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SCHEMAS ENO SUR MAILLAGES NON STRUCTURES

Résumé : Ce texte représente les notes écrites d’un cours effectué dans le cadre des “Lecture Series
Programme, Computational Fluid Dynamics” de I'Institut von Karman de Bruxelles en Avril 1993.
On expose la théorie des schémas ENO dans le cadre des méthodes volumes finis. Ensuite on montre
diverses généralisations de ces méthodes a des problémes multidimensionnels, en particulier quand
le maillage devient non structuré. On compare aussi ces derniéres et on donne des exemples de
simulations numériques.
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1 Introduction

During the past few years, a growing interest has emerged for building high order accurate and
robust schemes for compressible flows simulations. One of the difficulties is the appearance of
possibly strong discontinuities that may interact together, even for smooth initial data. To get
rid of this difficulty, a possible solutjon is to use a Totally Variation Diminishing scheme. Such a
scheme has the property, at least for 1D scalar equation, not to create new extrema, and hence to
provide a nice treatment of discontinuities. They have been since successfully and widely used with
any type of meshes (see for example, [1] for a review and, among many others, [2] for simulations
on finite elements type meshes and [3] for simulations for moving boundary problems). They are
now of common use even for industrial simulations on complex geometries. Nevertheless, one of
their main weakness is that the order of accuracy falls to first order in regions of discontinuity and
at extrema, leading to excessive numerical dissipation.

Various methods have been proposed to overcome this difficulty (adaptation of the mesh, for
example see [4, 5, 6]) but one promising way may also be the class of the Essentially Non-Oscillatory
schemes (E.N.O. for short) introduced by Harten, Osher and others |7, 8, 9, 10, 11).

The basic idea of E.N.O schemes is to use a Lagrange type interpolation with an adapted stencil :
when a discontinuity is detected, the procedure looks for the region around this discontinuity where
the function is the smoothest. This reconstruction technique may be applied either to the node
values [10] or to a particular function constructed averages in control volumes {7, 8, 9]. In this latter
case, the approximation is done in such a way that it is conservative. This enables to approximate
any piecewise smooth function at any desired order of accuracy.

The purpose of this lecture is twofolds : first to provide a description of the basic ideas of
the “classical” ENO methods, and second to show how it is possible to adapt them on general
geometries. Because of the lack of space and the personal experience of the authors, it is not
possible to provide a complete overview of ENO methods. Hence, this lecture will concentrate on
finite volumes ENO methods and triangular types meshes. Nevertheless, we believe that it will
provide the mos! typical features of ENO methods on general geometries, and the difficulties of the
problem. _

This lecture is organized as follow : we first recall the principle of finite volume schemes. This
enable us to show the three steps of a finite volume scheme : the reconstruction step, the evolution
step and the projection step. Generally, the last two steps are merged together by means of Riemann
solver and an appropriate temporal scheme. Before entering in the mair topic of this lecture, the



reconstruction step, we give several Runge-Kutta methods due to Shu and Osher that enable to keep
the TVD or TVB features of the first order approximation of a generalized Riemann problem with
non constant datas. Then we move to the reconstruction problem. First, we detail the “classical”
methods that are applied to real valued functions and show why it cannot be applied on general
geometries. We also discuss some pathologies of ENO reconstruction procedures and how to cure
the problems. These pathologies may have some common points with the analysis of {31} on second
order upwind schemes. To overcome this difficulty, we introduce a new reconstruction procedure
first introduced by Barth [17]. We give and show its properties that appears to be the same than
those of a more classical Lagrange reconstruction.

2 An overview of finite volume schemes

In order to set up the context of this lecture, we discuss the main ingredients of the finite volume
schemes on a 1D scalar equation. In a further section, we discuss the additional approximation
that have to be made for multidimensional problems.

