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Abstract

Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is

known to reduce selenite to intracellular granules of elemental selenium (Se0). We have

studied the kinetics of selenite (SeIV) and selenate (SeVI) accumulation and used X-ray

absorption spectroscopy to identify the accumulated form of selenate, as well as possible

chemical intermediates during the transformation of these two oxyanions. When introduced

during the lag phase, the presence of selenite increased the duration of this phase, as

previously observed. Selenite introduction was followed by a period of slow uptake, during

which the bacteria contained Se0 and alkyl selenide in equivalent proportions. This suggests

that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl

selenide, and a slow detoxification pathway leading to Se0. Subsequently, selenite uptake

strongly increased (up to 340 mg Se per g of proteins), and Se0 was the predominant

transformation product, suggesting an activation of selenite transport and reduction systems

after several hours of contact. Exposure to selenate did not induce an increase in the lag phase

duration and the bacteria accumulated approximately 25 fold less Se than when exposed to

selenite. SeIV was detected as transient species in the first 12 hours after selenate introduction,

Se0 also occurred as minor species, and the major accumulated form was alkyl selenide. Thus,

in the present experimental conditions selenate mostly follows an assimilatory pathway, and

the reduction pathway is not activated upon selenate exposure. These results show that R.

metallidurans CH34 may be suitable for the remediation of selenite - but not selenate -

contaminated environments.
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Introduction

Microorganisms play a major role in the biogeochemical cycle of selenium in the

environment (12). Certain strains that are resistant to selenium oxyanions, and reduce selenite

(SeIV) and/or selenate (SeVI) to the less available elemental selenium (Se0) (7), could be

potentially used for the bioremediation of contaminated soils, sediments, industrial effluents

and agricultural drainage waters.

Ralstonia metallidurans CH34 is a soil bacterium characteristic of metal-contaminated

biotopes. It is resistant to a variety of heavy metals and metalloids including CrVI, CoII, NiII,

CuII, ZnII, AsV, CdII, HgII, and PbII. The genes for metal resistance are located in two large

plasmids (pMOL28 and pMOL30). Their function and regulation are well understood for

some of these elements (18). This bacterial strain is also resistant to selenite and

detoxification is realized by the incorporation of this oxyanion and its subsequent reduction to

red Se0, as shown by X-ray absorption spectroscopy (XAS) (24). This study also revealed that

the Se0 granules were mainly localized in the cytoplasm. In contrast to previously cited metals

and metalloids, the genes involved in selenite resistance have not been yet identified, and the

exact mechanism of selenite bioreduction is still unknown. R. metallidurans CH34 can also

resist up to 16 mM selenate (2). The capacity of R. metallidurans CH34 to accumulate

selenate, and the fate of this oxyanion following incorporation have never been investigated.

We have now studied the kinetics of selenite and selenate accumulation, and used X-ray

absorption near-edge structure (XANES) spectroscopy to determine Se speciation in order to

identify the chemical intermediates putatively appearing during reduction. For such a purpose,

XANES is the method of choice since it is non-destructive and enables direct determination of

the target element speciation, i.e., its oxidation state and sometimes its exact chemical form.

The results obtained on speciation were combined with the total metal content of each sample

in order to deduce the concentration of each metal species. Such quantitative information is

particularly useful to estimate the relative importance of several chemical pathways in a

particular system.

Materials and Methods

Bacterial strain and growth media. R. metallidurans CH34 provided by Prof. Max Mergeay

(SCK/CEN, Mol, Belgium) was grown aerobically at 29°C in Tris salt mineral medium

(TSM) with 2% gluconate as a carbon source (18, 19) .

One-contaminant (SeIV or SeVI) exposure. A preculture was obtained by growing the cells

until mid-exponential phase (absorbance at 600 nm, A600 = 1.5). Cells were then appropriately
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diluted to inoculate 300 ml TSM at an initial A600 of 0.3. The cultures were monitored by

recording the A600 as a function of time. A first series of experiment was run by adding

selenite or selenate at a final concentration of 2 mM at zero time (A600 = 0.3). In a second set

of experiments, the selenium oxyanion was added during the first half of the exponential

phase (A600 = 1). Finally, a third series was run by adding the selenium oxyanion at the

beginning of the stationary phase (A600 = 3). Sodium selenite and sodium selenate were

prepared as 1 M stock solution in ultra-pure water and sterilized by filtration. Control cultures

were grown under identical conditions in the absence of the selenium oxyanions. 5 to 15 mL

depending on the turbidity of the cell suspension were sampled at various time intervals

during 6 days, centrifuged and the pellets were freeze-dried and stored for further use. Cell

yield was determined by recording the A600 and assaying the protein content (BCA method

with bovine serum albumin as standard).

