary textures). This al-

gorithm is a direct extension of the MCA (Morphological

Component Analysis), designed for the separation of an

image into different semantic components [4, 5].

Combining elements from statistics and harmonic anal-

ysis theories, we here introduce an EM algorithm for im-

age inpainting based on a penalized maximum likelihood

formulated using linear sparse representations, i.e. X =
Φα, where the image X is supposed to be efficiently by

the atoms in the dictionary. Therefore, a sparsity promot-

ing prior penalty is imposed on the reconstructed coef-

ficients. From a statistical point of view, the inpainting

can be viewed as an estimation problem with incomplete

or missing data, where the EM framework is a very gen-

eral tool in such situations. The EM algorithm formalizes

the idea of replacing the missing data by estimated ones

from coefficients of previous iteration, and then reestimate

the new expansion coefficients from the complete formed

data, and iterate the process until convergence. We here

restrict ourselves to zero-mean additive white Gaussian

noise, even if the theory of the EM can be developed for

the regular exponential family. The EM framework gives a

principled way to establish formally the idea that missing

samples can be recovered based on sparse representations.

Furthermore, owing to its well known theoretical proper-

ties, the EM algorithm allows to investigate the conver-

gence behavior of the inpainting algorithm. Some results

are finally shown to illustrate our algorithm.

2. PENALIZED MLE WITH MISSING DATA

2.1. Problem formulation

Suppose that the an image has n pixels. First, let’s ig-

nore the missing data mechanism and write the complete



n-dimensional observation vector (by simple reordering)

Y as:

Y = Φα + ε, ε ∼ N (0, σ2) (2)

Φ is a n×p matrix corresponding to a sparse representation

(possibly overcomplete p ≥ n). Estimating X from Y can

be accomplished using the penalized maximum likelihood

estimator (PMLE):

X̂ = arg min
X

−ℓℓ (Y |X) + log pX(x) (3)

As X is supposed to be sparsely decomposed in the chosen

dictionary. The MAP/PMLE estimation problem can then

be expressed in terms of the decomposition coefficients α,

which gives, for additive white Gaussian noise with known

variance σ2:

α̂ = arg min
α

1

2σ2
‖Y − Φα‖2

2 + λΨ(α) (4)

where Ψ(α) is a penalty function promoting reconstruc-

tion with low complexity taking advantage of sparsity. In

the sequel, we additionally assume that the prior associ-

ated to Ψ(α) is separable (i.e. coefficients independence).

Hence,

Ψ(α) =

L
∑

l=1

ψ(|αl|) (5)

2.2. Redundant sparse representations

Suppose X ∈ H a Hilbert space. An
√

n ×√
n image X

can be written as the superposition of elementary functions

φγ(u, v) (atoms) parameterized by γ s.t. (Γ is denumer-

able):

X(u, v) =
∑

γ∈Γ

αγφγ(u, v), φγ ∈ L (6)

where the atoms {φl}l=1,...,L are normalized to a unit norm.

The forward transform is defined by Φ = [φ1 . . . φL] ∈
R

n×L, Card Γ = L À N (union of incoherent bases,

of frames or tight frames), and Φ has a Moore-Penrose

generalized-inverse (Φ+). Popular examples of Γ include:

frequency (Fourier), scale - translation (wavelets), scale-

translation-frequency (wavelet packets), translation-duration-

frequency (cosine packets), scale-translation-angle (e.g. curvelets,

bandlets, contourlets, wedgelets, etc).

2.3. The EM algorithm

Let’s now turn to the missing data case and let’s write

Y = (Yobs, Ymiss), with Ymiss = {yi}i∈Im
is the missing

data, and Yobs = {yi}i∈Io
. The incomplete observations

do not contain all information to apply standard methods

to solve (4) and get the PMLE of θ = (αT , σ2)T ∈ Θ ⊂
R

p ×R
+∗. Nevertheless, the EM algorithm can be applied

to iteratively reconstruct the missing data and then solve

(4) for the new estimate. The estimates are iteratively re-

fined until convergence.