Let us consider the following equation

0u  0f(u) _
at T T 0 (1)
for t > 0, with additional initial conditions :
u(z,t = 0) = up(z). | (2)

We assume f to be convex, of class C? and ug to be regular enough, say |juglles < +00, 49 € L'(R)
and of bounded variation. We also assume that there exists an entropy, that is a convex function
U(u) such there exists an entropy flux F(u) with

U'(u) f'(v) = F(u). (3)
We impose the entropy condition :

aU(u) . OF(u)
5 T g SO @

that must fulfill the solution u.
The classical theory on 1D conservative equation can be applied (see for example [26] for a

tutorial) :
1. There exists a unique entropy solution to problem (1-2-4) denoted by E{uo],
2. For any ¢ 2 0, || B{ul( - ,)loo < [volloos
3. TV(E[ug)( . ,t)) < TV(uo) for all t > 0,
4. Jp |Elu)(z,t2) — Efuo)(z,t1)ldz < C TV (uo)jta — ty], forall t5, ¢, > 0
As usual, we have adopted the following notations :

¢ |lu}loo is the minimum of the constants C such that ju(z)| < C almost everywhere,
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e TV(u)is defined by :

TV(w) = sup{ | u ¢z, € CYR)llollo < 1)

If u lies in C! then TV (u) = [g |v'|dz. If u is constant by parts :
w(z)=u; if z;<z< 241

({(x;) is a subdivision of R) then TV(u) = ¥; |u;31 — ui|. If now, for the same subdivision, u is
polynomial by parts :
u(z)= P(z) if z;<z<2zip

where (P;) is a set of polynomial of degree < k, then
Tis1
V) =Y [ IR@)ds + ¥ 1P(@ia) - Pz + 1)
i JE B

and so on.
Let us give a sequence of increasing elements of IR, denoted as (z,4,,2). For example, if (z;) is
an other subdivision of IR (a "mesh”), we may state :

_Zit+ Ty
Zit1/2 = —

It is well known that if one integrates equation (1) in [2;_y 5, Zi}1/2) X [t1:12], with the notation :

JZ2 u(z, t)ds

Ti-1/2

T(t) =

b
Zivr/2 — Ti-i2

one gets

t2 t2
(1) = Wltn) + (enaga = sieap) [ S @miaayn, Mo = [ Sutairnedd =0 (9

The set [z,_y/2, Ti41/2) is called a control volume.

Let us describe now the principle of any finite volume scheme. For the sake of simplicity, we
assume a constant time step At so that one looks for an approximation (u?) of the true solution
Efug)] of the problem (1-2) at times t,, = nAt, n > 0. From equation (5), we see that a finite volume
scheme is constructed as follows :

1. At t =0, the tnitial condition is approzimated by its averages on the control volumes
(Zic1/2:Zig1/2)s '
2. Getting (u?*!) from (u?) can be achieved in three steps :

a- Reconstruction step : from the u?’s, compute for the interval [z;_, /29 Zi41/2) @ polyno-
mial P; that approzimaies "well” E[ugp) at time t,, in that interval.

b- Evolution step : apply the evolution operator E to the function R, defined locally by
the P;’s,



c- Projection step : Fvaluate the averages of the function E[R,] at time t, 4, in the control
volume. The result is u**!

The steps (b) and (c) can be merged in a same step by mean of the formula (5) where u has
been replaced by E[R,).

In (a), the word "well” has not been clearly defined. It is natural to ask for the following
properties 7, 8, 9] for a reconstruction R(u, k) of degree k :

P1 If u ts of class C” with r > k, then the l—th order derivative of u — R(u, k), | < k satisfies
u) - R(u,k)(l) — O(hk+l—l)’

P2 TV(R(u,k)) < TV(u) + O(K7),
P3 The average of R(u,k) over [z;_y/2,Ti+1/2) 15 equal to that of u.

The property 1 guaranties the accuracy of the approximation. The property 2 guaranties (for
reasonable flux functions) that the scheme is Total variation Bounded and hence converges to the
correct solution for any ¢ € [0,7]. The property 3 states the consistency of the scheme. Before
entering into the details of the reconstruction step, let us briefly comment the evolution operator.

3 Approximation of the evolution operator

In general, the evolution operator is not exactly known so that step (b) is generally replaced by
an approximated one. A convenient way of doing this can be obtained with the method of lines :
instead of integrating equation (1) in [Z;_y/2, Zis1/2) X [t1,22], We only integrate in space with the
initial condition R(u,k):

Jg; 1

B = " mmor ey VIR RN ) = JBIRG Bz t) = LR, K] (6)

where E[R(u,k))(z;41/2,t1) = lim st E{R(u,k))(2;41/2,8) for z;4,/; and a similar expression

s>

for z;_y/;. Then, one approximates f(E[R(u,k)}(%i41/2,t%)), for example, with the help of any
suitable Riemann solver, and the equation (6) is rewritten and approximated like

ag;