Two-contaminant (SeIV and SeVI) exposure. Cultures of R. metallidurans CH34 were

inoculated to an absorbance at 600 nm of 3 (stationary phase) and exposed to two different

mixtures of selenite and selenate (2 mM selenite and 2 mM selenate, or 1 mM selenite and 10

mM selenate). Three cases were tested: i) selenite and selenate were both added immediately

after inoculation, ii) selenite was added immediately after inoculation and selenate 3h later,

iii) selenate was introduced immediately after inoculation and selenite 3h later. A control

culture, under identical conditions, was grown in the presence of selenite alone added

immediately after inoculation. The appearance of the red color, sign of the reduction of

selenite to Se0, was checked after 24h of exposure.

ICP-MS analyses. Bacteria and culture medium were separated by centrifugation at 6000 g

for 10 min. Cell pellets were washed twice with ultra-pure water at 4°C and re-suspended in a

minimum volume of ultra-pure water. A fraction of the pellet was digested in a mixture of

NaOH 1 M / SDS 20%. In order to fully solubilise elemental selenium, H2O2 was added to the

digested sample until the characteristic red color disappeared. These samples were used to

determine total Se accumulation.

Selenium concentrations were measured by inductively coupled plasma - mass

spectrometry (ICP-MS) using an X7 Series quadrupole instrument (Thermo Electron

Corporation, Cergy-Pontoise, France). Calibration curves were obtained by analysis of a

range of SPEX certiPrep selenium standards (Metuchen, NJ, USA). Selenium concentrations

were determined with the isotopes 79 and 82 and yttrium was used as an internal standard (1

µg l-1). For digested bacteria analyses, samples were acidified with ultra-pure 65% nitric acid
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(Normatom quality grade, Prolabo, Fontenay sous Bois, France) and diluted in ultra-pure

water.

X-ray absorption spectroscopy. Selenium K-edge X-ray absorption experiment were

performed on beamline FAME (BM30B) of the European Synchrotron Radiation Facility.

The Se model compounds (all in solid state unless noted) used for this study were the

following: hexagonal (gray) elemental selenium, sodium selenate (solid and in solution),

sodium selenite (solid and in solution), selenium sulfide, selenium dioxide, dimethyl selenide

in solution, selenomethionine, S-methyl seleno L-cysteine, seleno-DL-cystine, seleno-

cystamine, selenodiglutathione in solution, selenourea, and selenoguanosine.

Selenodiglutathione was prepared by mixing sodium selenite and GSH with a molar ratio 1:4

in a dilute HCl solution (pH 1.3) (10). A bacterial pellet of R. metallidurans CH34 exposed to

selenite during 10 days, and which was shown to contain monoclinic (red) Se0 (24), was used

as a reference for this compound. The other compounds were purchased from Sigma-Aldrich.

Freeze-dried bacteria were ground in an agate mortar and diluted with glucose when

necessary. The mixture was pressed into 5-mm-diameter pellets prior to XANES

measurements.

The spectra were recorded at room temperature in fluorescence mode using a 30-

element solid-state Ge detector (Canberra) for the most diluted bacterial samples and in

transmission mode, using a diode, for the more concentrated samples. The monochromator

was a Si(220) double crystal. Two to four scans of 10 min were summed, depending on Se

concentration. The position of the beam on the pellet was changed between each scan in order

to limit radiation damage. Hexagonal Se(0) was recorded simultaneously, and the spectra

were energy calibrated by setting the energy of the maximum of the white line for this

reference spectrum at 12.6592 keV. XANES spectra were normalized using polynomial

functions of degree 1 and 3 for the pre-and post-edge parts, respectively. Each set of spectra

for a given kinetics experiment was treated by principal component analysis (PCA) (17, 30).

This approach allows the determination of the number of Se species present in a set of

samples, and to identify these species, using a library of reference spectra. The number of

principal components was determined based on the eigenvalue of each component, and on the

quality of the reconstructed spectra using 1, 2, 3, or more components using the total

normalized sum-squares residual (Total NSS):

[ ] [ ] 100/ 22
. ⋅µµ−µ= � �� �

spectra i
exp.

spectra i
reconstexp.NSSTotal (1)
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where µ is the normalized absorbance. The principal components were identified by target

transformation using the NSS criterion.

