
Wave propagation in highly inhomogeneous thin films :

exactly solvable models

Guillaume Petite, Alexander Shvartsburg

To cite this version:

Guillaume Petite, Alexander Shvartsburg. Wave propagation in highly inhomogeneous thin
films : exactly solvable models. S.M. Kirkpatrick and R. Stoian. Optics and Photonics for
Defence : Femtosecond Phenomena II, 2005, Bruges, Belgium. SPIE proceedings, vol 5989,
pp.59890M-1, 2005, <10.1117/12.632046>. <hal-00015940>

HAL Id: hal-00015940

https://hal.archives-ouvertes.fr/hal-00015940

Submitted on 15 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract : We present an exact treatment of wave propagation in some inhomogeneous thin films with highly space-
dependent dielectric constant. It is based on a space transformation which replaces the physical space by the optical 
path. In the new space, the dispersion equation is that of a normal progressive wave. We will show that the dispersion 
properties of such films are plasma- or waveguide-like, the characteristic frequency being determined by the spatial 
characteristics of the dielectric constant’s variations only. The theory is scalable, so that it can be applied in any 
wavelength range : optical, IR, radiofrequency, etc. depending only on the characteristic space scales.  Several 
applications will be presented, concerning the reflection properties of such films (broadband anti-reflection, or dichroic 
coatings) or to the propagation and transmission through the film. We will show that depending on the type of space 
dependence, an incident wave can either propagate or tunnel through such films. We will investigate the behaviour of 
the light group-velocity and tunneling time inside or through such films. Though we can reproduce the phase-time 
saturation corresponding to the Hartman effect, analysis of the group velocity in the tunneling case shows no sign of 
superluminal propagation. A strong frequency dependence can be obtained in some situations, which allows to 
anticipate a strong reshaping of brodband laser pulses.  
 

1.  INTRODUCTION 
 
The problem of wave propagation in media with rapidly varying dielectric constants has received attention since the 
early stage of electromagnetism. The first analytical results were obtained by Rayleigh for waves whose velocity inside 
the medium depends linearly upon the coordinate (1). Later the linear profile for ε(z)(2) - z being the direction of 
propagation of the light - as well as an exponential and more general Epstein profiles(3) were used for the analysis of 
radio propagation in the ionosphere. Some more complicated distributions were modeled by piece-wise profiles of 
ε(z)(4), described by a WKB approximation(5) or treated numerically(6). These researches focused on the propagation of 
EM waves in heterogeneous media with positive ε, although the tunneling phenomena, which arise when ε< 0, were 
touched sometimes, e.g., in the case of radio waves percolation nearby the ionospheric maxima(7). 
 
Modern technologies now allow to realize thin films with a significant dielectric constant variation over a length of the 
order or even smaller than visible wavelengths. Such thin films of, e.g., ZnSe or silicon oxynitride, were shown to 
provide broadband antireflection properties (Sankur et al.(8)). Methods for real-time monitoring and control of the 
growth of transparent inhomogeneous layers, based on reflectometry and ellipsometry of growing layers, were 
elaborated (Kildemo et al (9)). However, the profiles realized in this way are much more general than the ones that 
received analytical solutions, and numerical treatments(6) generally fail revealing the essence of the physics of wave 
propagation in such objects. In this paper, we summarize the work we performed on this topic (10,11) which is based on 
the following strategy : 
- using profiles of ε(z) containing enough free parameters to encompass most of the general features of the films that can 
be generated (e.g. concave or convex variations of ε(z), monotonous or not) 
- the material of the film, as well as of the eventual substrate has no intrinsic dispersion, so that any observed dispersion 
will find its origin in the spatial variations of the dielectric constant, hereafter referred to as “Heterogeneity Induced 
Dispersion” (HID)  



- relying only on analytical solutions of the wave equation (which will be obtained in a transformed space) in order to 
keep a good insight on the origin of the observed phenomena 
- though we will explicitly refer to the optical domain, the theory can be spatially scaled so that the conclusions apply to 
any field of electromagnetism  
 