The E step
This steps computes the conditional expectation of the pe-
nalized log-likelihood of complete data, given Yobs and

current parameters θ
(t) =

(

α
(t),θ′(t)

)T

:

Q
“

θ|θ(t)
”

= E

h

ℓℓ (Y |θ) − λΨ (α) |Yobs, θ
(t)

i

= E

2

6
4 ℓℓ (Y |θ)

| {z }

∼ Data fidelity

|Yobs, θ
(t)

3

7
5 − λ Ψ (α)

| {z }

Prior penalty

(7)

For regular exponential families, the E steps reduces to
finding the expected values of the sufficient statistics of the
complete data Y given observed data Yobs and the estimate

of α
(t) and σ2(t)

. Then, as the noise is zero-mean white
Gaussian, the E-step reduces to calculating the conditional
expected values and the conditional expected squared val-
ues of the missing data, that is:

y
(t)
i

= E

“

yi|Φ, Yobs, α
(t)

, σ
2(t)

”

=

(
yobsi

for observed data, i ∈ Io
“

Φα
(t)

”

i

for missing data, i ∈ Im

and E

“

y
2
i |Φ, Yobs, α

(t)
, σ

2(t)
”

=

8

<

:

y2
obsi

i ∈ Io
“

Φα
(t)

”2

i

+ σ2(t)

ı ∈ Im

(8)

The M step

This step consists in maximizing the penalized surrogate

function with the missing observations replaced by their

estimates in the E step at iteration t, that is:

θ
(t+1) = arg min

θ∈Θ
− Q

(

θ|θ(t)
)

(9)

Thus, the M step updates σ2(t+1)

according to:

σ2(t+1)

=
1

n

[

∑

i∈Io

(

yi − x
(t)
i

)2

+ (n − no)σ
2(t)

]

(10)

where no = tr M = Card Io is the number of observed

pixels. Note that at convergence, we have σ̂2 is the noise

variance estimate inside the mask (i.e. with observed pix-

els). The update equation of Xt+1 is more complicated

and will be detailed hereafter.

2.4. The ECM inpainting algorithm

The Cyclic EM (ECM) M-step is accomplished by sequen-

tially cycling between the atoms in the dictionary and min-

imizing with respect to each αl keeping the other coeffi-

cients fixed.

Require: Observed image Yobs and a mask M, conver-

gence threshold δ,

1: repeat

2: E Step

3: Update the image estimate:

Y (t) = Yobs + (I −M)X(t) (11)



4: CM Step

5: for Each column l of Φ do

6: Compute the transform coefficient

φT
l

(

Y (t) − Φα
(t)

)

+ α
(t)
l ,

7: Apply the shrinkage operator Dλ associated to

ψ(.) (e.g. soft thresholding for ψ(|α|) = |α|) to

this coefficient to obtain α
(t+1)
l ,

8: end for

9: Update X(t+1) = Φα
(t+1),

10: Update σ2(t+1)

according to (10).

11: until Convergence, i.e.
∥

∥X(t+1) − X(t)
∥

∥

2
≤ δ

If σ2 happens to be known, step can be dropped from the

updating scheme.

2.5. Convergence results of the ECM inpainting

We now summarize the main features of the above algo-

rithm in the following theorem.

Theorem 1 Suppose that:

H 1. ψ is even-symmetric, nonnegative and nondecreas-

ing on [0, +∞), and ψ(0) = 0.

H 2. ψ is twice differentiable on R\{0} but not necessar-

ily convex.

H 3. ψ is continuous on R, it is not necessarily smooth

at zero and admits a positive right derivative at zero

p′+(0) = lim
h→0+

p(h)
h

> 0 which can be finite or not.

H 4. The function α + λψ′(α) is unimodal on (0,+∞).

H 5. The columns of Φ are normalized to a unit ℓ2 norm.

Then,

(i) The sequence of observed penalized likelihood con-

verges monotonically to some ℓℓ∗.

(ii) All limit points of the ECM inpainting sequence {X(t), t ≥
0} are stationary points of the penalized likelihood.

(iii) The sequence of iterates is asymptotically regular, i.e.
∥

∥X(t+1) − X(t)
∥

∥ → 0.

(iv) If ψ is unimodal, then any inpainting sequence con-

verges to the unique minimizer.

Sketch of Proof: Statements (i)-(ii) follow from con-

tinuity of ψ(.) and classical results on the ECM [6, 7].

Statement (iii) is a consequence of assumptions H1-H4,

yielding that point-wise minimization with respect to each

αl is single-valued. Statement (iv) follows from convexity

of ψ(.) [6, 7].