[ ] [ ] 100/ 2
.

2
. ⋅µµ−µ= ��

i
exp

i
reconstexp.NSS (2)

The percentage of each species, in molar fraction of Se, was then determined by linear

combination fitting (LCF) of each spectrum using the spectra of the identified reference

materials. The precision is estimated at ± 5 % of total Se. The percentages were then

multiplied by total Se content, as determined by ICP-MS, in order to obtain the concentrations

of each species (mg of Se per g of proteins).

Results

The sensitivity of Se K-edge XANES spectroscopy for probing the oxidation state of Se

is well established (20, 21). Figure 1 displays some of the reference spectra used in this study.

The main peak of SeIV and SeVI is shifted by + 4.5 eV and + 7.5 eV, respectively, relative to

Se0. The energy shift is much smaller for organoselenium compounds (+ 0.4 to + 1.5 eV

relative to Se0, depending on the type of compound). The position of the main peak is

identical for compounds with similar Se environments, for instance S-methyl selenocysteine

and selenomethionine for alkyl selenide (RSeR), seleno-DL cystine and selenocystamine for

alkyl diselenide (RSeSeR), and selenourea and selenoguanosine for Se-C double bond (not

shown). The energy shift between two types of Se local structures, for instance RSeSeR and

RSSeSR, can be as small as 0.5 eV. The sensitivity of XANES is probably not sufficient to

determine the distribution of several types of organic Se in a complex mixture, but it certainly

enables the identification of the major organoselenium species.

Selenite exposure

In a first experiment, a culture of R. metallidurans CH34 was exposed to 2 mM selenite

added at the beginning of growth (A600 = 0.3). As described previously (24), the presence of

selenite induced an increase in the lag phase duration (approximately 48h compared to 10h in

the absence of selenite). The accumulation of selenite was minimal during this phase (< 40

mg Se per g of proteins). However, at the end of the exponential phase, and during the

stationary phase, selenium was strongly accumulated: at t = 144h, Se accounted for one third

of the protein weight (Fig. 2).

Selected XANES spectra for the bacteria at various exposure times are shown in Figure

3. The position of the main peak for t = 0h at 12.6637 keV and the presence of a shoulder on
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the left-hand part of the peak suggest that the bacteria contain selenite and a minor proportion

of organoselenium. At higher exposure times (t = 1h to 48h), the spectra are identical, and the

maximum of the main peak is intermediate between RSeR and Se0 (12.6599 keV). The main

peak is then slightly shifted to the left at t = 96h (12.6596 keV), and matches the position of

Se0 at t = 120 and 144h (12.6592 keV). PCA showed that this set of spectra could be

described by three components (eigenvalues 80.0, 4.1 and 1.1). As expected, selenite and red

Se0 were positively identified as principal components (NSS values 4.7 10-3 and 2.9 10-4,

respectively). Several organoselenium species including RSeR, RSeSeR, and RSSeSR were

also correctly reconstructed (NSS values 1.2 10-4 to 4.3 10-4). Among these five compounds

retained, the most likely triplet of primary components should provide the best simulation of

the whole set of bacterial spectra by linear combinations of these three spectra. Thus, all

possible triplets were tested, and selenite, red Se0 and RSeR provided the best results. Fits

using RSeSeR, or RSSeSR instead of RSeR were poorer, as shown by an increase of the

residual by 27%, 34% and 47%, respectively. The fact that these species were correctly

reconstructed by PCA is due to their intermediate position betweeen Se0 and RSeR (Fig. 1).

The occurrence of selenocysteine (RSeH) was not tested since this compound re-oxidized to

selenocystine during the experiment. However, preliminary results obtained by high

performance liquid chromatography (HPLC) support the predominance of the RSeR form (L.

Avoscan, R. Collins, G. Sarret, M. Carrière, J. Covès and B. Gouget (2004) Abstr. 227th ACS

National Meeting, Anaheim, USA, 2004). In conclusion, alkyl selenide is believed to be the

dominant organic form of Se in the bacteria exposed to selenite.

