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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

In this paper we build a Continuous Wavelet Transform (CWT) on the upper sheet
of the 2-hyperboloid H2

+. First, we define a class of suitable dilations on the hyper-
boloid through conic projection. Then, incorporating hyperbolic motions belonging to
SO0(1, 2), we define a family of hyperbolic wavelets. The continuous wavelet transform
Wf (a, x) is obtained by convolution of the scaled wavelets with the signal. The wavelet
transform is proved to be invertible whenever wavelets satisfy a particular admissibility
condition, which turns out to be a zero-mean condition. We then provide some basic
examples and discuss the limit at null curvature.
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1 Introduction

The continuous wavelet transform is already a well established procedure for analysing data.
Its main advantages over the classical Fourier transform are its local and multiresolution
nature, which provide the interesting properties of a mathematical microscope. Its theory
is well known in the case of the line or other higher dimensional Euclidean spaces [Antoine
et al., 2005, Mallat, 1998] and the wavelet transform has certainly become a standard in
data analysis. However, data analysis has undergone deep changes recently and the field
faces new exciting challenges. On one hand the volume of data is exploding due to the
ubiquity of digital sensors (just think of digital cameras). The first challenge resides in
extracting information from very high dimensional data. On the other hand, the type of
data has also evolved tremendously over the past few decade, from images or volumetric

∗UMR 7164, CNRS, Université Paris 7-Denis Diderot, CEA, Observatoire de Paris

1



data to non-scalar valued signals. One can cite for example tensor diffusion imaging, a
new modality in medical imaging [Hagmann et al., 2003], or multimodal signals, i.e signals
obtained when the same physical scene is observed through different sensors. Finally,
there are instances where data are collected on a surface, or more generally a manifold, or
through a complicated interface (think of the human eye for example). This is often the
case in astrophysics and cosmology [Martinez-Gonzalez et al., 2002, Cayon et al., 2003],
geophysics but also in neurosciences [Angenent et al., 1999], computational chemistry [Max
and Getzoff, 1988] ... The list is truly endless. The second challenge thus resides in the
complexity of data sources and a field one could call Complex Data Processing might be
emerging.

A given feature shared by all these problems is the importance of geometry : either
important information is localized around highly structured submanifolds, or data types
obey intrinsic nonlinear constraints. As a consequence of the challenges in complex data
processing, the representation and analysis of signals in non-Euclidean geometry is now
a recurrent problem in many scientific domains. Because of these demands, spherical
wavelets [Antoine and Vandergheynst, 1999] were recently developed and applied in various
fields, from Cosmology [McEwen et al., 2004] to Computer Vision [Tosic et al., 2005].

Although the sphere is a manifold most desirable for applications, the mathematical
analysis made so far invites us to consider other manifolds with similar geometrical prop-
erties, and first of all, other Riemannian symmetric spaces of constant curvature. Among
them, the two-sheeted hyperboloid H2 stands as a very interesting case. For instance, such
a manifold may be viewed as the phase space for the motion of a free particle in 1 + 1-anti
de Sitter spacetime [Gazeau et al., 1989, Gazeau and Hussin, 1992]. Other examples come
from physical systems constrained on a hyperbolic manifold, for instance, an open expand-
ing model of the universe. A completely different example of application is provided by the
emerging field of catadioptric image processing [Makadia and Daniilidis, 2003, Daniilidis
et al., 2002]. In this case, a normal (flat) sensor is overlooking a curved mirror in order
to obtain an omnidirectional picture of the physical scene. An efficient system is obtained
using a hyperbolic mirror, since it has a single effective viewpoint. Finally, from a purely
conceptual point of view, having already built the CWT for data analysis in Euclidean
spaces and on the sphere, it is natural to raise the question of its existence and form on
the dual manifold.

In general, for constructing a CWT on H2, few basic requirements should be satisfied

• wavelets and signals must “live” on the hyperboloid;

• the transform must involve dilations of some kind; and

• the CWT on H2 should reduce locally to the usual CWT on the plane.

The paper is organized as follows. In Section 2 we sketch the geometry of the two-
sheeted hyperboloid H2. In Section 3 we define affine transformations on the upper sheet
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H2
+ of H2. There are two fundamental operations : dilations and hyperbolic motions

represented by the group SO0(1, 2). Then, the action of the dilation on the hyperboloid
is derived in Section 4. In Section 5, harmonic analysis on the hyperboloid is introduced
by means of the Fourier-Helgason transform : this is a central tool for constructing and
studying the wavelet transform. Section 6 really constitutes the core of this paper. First
we define the CWT on H2

+ through a hyperbolic convolution. Then we prove a hyperbolic
version of the Fourier convolution theorem which allows us to work conveniently in the
Fourier-Helgason domain. Theorems 2 and 3 are our main results. We would like to state
them roughly here in order to wet our readers’ appetite since these results are reminiscent
of their Euclidean counterparts. The first one states a generic admissibility condition for
the existence of hyperbolic wavelets :

Theorem 1 (Admissible wavelets) Let ψ be a compactly supported, square integrable,
continuous function on H2

+ whose Fourier-Helgason coefficients satisfy :

0 < Aψ(ν) =

∫
∞

0
|ψ̂a(ν)|2α(a) da < +∞,

where a 7→ α(a) is a positive continuous function on R+
∗
. Then the hyperbolic wavelet

transform is a bounded operator from L2(H2
+) to a subset of L2(R+

∗
× SO0(1, 2)) that is

invertible on its range.

Our second featured theorem shows that the admissibility condition simplifies to a
zero-mean condition and really motivates the wavelet terminology.

Theorem 2 (Zero-Mean Condition) Moreover, if α(a)da is a homogeneous measure
of the form a−βda, β > 2, then the following zero-mean condition has to be satisfied :

A square integrable function on H2
+ with bounded support is a wavelet if its integral

vanishes when it is conveniently weighted, that is

∫

H2
+

dµ(χ,ϕ)

[
sinh 2pχ

sinhχ

] 1

2

ψ(χ,ϕ) = 0,

for p > 0.