The properties that we are interested in are the reflection properties of the films, as well as its transmission properties. In 
particular, we will consider the problems of tunneling through films which cannot support field propagation. Indeed the 
advent of lasers attracted attention upon light tunneling in a series of optoelectronics problems, such as, e.g., the 
evanescent modes in dielectric waveguides(12), surface waves on microspheres(13), Goos – Hanchen effect for optical 
coatings(14). A new burst of interest into these phenomena was stimulated by the intriguing perspective of superluminal 
light propagation through opaque barriers(15). The experiments in microwave range with “undersized” waveguides(16) 
and bi-prism devices(17) as well as the analysis of spatial displacement of the peak of a tunneling pulse(18) and the direct 
measurement of photons tunneling time(19,20) were considered by some authors in favor of the concept of superluminal 
phase time for the tunneling electromagnetic waves(21). However, this concept aroused controversial viewpoints(22,23).  
 
Finally, we will see that some of the studied films can present very strong dispersion properties. Obviously, and though 
we do not explicitely treat this problem, this will induce a very strong reshaping of broadband ultrashort pulses 
propagating through such films, and could eventually offer the opportunity of manipulating their shape in a controlled 
way. 

2. HETEROGENEITY INDUCED DISPERSION (HID) OF THIN DIELECTRIC FILMS. 
 
Let us consider an inhomogeneous dielectric film as a plane dielectric layer with thickness d and dielectric susceptibility  
ε(z), 0 ≤ z ≤ d. A linearly polarized EM wave, that we assume to  propagate in the z-direction (normal incidence 
conditions), is described by Maxwell equations, linking the Ex and Hy components of the wave : 
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We will use the following model of dielectric susceptibility profile ε(z) 
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Here n0 is the refractive index value on the interface z = 0; the distribution (3) is considered in the region z ≥ 0. The 
characteristic spatial scales L1 and L2 as well as the values s1 and s2 are the free parameters of model (3). Note that the 
Rayleigh profile of eq. (1) above corresponds to the limit of U(t) when the scale L2→∞. The EM field in normal 
incidence can be described with help of a single component vector-potential cast under the form A (z,t) = A0 ψ(z,t), 
where ψ is a scalar function such that (for convenience, we put A0=1) 
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which allows to reduce the system  (1)-(2) to the single equation 
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which does not admit obvious solutions. Using a new function F and a new variable η 
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and using (3) transforms eq.(5) into a new equation with constant coefficients 
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A solution of eq.(7) can be built by superposition of  waves with wavenumber q, traveling in the η  - direction 
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At this point, we note that solutions in the form of traveling waves are obtained only if the  expression under the radical 
is positive. This is always the case if p²<o, i.e. for s2=+1, if L2>2L1. In the opposite case (p²>0), the availability of 
traveling wave solutions is subject to a condition concerning ω, which writes 
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Combining (9) and (6), we obtain the function ψ determining the vector-potential; whose substitution into (4) brings the 
explicit expressions for the field components 
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Thus we found an exact solution describing the EM wave in an inhomogeneous layer (3). This solution can be used for 
finding the reflection coefficient of the wave, incidenting normally from the vacuum on the layer’s interface z = 0, and 
to study the propagation of tunneling of waves though such layers. 
 
 



3. ANTIREFLEXION PROPERTIES INDUCED BY HID 
 
The reflexion properties of such films were investigated in detail in (10). We present here the essential results of this 
study. In all cases we consider here a wavelength range in which propagation in the film is possible. In the case of films 
presenting a cut-off frequency condition (10) must be realized. We first illustrate the “intrinsic” properties of such films 
– considered as “self-standing” in vacuum - of different types and show their dependence on the type of profile.  
Figure 1 illustrates the case of a film with p²>0, s1>0, s2<0, y=1, n0 = 1.73 and of different thickness characterized by the 
parameter α=d/L2, where d is the film thickness. Under such conditions, with α ranging from 0.1 to 0.3, the dielectric 
constant is continuously decreasing throughout the film. Such a film possess a cut-off frequency given by : 
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We see that such a film has a low intensity reflection coefficient over a very large frequency range (typically less than 
5% in the frequency range Ω to 2Ω) . Note that the frequency is expressed in reduced coordinates : due to the definition 
of Ω  (10), these antireflection properties can be obtained in any frequency range, varying only the length scales L2 and 
L1 (which are linked by the value of y). In the case L2 = 200 nm, the cut-off frequency Ω is 1.22 1015 rad.s-1: according to 
the curve, related to the value α =0.15, one can find, e.g., that the reflectivity of a film with thickness d = 30 nm in a 
spectral range 0.5 µm < λ < 1.55 µm does not exceed 5%. The same curve shows that a film with the same 
characteristics, but with L2 = 2 µm and 10 times thicker, will exhibit the same antireflection properties in the far IR 
range (5 µm < λ < 15.5 µm). 
 