Figure 2 shows the evolution in the concentration of Se species in the bacteria during

growth. Immediately after the introduction of selenite, Se was distributed as 60% SeIV and

40% RSeR in the bacteria. This latter species is likely to be a reaction product of selenite

rather than constitutive selenium contained in amino-acids and/or proteins since control

bacteria, not exposed to selenite, did not yield a detectable Se XANES signal. Subsequently,

until the end of the lag phase (t = 1h to 48h), a mixture of RSeR and Se0 in equivalent

proportions was observed. The concentration of RSeR was almost stable from 48 to 96h (18

and 15 mg Se g-1 of proteins, resp.), whereas the Se0 concentration strongly increased (20 and

140 mg Se g-1 of proteins, resp.). At 120 and 144h, Se0 was the only species detected. The

amount of organoselenium species identified at 96h might still be present in these two

samples, but masked by the dominant Se0 form (estimated error bar : ± 5 % of total Se, i.e., 13

mg g-1 at 120h and 17 mg g-1 at 144h).
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In parallel experiments, selenite was added at approximately mid-exponential phase

(A600 = 1) and at the beginning of the stationary phase (A600 = 3). Similar evolutions of Se

accumulation and speciation were observed: Se uptake was limited for several hours, and then

increased. RSeR and Se0 were observed during the slow uptake period, followed by Se0 only

(Fig. 3). However, the production of Se0 was faster at higher A600 values. For instance, after

48h exposure the bacteria contained 99.4 mg g-1 Se0 compared to 19.8 mg g-1 Se0 when

selenite was added at an A600 of 1 and 0.3, respectively.

Selenate exposure

In this experiment, the bacteria were exposed to 2 mM selenate at the beginning of the

growth (A600 = 0.3) (Fig. 4). The highest accumulation also occurred during the exponential

phase, but this oxyanion was much less accumulated than selenite (the maximum

concentration is 14 compared to 340 mg of Se g-1 of proteins for selenite). In contrast with the

selenite experiment, the presence of selenate did not increase the lag phase duration. During

the exponential phase, bacteria in selenate-complemented media grew at rates comparable to

those of bacteria grown in selenite-free media, and maximal densities were very similar

whether or not selenate was present in the culture medium (Fig. 4). The experiment was

stopped after 72h since the bacterial population started to decrease, probably due to the

depletion of nutrients in the medium (the same decrease was observed for the control culture).

This was indicated by the decrease of absorbance, and verified by the numeration of cells

forming colonies on LB agar (data not shown).

XANES spectra for the bacteria at various selenate exposure times are shown in Figure

5. The PCA of this set of spectra showed that three Se species were present (eigenvalues 73,

4.9 and 1.9): SeVI, SeIV and organoselenium (NSS values 3.7 10-3, 3.3 10-3 and 2.7 10-4 to 6.6

10-4, respectively). Se0 could not be considered as a principal component (NSS value 1.2 10-2).

Using the same procedure as for the selenite experiment, we found that RSeR was the most

likely organoselenium species. SeVI was detected in the bacterial pellets immediately after its

introduction to the culture medium (t = 0h) and at t = 12h (Fig. 5). At t = 12h, the bacteria

contained SeIV, SeVI and RSeR. The simulation of the spectrum for t = 24h was significantly

improved by adding Se0 to the simulation (NSS value decreased by 27%), although this

species was not a principal component of the system. The occurrence of only 8% Se0 in one

particular sample explains why it was not detected as principal component of the system. At

longer exposure times, RSeR was the only species detected.
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In another experiment, selenate was added at mid-exponential phase (A600 = 1). The

same evolution in the speciation of selenium was observed, although Se0 was more

represented (up to 27% of total Se, Fig. 5). The slight shift of the main peak for the spectrum

at t = 6h compared to t = 168h is indicative of this higher Se0 content (Fig. 5).

The composition of headspace gas was not investigated during the selenite and selenate

experiments, but the formation of volatile methylated Se species is believed to be limited

since > 90% of the Se initially in solution could be accounted for upon ICP-MS analyses of

the bacterial samples and solutions.

Two-contaminant (SeIV and SeVI) exposure

As selenite is completely reduced to Se0, whereas selenate is not, although some selenite

is produced, we have checked the hypothesis of the inhibition of the selenite reduction to Se0

by selenate. The bacteria were thus exposed to both selenite and selenate introduced at the

same time, or to one of these species first with the addition of the second one three hours

later. The day after exposure, the characteristic red color of Se0 was observed in the three

experiments, both at equivalent selenite and selenate concentrations (2 mM) and with a 10-

fold excess in selenate (1 mM selenite and 10 mM selenate) regardless the order of

introduction. Thus, the possible inhibition of selenite reduction by selenate could be ruled out.