50 = Lily] (7

A classical way of solving this set of ordinary differential equations is to use a Runge Kutta

scheme. Among these schemes, some of them have the property not to increase the total variation
(10}. They are built as follows. Consider a general Runge-Kutta scheme :

uV = u® $ At e L(ul®) 17 4 diAL), i=1,2,---m
(8)

u(0) = u*, ul™ = y"t!



where dy = 2 ! ¢ik. Let us consider a sequence {a;i) such that a;; > 0 and Zk—lo aix = 1. Then
one can rewrite thls Runge-Kutta scheme as :

ul = § [Q(k + Bik Atﬁ(“(k))]
k=0
One gets the following result :
Proposition 3.1 Assume that the schemes
w=(Id+ AtL)(v) and w = (Id- Atl)(u),
(where £ is an approzimation of —L) are TVD under the condition At < Ato, we get the results :
1. if all the 3;; are posilive and At < Atg min‘-‘k]%"ﬁ, then the scheme (8) is TVD. Note that

the condition on L does not play any role.

2. if one of the Biyk, is negative, when one replace L by L, the same conclusion holds under the
same condition.

Before giving examples of such Runge-Kutta schemes, let us explain for the Roe’s lineariza-
tion, this mysterious L. Consider a linear hyperbolic equation Ug + AU; = 0 and omitting the
reconstruction operator of equation (6), one has »

Llu) = 2 [AVsr + AU; = |4(Uigs = U] = 51T + ATy — AT = Uicy)]
An approximation for the equation Uy — AU; = 0 is then given by
Flu] ~ %[—AU;“ - AU; = |Al(Usgy - U3)] - %[—AU; — AUy = |AJ(Us - Us_y)].
The upwinding is made in the opposite direction.

Some examples :

1. Second order scheme : the classical Heun’s method. It is TVD under the condition
At < Aty (CFL=1).
u) = 4 4+ AtL(u(®)

u(?) = %u(O) + %u(l) + %g(u(l))
2. Third order scheme, TVD under CFL=1:

u(1) = 4(0) + Atﬁ(u(o))
u® = 240 4 1 (u(x) + A,g(;,(x)))

u® = 14 4 2 (s 4 ArL(u@))



3. Fourth order scheme : It is not possible [10] to get rid off £ this time. This scheme is TVD
under CFL=2/3. It is the TVD version of the classical fourth order Runge-Kutta method.

ul?) = 40 4 %Att(u(o))

ul® = 1y _ LA1L(uf®) 4 JuM + LAzL(u(M)

u® = Lu@ _ IAL(u@) + 2a®) — IALL(uW) + 2u® 4 AtL(ul?)
utt) = %u(’) + émg(u(l)) + %u(2) + %u(3) + 1o(u®)

Until the end of this lecture, we will not give more details on the time stepping since our purpose
is to concentrate on the reconstruction step of a finite volume scheme. For that reason, all the
numerical examples that illustrates this lecture are obtained with one of the above time stepping.

Remark : The Runge-Kutta schemes are easy to implement but, to recover the expected order of
accuracy, the reconstruction procedure must be performed at each sub-steps. To avoid this, one
may use a Cauchy-Kowaleska procedure as Harten where only one reconstruction per time step is
needed, but the implementation is much more complex.

4 The reconstruction step : classical methods

4.1 An example

It is known that if one tries to interpolate a discontinuous function with a fixed stencil, the approx-
imation may be very bad due to the Gibbs-like phenomenon. As an example, let us consider the

Heaviside function H :
1 if 2<0
H(z)= { -1 else

that we try tointerpolate on the mesh z; = Az,i € Z with a fixed central stencil : on {z;_,,, Zi11/2)s
we use the points z;_j, Z; and z,44/2. Let us denote by R the function that coincides on the interval
[Zi-1/2: Ti41/2] With the Lagrange interpolation with this central stencil. This gives :

1 if z<—-Az—’
R(z) = -1 if z>-4¢
2
}—g—é—(ﬁ) else

From that, we see that first that maz|H — R| = % and second that

TV(R)=TV(H) + 595

This approximation never converge, neither in the L norm nor in the BV norm. To illustrate the
difficulty of using a non adaptive stencil, we have compared several conservative finite-volume type
schemes on the equation

g+ uy = 0. (9)
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Figure 1: Zoom of the solution of u; + u, = 0 for several conservative schemes.O : first order, =
second order MUSCL + fixed stencil, x second order ENO, O third order ENO