Finally we conclude this paper with illustrating examples of hyperbolic wavelets and
wavelet transforms and give directions for future work.

2 Geometry of the two-sheeted hyperboloid. Projective struc-

tures.

We start by recalling basic facts about the upper sheet of the two-sheeted hyperboloid of
radius ρ, H2

+ρ. Let χ,ϕ be a system of polar coordinates for H2
+ρ. To each point θ = (χ,ϕ)
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Figure 1: Geometry of the 2-hyperboloid.

we shall associate the vector x = (x0, x1, x2) of R3 given by

x0 = ρ coshχ,

x1 = ρ sinhχ cosϕ, ρ > 0, χ > 0, 0 ≤ ϕ < 2π,

x2 = ρ sinhχ sinϕ,

where χ > 0 is the arc length from the pole to the given point on the hyperboloid, while
ϕ is the arc length over the equator, as shown in Figure 1. The meridians (ϕ = const) are
geodesics.

The squared metric element in hyperbolic coordinates is:

(ds)2 = −ρ2

(
(dχ)2 + sinh2 χ(dϕ)2

)
, (1)

called Lobachevskian metric, whereas the measure element on the hyperboloid is

dµ = ρ2 sinhχdχdϕ. (2)

In the sequel, we shall put ρ = 1 for convenience and designate the unit hyperboloid
H2

+ρ=1 by H2
+.

Various projections can be used to endow H2
+ with a local Euclidean structure. One of

them is immediate : it suffices to flatten the hyperboloid onto R2 ≃ C. Another possibility
is to project the hyperboloid onto a cone. Let us consider a half null cone C2

+ ∈ R3 of
equation (x0)

2 − 1
tanψ0

((x1)
2 + (x2)

2) = 0, x0 > 0. This cone C2
+ has Euclidean nature.

The cone surface unrolled is a circular sector and all points of H2
+ will be mapped onto

C2
+ using a specific conic projection. The characteristic parameter of a conic projection is
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Figure 2: Cross-section of a conic projection

the constant of the cone m = cosψ0, where ψ0 is the Euclidean angle of inclination of the
generatrix of the cone as shown in Figure 2.

Considering a radial conic projection, it is more convenient to use a radius r defined
by the Euclidean distance between a point on the cone, conic projection of the point
(χ,ϕ) ∈ H2

+, and the x0-axis:

r = f(χ), dr = f ′(χ)dχ with
dr

dχ

∣∣∣∣
χ=0

= 1. (3)

Each suitable projection is determined by a specific choice of f(χ). It is clear that dilation
of the cone C2

+ 7→ aC2
+ = C2

+ entails r 7→ ar. Consequently, the resulting map χ 7→ χa is
determined by f(χa) = af(χ). This is precisely the point at the heart of our approach and
we shall discuss this more precisely in Section 4.

3 Affine transformations on the 2-hyperboloid

We recall that our purpose is to build a total family of functions in L2(H2
+,dµ) by picking

a wavelet or probe ψ(χ) with suitable localization properties and applying on it hyperbolic
motions, belonging to the group SO0(1, 2), supplemented by appropriate dilations

ψ(x) → λ(a, x)ψ(d1/ag
−1x) ≡ ψa,g(x), g ∈ SO0(1, 2), a ∈ R

+
∗
. (4)

Dilations da will be studied below. Hyperbolic rotations and motions, g ∈ SO0(1, 2), act
on x in the following way.

A motion g ∈ SO0(1, 2) can be factorized as g = k1hk2, where k1, k2 ∈ SO(2), h ∈
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SO0(1, 1), and the respective action of k and h are the following

k(ϕ0).x(χ,ϕ) =




1 0 0
0 cosϕ0 − sinϕ0

0 sinϕ0 cosϕ0







coshχ
sinhχ cosϕ
sinhχ sinϕ


 (5)

= x(χ,ϕ+ ϕ0), (6)

h(χ0).x(χ,ϕ) =




coshχ0 sinhχ0 0
sinhχ0 coshχ0 0

0 0 1







coshχ
sinhχ cosϕ
sinhχ sinϕ


 (7)

= x(χ+ χ0, ϕ) . (8)

On the other hand, the dilation is a homeomorphism da : H2
+ → H2

+ and we require
that da fulfills the two conditions:

(i) it monotonically dilates the azimuthal distance between two points on H2
+:

dist(da(x),da(x
′)), (9)

where dist(x, x′) is defined by

dist(x, x′) = cosh−1 (x · x′), (10)

and the dot product is the Minkowski product in R3; note that dist(x, x′) reduces to
|χ− χ′| when ϕ = ϕ′;

(ii) it is homomorphic to the group R+
∗
;

R
+
∗
∋ a→ da, dab = dadb, da−1 = d−1

a , d1 = Id.

The action of a motion on a point x ∈ H2
+ is trivial: it displaces (rotates) by a hyperbolic

angle χ ∈ R+ (respectively by an angle ϕ). It has to be noted that, as opposed to the
case of the sphere, attempting to use the conformal group SO0(1, 3) for describing dilation,
our requirements are not satisfied. In particular, conformal dilations do not preserve the
upper sheet H2

+ of the hyperboloid. In this paper we adopt an alternative procedure that
describes different maps for dilating the hyperboloid.

4 Dilations on hyperboloid

Considering the half null-cone of equation

C2
+ =

{
ξ ∈ R

3 : ξ · ξ = ξ20 − ξ21 − ξ22 = 0, ξ0 > 0

}
, (11)
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Figure 3: Conic projection and flattening.

there exist the SO0(1, 2)-motions and the obvious Euclidean dilations

ξ ∈ C2
+ → aξ ∈ C2

+ ≡ d
C2

+
a (ξ), (12)

which form a multiplicative one-parameter group isomorphic to R+
∗
.