Discussion

The fast selenite uptake following several hours of slow uptake cannot be ascribed to

the high metabolism of the cells during the exponential phase since the same profiles were

observed when this oxyanion was added during the lag phase, the exponential phase or at the

beginning of the stationary phase. This behavior might suggest the slow activation of some

selenite transport system. To our knowledge, no specific selenite transporter has been

characterized in microorganisms. In E. coli, selenite can enter the cell through the sulfate

transporter, but the repression of this carrier does not inhibit selenite uptake completely (28).

In R. sphaeroides, a polyol transporter is suggested as the transporting agent of selenite into

the cytoplasm (4).

Could the organoselenium species observed during the period of slow uptake be an

intermediate product of the formation of elemental selenium ? For E. coli, selenite reduction

can follow a non-enzymatic pathway involving glutathione (GSH), and organoselenium

intermediates include selenodiglutathione (RSSeSR) and glutathioselenol (RSSeH) (28). The

fact that RSSeSR was not detected as transient species does not necessarily imply that this
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non-enzymatic reduction pathway does not exist in R. metallidurans CH34 (the occurrence of

glutathioselenol was not tested since this compound was absent from our model compounds

library). The non-enzymatic reduction of selenite is accompanied by the production of O2
· −−−−

(14), and generates an oxidative stress. In the case of R. metallidurans CH34, the

overexpression of an enzyme associated with oxidative stress, an iron-containing superoxide

dismutase, has been recently observed in the presence of selenite (23). This might support the

hypothesis that non-enzymatic reduction takes place in these bacteria. Alternatively, the RSeR

species observed after selenite introduction might result from an assimilatory pathway. Such a

pathway is thought to exist in bacteria since Se is a composite of some bacterial enzymes such

as formate dehydrogenase (27). The most commonly (non volatile) alkyl selenide species

found in microorganisms is selenomethionine (6). HPLC analyses are under way to determine

the exact nature of the RSeR species present in R. metallidurans CH34. To summarize, the

presence of RSeR and Se0 species in equivalent amounts during the period of slow uptake

suggests that selenite is accumulated through two competing pathways, an assimilatory

pathway and a slow detoxification pathway, with both having similar kinetics.

During the period of fast selenite uptake, the reduction pathway becomes predominant.

These contrasting behaviors between the period of slow and fast uptake mirror what has been

previously observed for R. sphaeroides at low and high selenite exposure: this bacterium

metabolized selenite into approximately 60% RSeR and 40% Se0 after exposure to 1.6 mg l-1

of selenite, and produced almost 100% Se0 after exposure to 160 mg l-1 selenite (29). For

some bacteria, selenite reduction is mediated by a single enzyme: a periplasmic nitrite

reductase (16) in Thauera selenatis, and a nitrite or a nitrate reductase in Enterobacter

cloacae (9, 15). The proteome analysis of R. sphaeroides exposed to selenite did not reveal

the overexpression of a single enzyme capable of reducing selenite, but did confirm the

presence of some chaperones, an elongation factor and some enzymes associated with

oxidative stress (4). Garbisu et al. (11) showed that selenite reduction by Bacillus subtilis was

not affected by an excess of nitrate, nitrite, sulfate or sulfite in the medium, and suggested that

selenite was reduced by an inducible detoxification system different from N- and S-related

reductases. The kinetics of selenite accumulation and transformation by R. metallidurans

CH34 suggest the induction of some selenite uptake and reduction systems, whose nature

remains unknown. The putative induction of selenite transport and reduction, which takes

several hours, can be qualified as slow compared to the induction of the mer operon by Hg2+,

which takes a few seconds (3).
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The uptake of selenate by R. metallidurans CH34 was strongly limited, and the bacterial

growth was not affected by this oxyanion. This behavior is consistent with the general idea

that selenate is slowly transported inside the cells via the sulfate permease system (13).