At the initial time, u(z,t = 0) is a Heaviside function. The results are displayed on Figure 1.
The CFL number is set to 0.5 here. The symbol © correspond to a first order upwind scheme.
The symbol + correspond to a second order upwind MUSCL like scheme with the fixed stencil
Zi~1,ZiyZi41. The symbols x and O correspond to ENO schemes, the second order one is X and
the third order one is O. Note that we have used the Runge Kutta time steppings of paragraph 3.
From this, it is clear that the second order scheme with a fixed stencil has a problem. If, instead of
the linear equation (9), we would have integrated the Burgers equation with the same (stationary)
data, the results would have been even worse,

They indicate that one has to give up with the idea of a fixed stencil to reconstruct possibly
discontinuous functions. The idea of adaptive stencils has been introduced by Harten et al. |7, 8, 9].
In the next two paragraphs, we introduce their method, and show its limit when one wants to extend
it to higher dimensions.

4.2 An Essentially non oscillatory Lagrange interpolation

The classical ENO reconstruction methods are constructed from two well known properties or the
Lagrange interpolation of any function u : consider an increasing subdivision of R, (y;), and P a
polynomial of degree r such that :

Pz))=ulyw) m<i<m+r-1

Then

1. if u admits n > r continuous derivatives on [Ym, Ym+r—1] then for any z € [Ym. Ym4r-1),
|PY)(z) = ul¥)(2)| < Cmaxmeicmpr—2|yt — Y4 |77+

2. if the k-th derivative of u, k < r, admits a jump [u¥)] in 2o €lym,Ymsr-1[, then am,
r > m > k, the m-th coefficient of P in its Taylor development around zo behave like

maXmgi<mtr—1 Y = Y4177

These two results explains that if if u is smooth then the coefficients of P remains bounded when
the mesh size decrease but blow up if one of the derivative of u of order smaller than the degree of
P admits a jump.

From these two remarks, one may construct the following essentially non oscillatory Lagrange
reconstruction in a neighborhood of a mesh point y;. The idea is to construct an “adaptive” stencil
S{‘ the points of which are used to compute the Lagrange interpolation P," , Where P,-" is a polynomial
of degree k.

First, we recall that the divided differences table can easily be recursively constructed :

k=0 [y]u=u(y)

i+1y°° 5 Yy U— Y%, Y41, s Yisk-1]U
k>0 [y, %idn o Yith—1, Virklu = [vi1 Yitk] y.'+£y— !;“,*‘ 2 Yisk-1]

Algorithm :

1. Start with S% = {y}



2. for | < k, consider 8! = {y < ... < Yjo+i-1} the stencil for P/~!. Compute the divided
differences

[Yio-1sYior* " "> Vio+i—1]8 AR [Yior "y Yio+i=1) Yio+1] U-

o i [%io1s Uror s Biotde 8] < [[Uor" s Yio41m1» Yio +1]ul then 8! = ST U w011,
e else, S,‘ = Sf_l U¥jo 4141}

End algorithm

When one applies it to the Heaviside function, one gets

1 if z< @z
- { 1 1253
-1 if x>AT

It is possible to see that if the function u is smooth, say of class larger than k the degree of the
reconstruction, then the derivative of 4 — R satisfy :

maz|u) - RV| < CA*H?
where C is a constant that depends on the mesh and u and

TV(R) < TV (u) + O(h*).

4.3 Application to finite volume schemes

In finite volume schemes, the unknowns are not known at nodes but only mean values on control
volumes are given. There are two ways of using the above ENO Lagrange reconstruction in order to
get an ENO reconstruction : the so-called reconstruction via primitive functions and reconstruction
via deconvolution.