In order to lift dilation (12) back to H2
+, it is natural to use possible conic projections

of H2
+ onto C2

+, as defined in Section 2.

H2
+ ∋ x→ Φ(x) ∈ C2

+ → Π0Φ(x) ∈ R
2 ≃ C, (13)

where Π0 stands for flattening, defined by

Π0Φ(x) : x(r, ϕ) ∈ C2
+ 7→ reiϕ ∈ C. (14)

Flattening reveals the Euclidean nature of the conic projection and the full action of (14)
is depicted on Figure 3. Then, we might wish to find a form of Π0Φ such that, expressed
in polar coordinates, the measure is

dµ = rdrdϕ. (15)

In this case, dilating r will quadratically dilate the measure dµ as well. By expressing the
measure (15) with the radius defined in (3) we obtain

f(χ)f ′(χ) = sinhχ =⇒ f(χ) = 2 sinh
χ

2
. (16)

Consequently, the radius of this particular conic projection is r = 2 sinh χ
2 .
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Figure 4: Cross-section of conic projections for different values of parameter p.

Thus, this conic projection Φ : H2
+ → C2

+ is a bijection given, after flattening, by

Π0Φ(x) = 2 sinh
χ

2
eiϕ,

with x ≡ (χ,ϕ), χ ∈ R+, 0 ≤ ϕ < 2π.
Then, the lifted dilation is of the form

sinh
χa

2
= a sinh

χ

2
. (17)

This particular example leads us to consider the following family of conic projections
and flattening indexed by a positive parameter p :

H2
+ ∋ x = x(χ,ϕ) → Π0Φ(x) =

1

p
sinh pχeiϕ = reiϕ ∈ C. (18)

The action of Φ for different values of the conic projection parameter p is shown on Figure
4.

The invariant metric and measure onH2
+, respectively (1) and (2), are then transformed

into

(ds)2 → −
(

1

1 + p2r2
(dr)2 +

1

4

(
̟(r)2 + (̟(r))−2 − 2

)
(dϕ)2

)
, (19)

dµ(χ,ϕ) → 1

2

̟(r) − (̟(r))−1

√
1 + p2r2

drdϕ, (20)

where ̟(r) = 1/p

√
pr +

√
1 + p2r2. This also shows that this class of dilations is not

conformal.
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Figure 5: Action of a dilation a on the hyperboloid H2
+ by conic projection with parameter

p = 1 .

The action of dilation by conic projection is given by

sinh pχa = a sinh pχ (21)

The particular case p = 1 is depicted in Figure 5. The dilated point xa ∈ H2
+ is

xa = (coshχa, sinhχa cosϕ, sinhχa sinϕ), (22)

with polar coordinates θa = (χa, ϕ). The behaviour of dist(xN, xa), with xN being the
North Pole, is shown in Figure 6 in the case p = 0.1, p = 0.5 and p = 1. We can see that
this is an increasing function with respect to the dilation a.

It is also interesting to compute the action of dilations in the bounded version of H2
+.

The latter is obtained by applying the stereographic projection from the South Pole of H2

and it maps the upper sheet H2
+ onto the open unit disc in the equatorial plane:

x = x(χ,ϕ) → Φ(x) = tanh
χ

2
eiϕ. (23)

In the case p = 1
2 by using (17) and basic trigonometric relations, we obtain

tanh
χa

2
=

√
a2 tanh2 χ

2

1 + (a2 − 1) tanh2 χ
2

≡ ζ. (24)

In this case, the dilation leaves invariant both ζ = 0 and ζ = 1, the center and the border
of the disc, respectively. Figure 7 depicts the action of this transformation on a point
x ∈ H2

+. A dilation from the North Pole (DN ) is considered as a dilation in the unit disc in
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Figure 7: Action of a dilation a on the hyperboloid H2
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2).
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Figure 8: Visualization of the dilation on the hyperboloid H2
+ (case p = 1

2).

equatorial plane and lifted back to H2
+ by inverse stereographic projection from the South

Pole. A dilation from any other point x ∈ H2
+ is obtained by moving x to the North Pole

by a rotation g ∈ SO0(1, 2), performing dilation DN and going back by inverse rotation:

Dx = g−1DNg.

The visualization of the dilation on the hyperboloid H2
+, with p = 0.5, is provided in

Figure 8. There, each circle represents points on the hyperboloid at constant χ and is
dilated by the scale factor a = 0.75.

5 Harmonic analysis on the 2-hyperboloid

5.1 Fourier-Helgason Transform

This integral transform is the precise analog of the Fourier-Plancherel transform on Rn. It
consists of an isometry between two Hilbert spaces

FH : L2(H2
+,dµ) −→ L2(L,dη), (25)

where the measure dµ is the SO0(1, 2)-invariant measure on H2
+ and L2(L,dη) denotes

the Hilbert space of sections of a line-bundle L over another suitably defined manifold,
the so-called Helgason-dual of H2

+ and denoted by Ξ. We note here that Rn is its own
Helgason-dual.

Let us see what is the concrete realization of the dual space Ξ. Most of the following
discussion can be found in [Ali and Bertola, 2002], and we summarize it here for conve-
nience. In fact Ξ can be realized as the projective half null-cone, as defined in (11) and
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asymptotic to H2
+, times the positive real line. The space Ξ is given by

Ξ = R+ × PC+ ≡ {k = (ν, ~ξ)}, (26)

where PC+ denotes the projective forward cone {ξ ∈ C2
+ | λξ ≡ ξ, λ > 0, ξ0 > 0} (the

set of “rays” on the cone). A convenient realization of PC+ makes it diffeomorphic to the
1-sphere S1 as follows

PC+ ≃ {~ξ ∈ R
2 : ‖~ξ‖ = 1} ∼ S1 (27)

ξ ≡ (ξ0, ~ξ) = (ξ0, ξ1, ξ2) 7→
1

ξ0
~ξ. (28)