Selenite was detected during the first 12h after selenate introduction. Several types of

enzymes have been shown to reduce selenate to selenite. In T. selenatis, this is done by a

specific selenate reductase (16, 26). In E. coli, reduction is catalized by a molybdenum

enzyme distinct from a nitrate reductase (5). Evidence for the role of a molybdo-enzyme in

selenate reduction was also shown for Enterobacter cloacae (31). In vitro studies showed that

several nitrate reductases (NR) including some membrane-bound NR of E. coli (1) and some

membrane-bound and periplasmic NR of R. sphaeroides, Paracoccus denitrificans,

Paracoccus pantotrophus and Ralstonia eutropha DSM 428 (25) were able to reduce selenate

under anaerobic conditions. Selenate might also be reduced by the enzymes of the sulfate

assimilation pathway. Such process is known to occur in higher plants (22), but there is no

direct evidence for the role of sulfate-reducing enzymes in bacterial selenate reduction. For

the moment, we have no indication of the selenate reducing agent in R. metallidurans CH34.

The occurrence of selenite is followed by a mixture of Se0 and RSeR, and then by RSeR only.

The absence of Se0 at t = 72h can be explained by the high RSeR content which may mask

Se0 (see the error bar in Fig. 4).

In summary, our results show that selenate is partly reduced to Se0, but that the main

process is the transformation and accumulation of an RSeR-like organoselenium compound.

A similar fate for selenate was observed in R. sphaeroides, at both low and high selenate

concentrations (29). De Souza et al. (8) found that selenate-treated Halomonas bacteria

accumulate selenate and a minor selenomethionine-like species, and suggested that selenate

followed the sulfate assimilation pathway.

These results raise the question of why selenite and selenate follow different pathways,

provided that selenate is first reduced to selenite. This study shows that reduction and

assimilation pathways are taken by both oxyanions, and that the former pathway seems to be

activated upon selenite exposure only. The possible inhibition of the reduction of selenite to

Se0 by selenate can be ruled out since the bacteria exposed to both oxyanions still produced

the red color indicative of Se0. The non-activation of the reduction pathway upon selenate

exposure could be related to the much smaller uptake of selenate relative to selenite,

supposing that this pathway is activated above a threshold concentration of selenite or any

chemical agent derived from selenite. In this study, maximum measured selenite

concentrations were comparable upon selenite and selenate exposure (around 3 mg Se per g of
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proteins, Fig. 2 and 4), but these values are only snapshot images, rather than a direct

monitoring of the selenite content.

In conclusion, this study showed that both selenite and selenate follow an assimilatory

and a detoxification pathway in R. metallidurans CH34, and that transport and reduction are

activated upon selenite exposure. The capacity of this bacterium to accumulate and reduce

high amounts of selenite may qualify this strain as suitable for the bioremediation of selenite-

contaminated soils, sediments and waters. However, the same is not true for selenate, since

organoselenium species produced may represent some mobile and bioavailable forms of

selenium. This study illustrates the potential of XANES spectroscopy combined with

elemental analyses, which enable the quantification of Se species. This spectroscopic

approach is complementary to analytical speciation techniques such as liquid or ionic

chromatography, or electrospray mass spectrometry (6), which are better suited to identify

individual molecules.
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Figure captions

FIG. 1: XANES spectra for some reference compounds (in solid state unless specified). From

top to bottom: sodium selenate, sodium selenite, selenourea, S-methyl seleno L-cysteine,

seleno-DL cystine, selenodiglutathione (in solution), red and gray elemental selenium. The

position of the maximum of the white line is indicated in parentheses.

FIG. 2: Concentration of Se species in R. metallidurans CH34 exposed to selenite as

determined by XANES linear combination fitting and ICP-MS analyses, and time course of

growth for the bacteria exposed to selenite (open circles). Error bars correspond to ± 5% of

total Se.

FIG. 3: Selected Se K-edge XANES spectra for R. metallidurans CH34 at various incubation

times after introduction of selenite into the culture medium at an A600 of 0.3, 1 and 3, and the

distribution of Se species determined by linear combination fitting.

FIG. 4: Concentration of Se species in R. metallidurans CH34 exposed to selenate as

determined by XANES linear combination fitting and ICP-MS analyses, and time course of

growth for the bacteria exposed to selenate (open circles) and for the control culture in

absence of added selenium oxyanion (filled circles). Error bars correspond to ± 5% of total

Se.

FIG. 5: Selected Se K-edge XANES spectra for R. metallidurans CH34 at various incubation

times after introduction of selenate into the culture medium at an A600 of 0.3 and 1, and the

distribution of Se species determined by linear combination fitting.
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fig. 3
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fig. 5