Figure 2 illustrates the case of films with p²<0, which do not have a cut-off frequency. Here s2 is positive, and y=0.75. In 
this case, the dielectric constant is continuously increasing throughout the film. Here the “characteristic frequency” used 
to define the reduced frequency x2 writes  
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thus differing somewhat from definition 10 in order to be made real, but it does not have as above the physical meaning 
of a cut-off frequency. We see here that such films present a quite different behavior, clearly visible in the case of the 
film with α=1 : this film presents a maximum of reflectivity for a reduced frequency of 1.5, and a minimum of 
reflection for a reduced frequency of 3, i.e. they present a rather strong dichroic character.  
 

  
Figure 1 : Antireflection properties of thin inhomogeneous 
dielectric film in the case s2 <0 and  p² > 0 (8). The reflection 
coefficient |R|² is plotted vs the normalized frequency  x1=ω/Ω1, 

 for n0 = 1.73, and for different values of the parameter α = 

Figure 2 : Spectra of reflectivity of inhomogeneous film in a 
case s2>0 and p² < 0 (8); The reflection coefficient |R|² is 
plotted vs. the normalized frequency  x2=ω/Ω2 for n0 = 1.73, 
and for different values of the parameter α = d/L2.  



d/L2.  
 
 
Now such films are seldom used as self-standing (at least in the optical domain, but it could be so in the RF one) and are 
usually applied as coatings. Figure 3 considers such a case, where an antireflection coating analogous to that of fig. 1, 
but with y=0.25 has been applied on a dielectric substrate with a complex dielectric constant ε2=(n2+χ2)², with n2=3.5 
and χ2=0.75. Such a lossy dielectric presents in itself a rather strong reflection coefficient (typically 0.32). The thin film 
acts as an antireflexion coating in a broad frequency region which can be chosen by adjusting the two length scales of 
the profile U(z) and its thickness, i.e. the parameter α.  
 
 

 

 
 
 
Figure 3 : Broadband antireflection properties of a thin film, 
coating a lossy dielectric with n2 = 3.5, χ2 = 0.7; the dependence 
of the reflectivity |R|² upon the normalized frequency 11 Ω= ωx , 
relating to the case y = 0.25, n0 = 1.6, p²>0, s2 <0, is represented 
for different values of the parameter α = d/L2. The same dielectric 
without coating has a reflection coefficient |R|² = 0 .32 
 

 
In all the above examples, the gradient of dielectric susceptibility strongly influences the frequency dispersion of the 
film’s reflectivity. Some key properties of this effect should be pointed out, namely : 
- A controlled formation of the areas of both positive and negative inhomogeneity-induced dispersion of a dielectric film 
which can be provided in an arbitrary spectral range via an appropriate choice of the dielectric susceptibility profile 
U(z). 
- Unlike the natural dispersion of materials, where a strong dispersion nearby a resonance is accompanied by an 
enhanced absorption, the artificial inhomogeneity-induced dispersion can be formed in a spectral range which is far 
from the absorption bands of the material. 
- The thickness of an inhomogeneous antireflection film may be several times smaller than that of a standard 
homogeneous quarter-wave plate for a given wavelength, and even more than that of more complex multilayer coatings 
commonly used. For instance, considering a wavelength of 10.2 µm passing through the film relating to figure 3, we 
obtain a thickness of 0.57 µm, instead of 1.5 µm for a standard plate with the same value of n0 =1.6. This difference may 
be useful for optimizing the sizes of antireflection systems. 
 