The Fourier - Helgason transform is defined in a way similar to the ordinary Fourier
transform by using the eigenfunctions of the invariant differential operator of second order,
i.e. the Laplacian on H2

+. In our case, the functions of the (unique) invariant differential
operator are named hyperbolic plane waves [Bros et al., 1994]

Eν,ξ(x) = (ξ · x)− 1

2
−iν , ν ∈ R+, ξ ∈ C2

+. (29)

These waves are not parametrized by points of R+×PC+ but rather by points of R+×C2
+;

however the action of R+ on C2
+ just rescales them by a factor which is constant in x ∈ H2

+.
In other words, they are sections of an appropriate line-bundle over Ξ, which we denote by
L, and C2

+ is thought of as total space of R+ over PC+. As well, we note that the inner
product ξ · x is positive on the product space C2

+ ×H2
+, so that the complex exponential

is uniquely defined.
Let us express the plane waves in polar coordinates for a point x ≡ (x0, ~x) ∈ H2

+

Eν,ξ(x) = (ξ · x)− 1

2
−iν (30)

≡
(

coshχ−
~ξ · ~x
ξ0

)
−

1

2
−iν

(31)

= (coshχ− (n̂ · x̂) sinhχ)−
1

2
−iν , (32)

where n̂ ∈ S1 is a unit vector in the direction of ~ξ and x̂ ∈ S1 is the unit vector in the
direction of ~x. Applying any rotation ̺ ∈ SO(2) ⊂ SO0(1, 2) on this wave, it immediately
follows

R(̺) : Eν,ξ(x) → Eν,ξ(̺−1 · x) = Eν,̺·ξ(x). (33)

Finally, the Fourier - Helgason transform FH and its inverse FH−1 are defined as

f̂(ν, ξ) ≡ FH[f ](ν, ξ) =

∫

H2
+

f(x)(x · ξ)− 1

2
+iνdµ(x), ∀f ∈ C∞

0 (H2
+), (34)

FH−1[g](x) =

∫

jΞ
g(ν, ξ)(x · ξ)− 1

2
−iνdη(ν, ξ), ∀g ∈ C∞

0 (L), (35)
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where C∞

0 (L) denotes the space of compactly supported smooth sections of the line-bundle
L. The integration in (35) is performed along any smooth embedding jΞ into the total
space of the line-bundle L and the measure dη is given by

dη(ν, ξ) =
dν

|c(ν)|2 dσ0, (36)

with c(ν) being the Harish-Chandra c-function [Helgason, 1994]

c(ν) =
2iνΓ(iν)√
πΓ(1

2 + iν)
. (37)

The factor |c(ν)|−2 can be simplified to

|c(ν)|−2 = ν sinh (πν)|Γ(
1

2
+ iν)|2. (38)

The 1-form dσ0 in the measure (36) is defined on the null cone C2
+, it is closed on it

and hence the integration is independent of the particular embedding of Ξ. Thus, such an
embedding can be the following

j : Ξ −→ R+ × C2
+, (39)

(ν, ξ) 7→ (ν, (1,
ξ1

ξ0
,
ξ2

ξ0
)) = (ν, (1, ξ̂)). (40)

Note that the transform FH maps functions on H2
+ to sections of L and the inverse

transform maps sections to functions. Thus, we have

Proposition 1 [Helgason, 1994] The Fourier-Helgason transform defined in equations
(34, 35) extends to an isometry of L2(H2

+,dµ) onto L2(L,dη) so that we have

∫

H2
+

|f(x)|2dµ(x) =

∫

jΞ
|f̂(ξ, ν)|2dη(ξ, ν). (41)

6 Continuous Wavelet Transform on the Hyperboloid

One way of constructing the CWT on the hyperboloidH2
+ would be to find a suitable group

containing both SO0(1, 2) and the group of dilations, and then find its square-integrable
representations in the Hilbert space ψ ∈ L2(H2

+,dµ), where dµ is the normalized SO0(1, 2)-
invariant measure on H2

+. We will take another approach by directly studying the following
wavelet transform ∫

ψa,g(x)f(x)dµ(x) = 〈ψa,g, f〉,

13



where the notation ψa,g has been introduced in (4) and will be now made more precise in
terms of group representation. Looking at pseudo-rotations (motions) only, we have the
unitary action :

[Ugψ](x) = f(g−1x), g ∈ SO0(1, 2), ψ ∈ L2(H2
+,dµ). (42)

Clearly, Ug is a quasi-regular representation of SO0(1, 2) on L2(H2
+).

We now have to incorporate the dilation. However, the measure dµ is not dilation
invariant, so that a Radon-Nikodym derivative λ(a, x) must be inserted, namely:

λ(a, x) =
dµ(a−1x)

dµ(x)
, a ∈ R

+
∗
. (43)

The function λ is a 1-cocycle and satisfies the equation

λ(a1a2, x) = λ(a1, x)λ(a2, a
−1
1 x). (44)

In the case of dilating the hyperboloid through conic dilation with parameter p > 0,
we have

λ(a, χ) =
d coshχ1/a

d coshχ
=

1

a

sinhχ1/a

sinhχ

cosh pχ

cosh pχ1/a
, (45)

with sinh pχ1/a = 1
a sinh pχ. Note here that the case p =

1

2
is unique in the sense that

λ(a, χ) does not depend on χ : λ(a, χ) = a−2. In the case p = 1, we get the more elaborate
expression

λ(a, χ) =
d coshχ1/a

d coshχ
=

coshχ

a2
√

1 + a−2 sinh2 χ
. (46)

Thus, the action of the dilation operator on the function is

Daψ(x) ≡ ψa(x) = λ
1

2 (a, χ)ψ(d−1
a x) = λ

1

2 (a, χ)ψ(x 1

a
) (47)

with xa ≡ (χa, ϕ) ∈ H2
+ and it reads

ψa(x) =

√
1

a

sinhχ1/a

sinhχ

cosh pχ

cosh pχ1/a
ψ(x 1

a
).