Reconstruction via primitive functions Let us consider a mesh (z;) and a real valued function
u which averages u; on the control volumes [z;_y/2,Zi41/2] are given. It is possible to know the
values of the primitive W of u defined by

W(z) = /: u(t)dt

1/2
at the nodes z;,,,; because
Tis1)2 7=t
W(z) = / u(t)dt = Y (2iy172 = Timapa)tie
T2 =0

One constructs a local ENO Lagrange reconstruction of W up to order k + 1, say Pf“ of W on
the interval Jz;_;/2,Z;41/2(- Note that the nodes y; are the z,,,/,’s. We then define R(u,k) the
reconstruction of u defined on ]z;_llg, z,~+1/2[ by polynomials of degree k :

d k41
R(u,k) = d'z on |z, 12, Ziz1/al-




It is clear that if u is smooth enough, then property P1 is true. If u admits only isolated disconti-
nuities for itself or one of its derivative, property P2 is also true. Last property P3 is a consequence
of the construction :

I|+l/2 R k d _ k+l k+l _ ' )
(u, k)dz = P77 (244172) = B (2i-172) = (Tigay2 ~ Tic1p2)%

1—-1/2

Reconstruction via deconvolution This method can only be applied to regular meshes. We
can even precise this restriction : all the control volumes must be deduced from one another by
translation. The idea is to consider the function v defined by :

1 Azx/2 d
v(z) = E/—A:/? u(t + z)dt

Since the mesh is regular, then v(z;) = u;. Moreover, if u is smooth enough, one may consider
the Taylor expansion of u to order k around z. Putting this in the integral and after some simple
calculations, this gives

k !
d'u
- 1au k41
v(z) = u(z) + (E=1 alAz dz‘(x) + O(Az™") (10)
with
0 if k£ is odd

Qp = 1
1
(k+ 1)1 2F °°¢

When one derives (10), one gets, for 1 < p<k:

&P k dl
2T _ 30, astEh(a) 1 O(aztH) ()
I=p

so that the collection of equations (8-11) gives :

( 1 0 _12. _____I_.E \
32 . (k+1)! 2
o(z) Lo gz u(z)

+0(AzYY (12)

Azk d’;v!z) Azkd;”fz?
z z

\ 1 /

Now, we insert the ENO Lagrange interpolation of v at order k in a neighbourhood of z;
(namely )z;_1/9, Zi41,2[), P¥, instead of v in (12), drop the O(Az*+1) and solve this triangular
system. Notice here that the y;’s are the z;’'s We note the solution by (ao,---,ak)T and define
R(u,k)in ]z,~_,,2,z,~+1/2[ by

k l
Z—Z;
m%u=§:m( ').
=0 Az

10



It is clear that R(u, k) satisfies P1 and P2. The property P3 is also satisfied because the first line
of (12) gives

1 /’nﬁ/: k a;
Az R(u,k)dz = ) oy =v(zi) = u
Az Ty—1/2 g i

4.4 Possible extension to higher dimensions, weaknesses

The extension of these method to higher dimensions has been carried out, for example by Casper
et al. [12), for regular structured grids. The outlines of their method are the following. They first
assume their mesh is a Cartesian product {(z;,¥;),1 < ¢ £ N,1 < j < M} and they construct
control volumes. With the notation Az€ = §x4y — &, the datas are

_ 1 /t.’+1/2 /V,‘+1/2 ( )d d (13)
Wij = ——— w(z, y)dz dy.
7T Az Ajy Ticiy2 JYvj—age
For y;_1/2 < ¥ < yj41/2, they consider the primitive function W ;(z) associated with w defined by :
—_ z 1 Vi+1/2
Wi = [ 5= [ TG y)dy] ¢ (14)
zo B3Y Yy
From (13), they notice that
A,’Iﬁ,‘j = Wj(xi+l/2) - WJ’(I,‘_I/Q)

so that they can consider the reconstruction via primitive function of at order k of W; : v;(z) =
R(z,w);.
Then, the procedure (14) is performed for any j. Since

d — 1 Vi+1/2
—W,; = 3 d ’
L= 3 /y,-m w(z, y)dy

R(z,w); can be interpreted as a one-dimensional cell average on [y;_1/2, ¥;j41/2] of some function
v(z,y). For a fixed z, one consider the set {R(z,w);} and a primitive V(z,y) associated to v

V(z,y)= /,., v(z, y)dzdy

whose pointwise values are known at the interfaces :

J
V(2,9i4172) = D AxyT(z).

k=30

We can once more apply the same reconstruction via primitive function to v to order k and construct
a reconstruction R%(z,y,w) = R(y; R(z;©)) of w. It is clear that this new reconstruction will have
the conservativity, essentially TVD and precision properties : they are directly inherited from the
one-dimensional reconstruction properties.

Remark : This reconstruction is a reconstruction by tensor product. The stencil of a reconstruction
of order k has (k + 1)? elements (see figure 2).