2.6. Computational complexity

The computational complexity of the above algorithm is

dominated by the multiplication by the columns of Φ used

in the M step, which is typically O (LN) (particularly for

redundant dictionaries L À N ). Thus, for most trans-

forms popular in harmonic analysis used with large scale

image processing applications, this would be of prohibitive

computational burden. Therefore, the question is do fast

solution exist for such a problem that can reduce the com-

plexity reasonably for usual transforms ? Fortunately, the

answer is yes provided that the dictionary is a union of

bases (ΦkΦT
k = I) or a union of tight frames (ΦkΦT

k =
cI). The CM steps of the above algorithm can then be

rewritten as a parallel updating scheme:

1: for Each transform k ∈ [1,K] in the dictionary do

2: Compute the coefficients ΦT
k

(

Yobs −MX(t)
)

+α
(t)
k ,

3: Apply the shrinkage operator Dλ to these coeffi-

cients to obtain α
(t+1)
k ,

4: end for

where applying Φk and ΦT
k corresponds to the inverse and

forward transforms (up to a scalar for tight frames). Con-

sequently, the complexity becomes O (Kg(N)) , K ¿ L,

where g(N) is typically O(N) or O(N log(N)) for most

usual transforms. Furthermore, the conclusions of Theo-

rem 1 are still valid.

2.7. Choice of the regularization parameter

So far, we have characterized the solution X̂ for a particu-

lar choice of λ. This choice is a challenging task. One at-

tractive solution is based upon the following observation.

At early stages of the algorithm, posterior distribution of

α is unreliable because of missing data. One should then

consider a large value of λ (∞ or equivalently ‖Φ+Y ‖
∞

to

favor the penalty term. λ is then incrementally decreased

(according to some schedule) to find and trace optimal so-

lutions X̂(λ) for all λ ≥ kσ (to reject the noise). This

procedure has a flavor of deterministic annealing, where

the regularization parameter parallels the temperature. It

can be also seen as the basis of a homotopy continuation

method.

3. EXPERIMENTAL RESULTS

The ECM inpainting algorithm was applied to several syn-

thetic and real degraded images, from which we present

few examples.Fig.1 depicts an example on Lena where

80% pixels were missing. The dictionary contained the

curvelet transform and the convex l1 penalty was used.

The threshold parameter was fixed to the universal value

3σ. This example is very challenging, and the inpainting

algorithm performed impressively well. It managed to re-

cover most important details of the image that are almost

impossible to distinguish in the masked image.



Fig. 1. Example with Lena. Dictionary: curvelets, penalty:

l1, input SNR = 25dB, 80% pixels missing.
(a)

(b) (c)

(d) (e) (f)

Fig. 2. Examples with Lena and Barbara. Dictionary:

curvelets+LDCT, penalty: l1, input SNR = 30dB, 20%
pixels missing.

To further illustrate the power of the ECM inpainting

algorithm, we applied it to the Barbara textured image. As

stationary textures are efficiently represented by the local

DCT, the dictionary contained both the curvelet (for the

geometry part) and the LDCT transforms. Again, the l1
penalty was used. The result is portrayed in Fig.2. The

algorithm is not only able to recover the geometric part

(cartoon), but particularly performs well inside the difficult

textured areas, e.g. trousers.

The algorithm was finally applied to a real photograph

of a parrot, where we wanted to remove the grid of the cage

to virtually free the bird. The mask of the grid was manu-

ally plotted. The result is shown in Fig.3. Here, the dictio-

nary contained the undecimated DWT and LDCT, penalty:

l1. For comparative purposes, inpainting results of a PDE-

based method [8] are reported. The main differences be-

tween the two approaches are essentially concentrated the

”textured” area in the vicinity of the parrot’s eye.

Fig. 3. Original (left), ECM inpainting (middle) and PDE

inpainting (right).
4. CONCLUSION

A novel, fast and flexible inpainting algorithm has been

presented. Its theoretical properties were also derived. Sev-

eral interesting perspectives of this work are under inves-

tigation. We can cite the extension to any dictionary and

formal investigation of the influence of the regularization

parameter on the convergence the algorithm (path follow-

ing/homotopy continuation). Extension to multi-valued

images (e.g. hyper-spectral data) is also an important as-

pect that is the focus of our current research.
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