One easily checks using (45) that Da is unitary in L2(H2
+).

Finally, the hyperbolic wavelet function can be written as

ψa,g(x) = UgDaψ(x) = Ugψa(x).
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Accordingly, the hyperbolic continuous wavelet transform of a signal (function) f ∈
L2(H2

+) is defined as:

Wf (a, g) = 〈ψa,g|f〉 (48)

=

∫

H2
+

[UgDaψ](x)f(x)dµ(x) (49)

=

∫

H2
+

ψa(g−1x)f(x)dµ(x) (50)

where x ≡ (χ,ϕ) ∈ H2
+ and g ∈ SO0(1, 2).

In the next section, we show how this expression can be conveniently interpreted and
studied as a hyperbolic convolution.

6.1 Convolutions on H
2

Since H2
+ is a homogeneous space of SO0(1, 2), one can easily define a convolution. Indeed,

let f ∈ L2(H2
+) and s ∈ L1(H2

+), their hyperbolic convolution is the function of g ∈
SO0(1, 2) defined as

(f ∗ s)(g) =

∫

H2
+

f(g−1x)s(x)dµ(x). (51)

Then f ∗ s ∈ L2(SO0(1, 2),dg) , where dg stands for the Haar measure on the group
and

‖f ∗ s‖2 ≤ ‖f‖2‖s‖1, (52)

by the Young convolution inequality.
In this paper however, we will deal with a simpler definition where the convolution is a

function defined on H2
+. Let [·] : H2

+ −→ SO0(1, 2) be a section in the fiber bundle defined
by the group and its homogeneous space. In the following we will make use of the Euler
section, whose construction is now presented. Recall from Section 3 that any g ∈ SO0(1, 2)
can be uniquely decomposed as a product of three elements g = k(ϕ)h(χ)k(ψ). Using this
parametrization, we thus define :

[·] : H2
+ −→ SO0(1, 2)

[·] : x(χ,ϕ) 7→ g = k(ϕ)h(χ) = [x] .

The hyperbolic convolution, restricted to H2
+, thus takes the following form:

(f ∗ s)(y) =

∫

H2
+

f([y]−1x)s(x)dµ(x), y ∈ H2
+ .

We will mostly deal with convolution kernels that are axisymmetric (or rotation in-
variant) functions on H2

+ (i.e. functions of the variable χ alone). The Fourier-Helgason
transform of such an element has a simpler form as shown by the following proposition.
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Proposition 2 If f is a rotation invariant function, i.e. f(̺−1x) = f(x), ∀ρ ∈ SO(2), its
Fourier-Helgason transform f̂(ξ, ν) is a function of ν alone, i.e. f̂(ν).

Proof : Applying the Fourier-Helgason transform on a rotation-invariant function we
write:

f̂(ξ, ν) =

∫

H2
+

f(x) Eξ,ν(x)dµ(x) (53)

=

∫

H2
+

f(̺−1x)(ξ · x)− 1

2
−iνdµ(x), ξ ∈ PC+, ρ ∈ SO(2) (54)

=

∫

H2
+

f(x′)(ξ · ̺x′)− 1

2
−iνdµ(x′) (55)

= f̂(̺−1ξ, ν), (56)

and so f̂(ξ, ν) does not depend on ξ. �

We now have all the basic ingredients for formulating a useful convolution theorem in
the Fourier-Helgason domain. As we will now see the FH transform of a convolution takes
a simple form, provided one of the kernels is rotation invariant.

Theorem 1 (Convolution) Let f and s be two measurable functions, with f, s ∈ L2(H2
+)

and let s be rotation invariant. The convolution (s ∗ f)(y) is in L1(H2
+) and its Fourier-

Helgason transform satisfies

(̂s ∗ f)(ν, ξ) = f̂(ν, ξ) ŝ(ν). (57)

Proof : The convolution of s and f is given by:

(s ∗ f)(y) =

∫

H2
+

s([y]−1x)f(x)dµ(x).

Since s is SO(2)-invariant, we write its argument in this equation in the following way :



coshχ − sinhχ 0
− sinhχ coshχ 0

0 0 1







x0

x1

0


 =




x0 coshχ− x1 sinhχ
−x0 sinhχ+ x1 coshχ

0


 , (58)

where x = (x0, x1, x2) and we have used polar coordinates for y = y(χ,ϕ). On the other
hand we can alternatively write this equation in the form :




x0 coshχ− x1 sinhχ
−x0 sinhχ+ x1 coshχ

0


 =




x0 −x1 0
−x1 x0 0
0 0 1







coshχ
sinhχ

0


 . (59)
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Thus we have
s([y]−1x) = s([x]−1y). (60)

Therefore, the convolution with a rotation invariant function is given by

(s ∗ f)(y) =

∫

H2
+

f(x)s([y]−1x) dµ(x) (61)

=

∫

H2
+

f(x)s([x]−1y) dµ(x). (62)

On the other hand, applying the Fourier-Helgason transform on s ∗ f we get

(̂s ∗ f)(ν, ξ) =

∫

H2
+

(s ∗ f)(y)(y · ξ)− 1

2
−iνdµ(y)

=

∫

H2
+

dµ(y)

∫

H2
+

dµ(x)s([y]−1x)f(x)(y · ξ)− 1

2
−iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s([y]−1x)(y · ξ)− 1

2
−iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s([x]−1y)(y · ξ)− 1

2
−iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s(y)([x]y · ξ)− 1

2
−iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s(y)(y · [x]−1ξ)−
1

2
−iν .