4. PROPAGATION OR TUNNELING OF WAVES THROUGH CONVEX OR CONCAVE 
BARRIERS 
 
We now want to analyze in more detail the question of the propagation (or in some case tunneling) of waves through 
films with profiles of their dielectric constants defined in (3). Hereafter we will consider the case of symmetric profiles, 
with opposite signs for s1 and s2. In such a case, quantities L1, L2 and d are linked by the relation L1 = d/4y2 , L2 = d/2y. 
Two such classes of films can be defined presenting either a maximum (s1 = -1, s2 = +1, convex profile) or a minimum 
(s1 =+1, s2 = -1, concave profile) with a value Um
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The characteristic frequencies (10) are different for concave ( Ω1) and convex ( Ω2) profiles : 
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Only the concave profiles possess a cut-off frequency below which the wave can only tunnel through the film, a 
situation that will be studied later. 

4.1. - Group velocities of traveling EM waves in concave and  convex photonic barriers.  
 
The spatial waveforms of the EM field inside the heterogeneous medium are non – sinusoidal and this field is formed 
due to interference of forward and backward waves. Hence the group velocities vg of these waveforms have to be found 
by means of energy flux (Poynting vector) P and energy density W(7) : 
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The spatial structure of the EM field inside the barrier is formed by the interference of forward wave, passing through 
the plane z = 0, and backward one, reflected from the plane z = d. Using formulae (11) – (12) one can present these 
waves in a form 
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For simplicity the time – dependent factor exp(-iωt) is omitted here and below. The dimensionless parameter Q 
describes the reflectivity of the far boundary z = d. Introducing the reflection coefficient of the film R, we can write the 
continuity conditions on the plane z = 0 (Ei is the electric component of the incidenting wave): 
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and parameter Q can be found from the continuity conditions on the interface z = d :  
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Expressions from which the fields, and then the Poynting vector and the energy density can be found through some long 
but easy algebra(11) allowing to express  in each point z the group velocity of the wave as  
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valid for  both convex and concave profiles of ε(z) with N2 > 0 (hence the “+” index for function θ+, and hereafter in 
N+). With η0=η(d), one has : 
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4.2. Group velocity of evanescent waves in concave barriers.  
 
If the wave frequency is less than the cut – off frequency, the radiation flux will be transmitted through the film in the 
tunneling regime. Introducing the notations  
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one finds(11) that this case can be treated as the one above, with the following substitutions 
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The group velocity of the evanescent wave can be found by substituting in (25) instead of θ+  the following function 
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Figure 4 : group velocities dependencies for three potentials of 
different types : (a) convex potential, (b) concave potential with 
cut-off frequency smaller than light frequency, (c) concave 
potential with cut-off frequency larger than light frequency 
(tunneling case). Group velocities are normalized to the group 
velocity in a constant medium with refractive index equal to n0 

 

 
The group velocity dependencies corresponding to three types of profiles are represented on figure 4. They are 
calculated for a wavelength of 800 nm, corresponding to a frequency of  2.36 1015 rad/s. Fig. 4a corresponds to a convex 
profile, and figs 4 b and c to concave profiles with parameter such that fig 4b corresponds to the case of a propagative 
transmission, while fig 4c corresponds to the case of a tunneling transmission.  
Several remarks can be made concerning the group velocity dependencies displayed on fig 4 : 
- despite the fact that the dielectric constant profiles are symmetric, the group velocities are not. This shows that these 
dependencies are more complex that the simple one expected from the variations of the local index of refraction. 
analyzing the constituents of the group velocity dependency, one finds that the flux of the Poynting vector is constant 
while the e.m. power density is not.  