11
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Figure 2: A potential stencil for Casper et al.’s reconstruction, k=3, from [12]

When the mesh is not a Cartesian product, one has to assume the existence of a smooth
transformation from the physical z — y plane the rectangular § — v plane :

z=z(§,v)  y=y(v) (13)

The Jacobian determinant J(, ) should never vanish. The control volume C;; of the physical plane
are the control volumes
Di; =)€i—1/25 f.'+1/2[><]"‘-1/2, Vigayal

mapped by the transformation (15). The averaged values are :

— §iv1/2 fYisr)2

7= — [ [ uate ), uie viag v
Sic1yz Va2

where a;; is the area of C;j. Then one use the above reconstruction on the £ — v mesh. The

reconstruction R is :

ﬁ(f)”vm = R2(£,v,a_)

-’(6, v)

The scaling factors are introduced for R satisfies the conservation property.

From this, it is clear this kind of reconstruction algorithm is very dependent on the structure
of the mesh. Generally speaking, these “classical” reconstruction algorithms can be used only in
the following context :

¢ Reconstruction via deconvolution : one needs to interpret the mean value of u as the convo-
lution product of u and the ratio of the characteristic function of a set C and its area, so that
the control volumes must be deduced one from another by translation only. In particular,
they must have the same area. The scope of the reconstruction via deconvolution is then very
limited even if some extension are possible [13].

12



Figure 3: Covering of the rectangle [z¢, z;] X [y0, ¥1] by triangular control volumes

e Reconstruction via primitive function : in order to use the same ideas than Casper et al.,
one needs to gather control volumes by subsets so that their collection is a square. For a
reconstruction of degree k, one should be able to gather them by subsets of k? sets. This is,
in general not possible (see Figure 3 where the control volumes are triangles).

For all these reasons, one needs other algorithms to bandle more general geometries. In section
7, we show how this can be done in the general context of unstructured meshes. Before this, we
bring out some pathologies of ENO methods and their remedy, then we explain how to implement
them on modern vector and parallel machines.

5 ENO and Central Biased ENO Methods

In the computation of discontinuous solutions to hyperbolic systems of conservation laws, the re-
cently developed ENO methods appear to be very useful for reaching high order of spatial accuracy.
However, in some cases, the expected order of accuracy may not be numerically obtained. This
section is devoted to describing a simple example in which such a failure occur and to present-
ing several recipes to fix the ENO method by central biasing. Moreover, related algorithms to
recover high order of accuracy in smooth regions are described by implementing some hybridizing
techniques in which high order ENO and central differences are coupled together.

5.1 A pathological Example
This example will consist in studying the simple linear advection equation :
diu + adzu = 0, (16)
with initial condition
u(z,0) = ug(z) = €=, (17)

in which we choose to take a and ¢ to be non negative coefficients. By the characteristic method,
the exact solution is simply

u(z,1) = ug(z — at) = ==,
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and therefore, its n* differentiation with respect to z

d"u(z,t)
oz"

stays non negative for all (z,t). Hence, if we want to solve numerically the problem (16) and (17)
with some preset boundary conditions that do not matter for our purpose, and implement the
ENO method as described in previous section, then it is easy to verify that the order of accuracy
is always two no matter how high the order of accuracy of the overall method. Of course, this
fact contradicts the global theory for which having constructing a high order reconstruction would
automatically lead to a high order numerical method. The next paragraphs sketch the main reasons
why the interpolation theory combined with cell averages may lead to a wrong conclusion.

To start with, let us come back to the definition of the reconstruction operator and its interpo-
lating stencil that we denote by R;(z,#) and J(j) on each cell C; that we supposed to be uniform
of size h = (z; - z;_;) for any index i where z; are the grid points of the discretized domain. The
global reconstruction operator is a piecewise polynomial of degree p — 1

= c".u(z,t) (18)

R(z,u) = Rj(z,u),
Vz € Cj, to get an estimated p'* order accurate reconstruction, i.e
R(z,u) = u(z,.}) + O(R?),

for sufficiently smooth u. Of course, the exact solution to above test problem belongs to C* and
therefore above conclusion should hold. However, we already numerically check that this is wrong.
The main reason comes from the fact that the stencil J(j) for any j is always fully upwinded to
the left. In fact, the polynomials are always built using the approximated solutions on cells