Since ξ belongs to the projective null cone, we can write

(y · [x]−1ξ) = ([x]−1ξ)0

(
y · [x]−1ξ

([x]−1ξ)0

)
, (63)

and using ([x]−1ξ)0 = (x · ξ), we finally obtain

(̂s ∗ f)(ν, ξ) =

∫

H2
+

dµ(x)f(x)(x · ξ)− 1

2
+iν

∫

H2
+

dµ(y)s(y)

(
y · [x]−1ξ

([x]−1ξ)0

)
−

1

2
−iν

= f̂(ν, ξ)ŝ(ν)

where we used the rotation invariance of s. �

Based on Theorem 1, we can write the hyperbolic continuous wavelet transform of a
function f with respect to an axisymmetric wavelet ψ as

Wf (a, g) ≡Wf (a, [x]) =
(
ψ̄a ∗ f

)
(x). (64)
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6.2 Wavelets on the hyperboloid

We now come to the heart of this paper : we prove that the hyperbolic wavelet transform
is a well-defined invertible map, provided the wavelet satisfies an admissibility condition.

Theorem 2 (Admissibility condition) Let ψ ∈ L1(H2
+) be an axisymmetric function, a 7→

α(a) a positive function on R+
∗

and m, M two constants such that

0 < m ≤ Aψ(ν) =

∫
∞

0
|ψ̂a(ν)|2 α(a)da ≤M < +∞. (65)

Then the linear operator Aψ defined by :

Aψf(x′) =

∫

R∗

+

∫

H2
+

Wf (a, x)ψa,x(x
′)dxα(a)da, (66)

where ψa,x ≡ ψa,[x], is bounded and with bounded inverse. More precisely Aψ is univocally
characterized by the following Fourier-Helgason multiplier :

Âψ f̂(ν, ϕ) ≡ Âψf(ν, ϕ) = f̂(ν, ϕ)

∫
∞

0
|ψ̂a(ν)|2 α(a)da = Aψ(ν)f̂(ν, ϕ).

Proof : Let the wavelet transform Wf be defined as in equation (64) and consider the
following quantity :

∆a(x
′) =

∫

H2
+

Wf (a, x)ψa,x(x
′)dx. (67)

A close inspection reveals that ∆a(x
′) is itself a convolution. Taking the Fourier-Helgason

transform on both sides of (67) and applying Theorem 1 twice, we thus obtain:

∆̂a(ν, ϕ) = |ψ̂a(ν)|2f̂(ν, ϕ) .

Finally, integrating over all scales we obtain :
∫

R
∗

+

α(a)da ∆̂a(ν, ϕ) = f̂(ν, ϕ)

∫

R
∗

+

α(a)da |ψ̂a(ν)|2 (68)

which is the expected result. �

There are three important remarks concerning this result. First, Theorem 2 shows that
the wavelet family {ψa,x, a ∈ R+

∗
, x ∈ H2

+} forms a continuous frame [Ali et al., 2000]
provided the admissibility condition (65) is satisfied. In this case, the wavelet transform

Wf of any f can be inverted in the following way. Let ψ̃a,x be a reconstruction wavelet
defined by :

̂̃
ψa,x(ν) = A−1

ψ (ν)ψ̂a,x(ν).
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As a direct consequence of Theorem 2, the inversion formula, to be understood in the
strong sense in L2(H2

+), reads :

f(x′) =

∫

R
∗

+

∫

H2
+

Wf (a, x)ψ̃a,x(x
′)dxα(a)da . (69)

As a second remark, the reader can check that Theorem 2 does not depend on choice of
dilation! This is not exactly true, actually. The architecture of the proof does not depend
on the explicit form of the dilation operator, but the admissibility condition explicitly
depends on it. As we shall see later, it will be of crucial importance when trying to
construct admissible wavelets. Finally the third remark concerns the somewhat arbitrary
choice of measure α(a) in the formulas. The reader may easily check that the usual 1-D
wavelet theory can be formulated along the same lines, keeping an arbitrary scale measure.
In that case though, the choice α = a−2 leads to a tight continuous frame, i.e. the frame
operator Aψ is a constant. The situation here is more complicated in the sense that no
choice of measure would yield to a tight frame, a particularity shared by the continuous
wavelet transform on the sphere [Antoine and Vandergheynst, 1999]. Some choices of
measure though lead to simplified admissibility conditions as we will now discuss.

Theorem 3 Let a 7→ α(a) be a positive continuous function on R+
∗

which for large a

behaves like a−β, β > 0. If Da is the conic dilation with parameter p defined by equations
(18), (45) and (47), then an axisymmetric, compactly supported, continuous function ψ ∈
L2(H2

+,dµ(χ,ϕ)) is admissible for all p > 0 and β >
2

p
+ 1. Moreover, if α(a)da is a

homogeneous measure of the form a−βda, then the following zero-mean condition has to be
satisfied : ∫

H2
+

ψ(χ,ϕ)

[
sinh 2pχ

sinhχ

] 1

2

dµ(χ,ϕ) = 0. (70)

Proof : Let us assume ψ(x) belongs to C0(H
2
+), i.e. it is continuous and compactly

supported
ψ(x) = 0 if χ > χ̃, χ̃ < const.

We wish to prove that
∫

∞

0
|〈Eξ,ν |Daψ〉|2 α(a)da <∞. (71)

First, we compute the Fourier-Helgason coefficients of the dilated function ψ:

〈Eξ,ν |Daψ〉 =

∫

H2
+

Daψ(χ,ϕ) Eξ,ν(χ,ϕ) dµ(χ,ϕ)

=

∫ 2π

0

∫ χ̃1/a

0
λ

1

2 (a, χ)ψ(χ 1

a
, ϕ)Eξ,ν(χ,ϕ) sinhχdχdϕ.
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By performing the change of variable χ′ = χ 1

a
, we get χ = χ′

a and d coshχ = d coshχ′

a =

λ(a−1, χ′)d coshχ′. The Fourier-Helgason coefficients become

〈Eξ,ν|Daψ〉 =

∫ 2π

0

∫ χ̃

0
λ

1

2 (a, χ′

a)ψ(χ′, ϕ)Eξ,ν(χ′

a, ϕ)λ(a−1, χ′) sinhχ′dχ′dϕ. (72)