- despite the fact that the transmission modes are different between fig 4b (propagating mode) and fig 4c (tunneling 
modes) the two corresponding dependencies look very similar, while there is a strong difference between the two cases 
(4a and 4b) corresponding to the propagating mode. Hence it follows that, notwithstanding the propagation mode, it is 
essentially the characteristics of the dielectric constant profile which dominate the behaviour of the group velocity. 
- with the knowledge of the group velocities throughout the three films, it is straightforward to calculate, using eq. (25), 
and integrating over z between z=0 and z=d, the group delay induced by the three films. One finds that in all cases this 
group delay remains subluminal (meaning that it is smaller than d/c). Hence, based on this calculation of the group 
velocity, we find no evidence of superluminal propagation in the case of the tunneling regime. Particularly in the case of 
tunneling, no phase velocity can be attributed to the evanescent wave in the film (in the case of propagating wave, one 
could possibly define such a phase velocity in the η-space, where the waves are sinusoidal, but we did not explore this 
possibility). However, it is possible to define a phase delay time by calculating the phase shift ϕ- introduced by the 
tunneling through the film in the transmission function. This “phase-time” has been abundantly discussed in the 
literature, and served as a base for the claim of “superluminal propagation”, and is defined as  
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Applying this definition, one finds(11) that the phase time corresponding to fig 4c is 0.4 fs, corresponding to an average 
velocity of 0.65 c. No superluminal propagation can be suspected on this ground either. Moreover, it is shown in (11) that 
there is a link between the phase shifts in transmission and in reflection. The following relation can be established : 
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This relation offers a possibility of investigating the phase time dependence without being handicapped by the very 
strong attenuation of the wave in the case of tunneling, and such a study was performed in (20) in the radiofrequency 
case. This is particularly interesting for studying the Hartman effect, namely the saturation of phase shift ϕ- when the 
thickness of the sample increases. In our case, the only way of increasing significantly the film thickness without 
changing its fundamental property (a cut-off frequency larger than the light frequency) is to stack a number of identical 
plates. For such a system, a recursive relation can be established for the parameter Q (eq. 24) which writes  
 

1 exp( 2 )mQ mp 0 0Qη+ = −            (33) 
 
allowing to calculate the phase shift introduced by a set of m films : 
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as well as the corresponding phase time. Their dependence on the number of films (with the same parameters as on fig 
4c) is represented on figure 5.  
 
One sees that both the phase shift and the phase time increases for the first few films (typically m<6), but that there is 
practically no further evolution, and thus a saturation as observed in the Hartman effect. The saturated phase time can be 
expressed as :  
 



 

 
 
 
 
 
Figure 5 : illustration of the Hartman effect in a 
stack of m films identical to that of fig 4c : 
saturation of the transmission dephasing and of 
the phase time as a function of the number of 
films in the stack 
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so that if the normalized frequency is such that the following condition : 
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is satisfied, tp has a very simple expression :  
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which can be negative if n0 is high enough. One can find solutions in ω such that both conditions (35) and (36) are 
realized and one is in the tunneling regime. One has to have y²(n0²-1)>1, a condition easy to satisfy. This leads us to the 
conclusion that the phase time, though having the dimension of a time, possesses properties that preclude its acceptation 
as a physical time, and therefore its use as a ground for the evidence of superluminal propagation. Finally, it can be 
shown(11) that the saturation of phase time observed on fig. 5 is specific of a lossless medium. Introduction of even a 
very small absorption in the film (by using a complex index of refraction) leads to a constantly growing phase in the 
case of figure 5. Moreover, it is possible to generalize as above the calculation of the group velocity to the case of a 
stack of m layers : one finds that for allvalues of m,the group velocity stays subluminal. 
 
Finally, we have studied here the intrinsic properties of inhomogeneous films, while as in the case of  section 3, such 
films will be used in the optical domain as coatings. In the case of a semi-infinite substrate with refractive index n1, the 
modifications to the above equation will result from the change in eq (24), Q becoming : 
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This will affect the amplitude of the wave reflected at the interface z= d, and thus the structure of both the Poynting 
vector and the energy density (the incoming wave in not modified) and, consequently, the group velocity (through the 
functions θ ). The above calculations can easily be reproduced in such a case, and their results do not change the general 
conclusions given above. 

5. GROUP VELOCITY DISPERSION IN INHOMOGENEOUS OPTICAL BARRIERS 
 
A last interesting property that can be obtained from the group velocity is the group velocity dispersion introduced by 
such films. Indeed, we have seen that the HID is much stronger than typical intrinsic material dispersion, and that it is 
also frequency dependent (in a plasma or waveguide way). One can thus expect that such films will exhibit a strong 
group velocity dispersion. Here again, one has to investigate this point without resorting to the usual definition with the 
help of the phase velocity, which is not defined in such films. To do so one can use the group delay time calculated from 
the group velocity inside the film, as mentioned above. Such a group delay time can be obtained in all cases, but the 
case of transmitting barriers is the most relevant in terms of possible applications. In such a case, one has to use the “+” 
definition of the group velocity (eq 25). Noting 
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 one obtains the following expression for the group delay time (which is expressed as a function of the “normal” group 
delay time t0 = d/c) for the convex pofile of U(z): 
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and in the case of the concave profile :  
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Figure 6 presents the particularly interesting case of  a concave profile of U used just above its cut-off frequency. In 
expression (41), many quantities are extremely frequency dependent close to the cut-off frequency and so does the 
group delay time, as shown on figure 6. In the usual language of group velocity dispersion, this case corresponds to a 
negative dispersion (the blue frequencies go faster than the red ones). It should be pointed out that important group 
delays (as high as 30 fs) are obtained in this case with a film of thickness equal to 100 nm only, which illustrates the 
very unique properties of HID.  
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Figure 6 : group delay time as a function of 
frequency for a concave index profile (identical to 
that of figure 4b) used just above its cut-off 
frequency 