From the cocycle property

λ
1

2 (a−1, χ′) =
1

λ
1

2 (a, χ′

a)
=

[
a

sinhχa
sinhχ

cosh pχ

cosh pχa

] 1

2

, (73)

we get

〈Eξ,ν |Daψ〉 =

∫ 2π

0

∫ χ̃

0
λ

1

2 (a−1, χ′)ψ(χ′, ϕ) Eξ,ν(χ′

a, ϕ) sinhχ′ dχ′dϕ. (74)

Then, we split (71) in three parts:

∫
∞

0
(.)α(a)da =

∫ σ

0
(.)α(a)da

︸ ︷︷ ︸
I1

+

∫ 1

σ

σ
(.)α(a)da

︸ ︷︷ ︸
I2

+

∫
∞

1

σ

(.)α(a)da

︸ ︷︷ ︸
I3

. (75)

Let us focus on the first integral. Developing the Fourier-Helgason kernel Eξ,ν in (74),
we obtain :

I1 =

∫ σ

0
α(a) da×

×
∣∣
∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ)λ

1

2 (a−1, χ′)ψ(χ′) (cosh χ′

a − sinhχ′

a cosϕ)−
1

2
+iν

∣∣2.

Using the explicit form of χ′

a, we have for various involved quantities the following
asymptotic behaviors at small scale a ≈ 0 :

cosh pχa ∼ 1 + o(a),

coshχa ∼ 1 + o(a),

sinhχa ∼
a

p
sinh pχ+ o(a),

(coshχ′

a − sinhχ′

a cosϕ)−
1

2
+iν ∼ 1 − (−1

2
+ iν)

a

p
cosϕ.

So we have the approximation
∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ)λ

1

2 (a−1, χ′)ψ(χ′) (coshχ′

a − sinhχ′

a cosϕ)−
1

2
+iν

∼ a√
2p

∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ)

[
sinh 2pχ

sinhχ

] 1

2
(

1 − (−1

2
+ iν)

a

p
cosϕ

)
.
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Integrating over ϕ and using the rotation invariance of ψ, we obtain the following
approximation for I1 :

I1 ∼
∫ σ

0
α(a)a2da

∣∣∣
∫ χ̃

0
sinhχ′dχ′

[
sinh 2pχ′

sinhχ′

] 1

2

ψ(χ′)
∣∣∣
2
. (76)

The second subintegral (I2) is straightforward, since the operator Da is strongly con-
tinuous and thus the integrand is bounded on [σ, 1

σ ].
Consider now the inequality :

I3 ≤
∫ +∞

1

σ

α(a)da×

×
(∫ χ̃

0

∫ 2π

0
dµ(χ′, ϕ)λ

1

2 (a−1, χ′) |ψ(χ′)|| cosh χ′

a − sinhχ′

a cosϕ|−1/2

)2

.

The term | coshχ′

a − sinhχ′

a cosϕ|−1/2 is bounded from above and from below by :

e−
χ′

a
2 ≤ | coshχ′

a − sinhχ′

a cosϕ|−1/2 ≤ e
χ′

a
2 . (77)

Now, we have

e
χ′

a
2 =

(
epχ

′

a

) 1

2p
=

[√
1 + a2 sinh2 pχ′ + a sinh pχ′

] 1

2p

,

and so we get the asymptotic behavior of this upper bound at large scale:

e
χ′

a
2 ∼ a

1

2p (sinh pχ′)
1

2p .

Again using the explicit form of χ′

a and the following asymptotic behaviors at large scale
a→ ∞ :

cosh pχa ∼ a sinh pχ,

sinhχa ∼ a
1

p (sinh pχ)
1

p ,

we reach the following majoration of I3 :

I3 ≤
∫ +∞

1

σ

α(a)a
2

p da

(∫ χ̃

0
dχ′ (sinhχ′)

1

2 (sinh pχ′)
1

p
−

1

2 (cosh pχ′)
1

2 |ψ(χ′)|
)2

.

Since the hyperbolic functions involved in the integration on the χ′ variable are increasing,
we finally end with the estimate :

I3 ≤∼ (sinh χ̃)
1

2 (sinh pχ̃)(
1

p
−

1

2
) (cosh pχ̃)

1

2‖ψ‖2
1

∫ +∞

1

σ

α(a)a
2

p da.
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and so α(a) should behave at least like a−β with β > 2
p + 1 for a→ ∞.

The convergence of I1 and I3 clearly depends on the choice of measure in the integral
over scales. Restricting ourselves to homogeneous measures α(a) = a−β and to the range
p > 0, one can distinguish the following cases :

• β 6 2
p + 1: in this case I3 does not converge and there are no admissible wavelets.

• β > 2
p + 1: In this case I1 diverges except when

∫
H2

+

ψ
[

sinh 2pχ
sinhχ

] 1

2

= 0. �

6.3 An example of Hyperbolic Wavelet

Let us present here a class of admissible vectors which satisfy the admissibility condition.
We restrict ourself to the simplest case p = 1

2 . Let us first state a preliminary result.

Proposition 3 Let ψ ∈ L2(H2
+,dµ). Then

∫

H2
+

Daψ(χ,ϕ)dµ(χ,ϕ) = a

∫

H2
+

ψ(χ,ϕ)dµ(χ,ϕ). (78)

Proof: We have to compute the following integral

I =

∫

H2
+

Daψ(χ,ϕ)dµ(χ,ϕ) =

∫

H2
+

λ
1

2 (a, χ)ψ(χ 1

a
, ϕ)dµ(χ,ϕ).

By change of variable χ 1

a
= χ′, we get

I =

∫

H2
+

λ
1

2 (a, χ′

a)ψ(χ′, ϕ)λ(a−1, χ′)dµ(χ′, ϕ)

=

∫

H2
+

λ
1

2 (a−1, χ′)ψ(χ′, ϕ)dµ(χ′, ϕ),

and having λ
1

2 (a−1, χ′) = a, which follows directly from (45), we get

I = a

∫

H2
+

ψ(χ′, ϕ)dµ(χ′, ϕ),

which proves the proposition. �

Using this result, we can build the hyperbolic “difference” wavelet (difference-of-Gaussian,
or DOG wavelet). Given a square-integrable function ψ, we define

fϑψ(χ,ϕ) = ψ(χ,ϕ) − 1

ϑ
Dϑψ(χ,ϕ), ϑ > 1.
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More precisely, using the hyperbolic function ψ = e− sinh2 χ
2 , we dilate it using the conic

projection and obtain

Dϑψ =
1

ϑ
e
−

1

ϑ2
sinh2 χ

2 , (79)

we get:

fϑψ(χ,ϕ) = e− sinh2 χ
2 − 1

ϑ2
e
−

1

ϑ2 sinh2 χ
2 . (80)

Now, applying a dilation operator on (80) we get

Daf
ϑ =

1

a
e
−

1

a2
sinh2 χ

2 − 1

aϑ2
e
−

1

a2ϑ2
sinh2 χ

2 . (81)

One particular example of hyperbolic DOG wavelet at ϑ = 2 is:

f2
ψ(χ,ϕ) =

1

a
e
−

1

a2 sinh2 χ
2 − 1

4a
e
−

1

4a2 sinh2 χ
2 .

The resulting hyperbolic DOG wavelet at different values of the scale a and the position
(χ,ϕ) on the hyperboloid is shown on Figures 9 , while Figures 10 and 11 show the same
wavelet but viewed on the unit disk.

Of course, similar admissible DOG wavelets can be constructed for generic p > 0.

6.4 An example of Continuous Wavelet Transform on the Hyperboloid

For concluding this section we provide an example of the continuous wavelet transform
applied on a synthetic signal-a hyperbolic triangle. The signal is projected on the unit disc
and the visualization of its CWT at different scale a is depicted in Figure 12.

7 Euclidean limit

Since the hyperboloid is locally flat, the associated wavelet transform should match the
usual 2-D CWT in the plane at small scales, i. e, for large curvature radiuses. In this
section we recall some basic facts emphasizing those notions.

Let Hρ ≡ L2(H2
+ρ,dµρ) be the Hilbert space of square integrable functions on a hyper-

boloid of radius ρ, ∫

H2
ρ

|f(χ,ϕ)|2ρ2 sinhχdχdϕ <∞, (82)

and H = L2(R2,d2~x) be the Hilbert space of square integrable functions on the plane.
One can easily adapt the Fourier-Helgason transform by updating Eν,ξ(x) for any

ρ [Alonso et al., 2002]:

Eρν,ξ(x) =

(
x0 − n̂~x

ρ

)
−

1

2
−iνρ

, (83)
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Figure 9: The hyperbolic DOG wavelet fϑψ , for ϑ = 2 at different scales a and positions
(χ,ϕ).
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Figure 10: The hyperbolic DOG wavelet fϑψ , for ϑ = 2 at different scales a and positions
(χ,ϕ), viewed on the unit disk in 3-D perspective.
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Figure 11: The hyperbolic DOG wavelet fϑψ in the disk, for ϑ = 2 at different scales a and
positions (χ,ϕ).
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Figure 12: Continuous wavelet transform with p = 1
2 of an hyperbolic triangle at different

scales a
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for x ∈ H2
+ρ, (x2 = ρ2). The Inönü-Wigner contraction limit of the Lorentz to the

Euclidean group SO(2, 1)+ → ISO(2)+ is the limit at ρ→ ∞ for (83) with x0 ≈ ρ, ~x2 ≪
ρ2, i.e

lim
ρ→∞

Eρν,ξ(x) = lim
ρ→∞

(
x0 − n̂~x

ρ

)
−

1

2
−iνρ

(84)

≈ lim
ρ→∞

(
1 − n̂~x

ρ

)
−iνρ

= exp (iνn̂~x). (85)

The Fourier-Helgason transform on the hyperboloid of radius ρ reads :

ψ̂ρ(ν, ξ) =
ρ

2π

∫

~x
ψ(~x)Eν,ξ(~x)

d2~x

x0
(86)

and since x0 ≈ ρ for ρ→ ∞, we obtain

lim
ρ→∞

ψ̂ρ(ν, ξ) =
1

2π

∫

~x
ψ(~x) exp (iνn̂~x)d2~x (87)

= ψ̂(~k), (88)

which is the Fourier transform in the plane.
This relation shows that the geometric and algebraic breakdown SO(2, 1)+ → ISO(2)+

is mirrored at the functional level. Indeed, condition (65) with α(a) = a−3 asymptotically
converges to its euclidean counterpart. Along the same line, the necessary condition of the
hyperbolic wavelet contracts to the 2-D euclidean one:

lim
ρ→∞

∫

H2

ψρ(χ,ϕ)dµ(χ,ϕ) →
∫

R2

ψ(~x)d2~x. (89)

A much finer analysis would be necessary to understand if this association holds at
the level of the necessary and sufficient condition (65), but this is out of the scope of this
paper.

8 Conclusions

In this paper we have presented a constructive theory for the continuous wavelet transform
on the hyperboloid H2

+ ∈ R3
+. First we have defined the affine transformations on the

hyperboloid and proposed different schemes for dilating H2
+. After selecting the dilation

of H2
+ through conic projection, we have introduced the notion of convolution on this

manifold. Using the hyperbolic convolution we have constructed the continuous wavelet
transform and derived the corresponding admissibility condition. An example of hyperbolic
DOG wavelet has been given. Finally, we have used the Inönü-Wigner contraction limit
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of the Lorentz to the Euclidean group SO0(2, 1)+ → ISO(2)+ to check the consistency of
the CWT on the hyperboloid with that one on the plane.

Interesting directions for future work include the design of a fast convolution algorithm
for an efficient implementation of the transform and discretization of the theory so as to
obtain frames of hyperbolic wavelets.
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