Figure 7 : group delay time as a function of frequency, 
plotted over a large frequency interval encompassing the 
film’s characteristic frequency in the case of the convex 
profile of fig 4a 

 
It is enlightening to compare this case to that of a convex profile of U such as the one investigated above (fig 4a). The 
result of an equivalent calculation over a broad range of frequency encompassing the characteristic frequency shows that 
contrary to the above case, the group delay stays very small (~ 1fs) with a moderate dispersion, showing no resonant 
character. This obviously results from the fact that the crossing of the characteristic frequency does not give rise to any 
resonant phenomena (like, in the concave case, a value of zero for N+ which appears several times in the denominator).  
 

6. CONCLUSIONS 
 
In this work, we presented a number of properties which can be studied with the help of exacts solutions of 
electromagnetic propagation equations, applied to media presenting fast and deep spatial variations of their dielectric 
constant. Even though this method applies easily to specific analytical forms of such profiles, they contain enough free 
parameters to describe films with very different structures. Being exact, such solutions are subject to no limitations 
concerning the amplitude or the length scales over which the dielectric function varies. Several previously investigated 
cases can be considered as limiting cases for our calculation. Being scalable, this method applies to any wavelength 
range, from the RF to the XUV, provided that the materials allowing to realize the dielectric constant profiling exist.  
 
Our method allows to understand in detail how the shape of the dielectric constant variation influences the various 
properties of such films. It reveals the essential concept of Heterogeneity Induced Dispersion (HID), which was shown 
to be dependent only upon the two spatial scales defining the studied profiles. In the absence of any standard material 
dispersion, it can lead to effects exceeding by orders of magnitude those generally observed on dispersive materials, and 
this in the absence of any absorption (which is usually associated with strong dispersive properties, which are generally 
obtained only close to material’s resonances). Depending on the type of profile used (concave or convex), HID can 
present or not a cut-off frequency below which propagation through the medium is impossible, and evanescent waves 
are formed. 
 
We studied the reflection properties of such films and observed that they can possess dichroic or antireflection 
properties, and this over a wide wavelength range. This offers for instance the opportunity of realizing antireflection 
coatings in domains where standard methods are difficult to apply. 
 
This method also allows to study in detail the propagation or the tunneling of waves through such index-gradient films. 
In the case of tunneling, we could obtain the associated group delay time and found no sign of superluminal propagation 
as far as group velocity is concerned. The “phase time” corresponding to such films can also be calculated, and again 



showed no sign of superluminality, but instead some features – such as the fact that it can take negative values – which 
forbid to consider it as an acceptable physical time, despite its dimension. However, stacking a variable number of 
identical films, we were able to reproduce the basic feature giving rise to the Hartman effect, i.e. the saturation of the 
phase shift when the thickness of the tunneling barrier increases. Finally we showed that when used close to their cut-off 
frequency, in the propagative mode, such films can have some exceptional negative group velocity dispersion. Trying to 
otpimize their properties with the aim of manipulating the shape of broadband ultrashort pulses is certainly one of the 
perspectives opened by this study. 
 
Concerning the possible applications of the results presented above, index-gradient films are currently in use in the 
optical domain. However, our analytical method allows simple and fast calculations which could prove useful in the 
monitoring of the growth of such films. One could for instance study algorithms aiming at correcting on line the 
parameters of a reactor to compensate the deviations measured during the growth. Also the possibility of designing 
system with specific dispersion or reflection properties in any wavelength range appears as an exciting possibility. 
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