(zj—P+l 3 vy Ij),

because u(z,t) and du(z,t) are strictly increasing functions. Therefore, the estimated divided
differences are all strictly increasing. Consequently, the search for the smoothest part of the solution
- which consists in taking the smallest divided differences within the ENO framework - always selects
the additional information located to the left of the previous one (refer to the classical 1D ENO
algorithm). However, several observations can be pointed out. First, it can observed that the fact
of constructing the piecewise polynomial R(z,#) into the region in which the divided differences
of 4 are minimized does not mean that the other regions in which the estimated derivatives of u
are larger indicate non smoothness of u. Second, it is well known that for recovering high order of
accuracy, some cancellations in the error expansions must occur. Therefore, it seems that above high
order ENO method just behaves as a second order upwind method. In fact, we have just realized
that the ENO method can degenerate to a linear scheme !. Therefore, the non linear process which
consists in switching from one additional information to the right and then to the left, and so on,
should prevent the ENO method to this troublesome second order degeneracy property in smooth
regions. Very recently, A. Harten pointed out (without proof) that the expected order of accuracy

'In some cases, depending on the respective signs of a and c, the scheme may become linear with a stencil lying
all in a direction oppsite to the upwinding, so that it is linearly unstable. The ENO procedure tends to stabilize the
scheme, but the stencil becomes erratic. This leads to a loss of accuracy.
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is numerically observed in L' norm as long as the ENO stencils are in ”averaged” centered. This
is equivalent to verifying that the ENO stencils

J(eno)(j) - (] - r(j), ]+ 3(])),

where r(7)+s(j) = p+ 1 are, in average, closed to the centroid point ¢(j) which are exactly defined
for the centered stencils

Jemral(jy= (G~ n+1,...,5+ n),

where we have set p = 2n.

5.2 Study of the Numerical Error

This section is intended to proving why the fully upwinded ENO method is only second order ac-
curate in smooth regions. The test problem defined in previous section (with ¢ = 0) is investigated.
Using the reconstruction operator by primitive functions as described in Shu and Osher [10],
we devise the reconstruction operator at time ¢t = 0 :
p-1
Rj(z,u) = Do + Z(z - z;)* Dy,
k—

where Dy are the divided differences of u in the fully upwinded ENO stencil (z;_p41,..., z;). All
calculations done, they reduce to the formulas

1- e-ch k .
Dilzj_ky... 2j) = (—km—)—-eqh, (19)

where we let z; = j.h for additional simplifications. Next, the reconstructed cell averaged solution
on cell C;, for all i € J(j) is obtained by the averaging process

t; = A(Ci)R(z, 1) = pz—: aix Dy
k__.o

where A(C;) is the averaging operator and

1 rzith/2

ik = ¢ - (3‘3i)kd3=

hk
md";’k,
in which
dije = (i - j + 1/2)"*! = (i j - 1/2)".

Hence, on cell C;, the p** order cell averaged reconstruction simplifies to

_ e-ch k :
a?) = uo(z;) Z dJJ"(l(k n 1)') ’ ' (20)
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in which

0 if k is odd,
Cisk = (21)

(%)’c otherwise.

Therefore, after expanding out the equation (20), we arrived at

} 1 — e—ch)2? 1 = e—<h)4
17 = uolz;)(esjo + 52" 3! Et et 5! St
Next, by using Taylor expansions of e~<* for small h,
h)? h)3
eP=1-ch+ (—ci—)— - (°3!) ey
and substituting in above relation, we obtain the simple result :
_ 1 ch)?
) = wo(z;)(1 + 55((ch) - 2Ly 4 o(aY, (22

where O(h*) includes all the other terms which are of order A", for N > 4.
To conclude, we compute the exact cell averaged solution at time ¢ = 0. By definition, on cell

C;, it reduces to

.1 r=sth/2 1 ..
peract _ — cjhychj2 _ _—ch/2
u; h/t,—h/? up(r)dz e (e € )-

Factorizing by e*/2, we obtain the relation

ch

Again, by using Taylor expansions and rearranging all terms by increasing powers of h, above

relation rewrites :

u5™" = uo(z;)e

557 = uo(z;)(1 + 55(ch)? + O(AY)). (23)

Finally, from (22) and (23), we set the formula :

1
a?’ - u§Tedt = "22(0’*)3"0(3:') +O(h*).

This shows that the averaging process destroys the recovery of high order of accuracy of the
reconstruction procedure. In fact, if instead, we had averaged the reconstruction operator on the

larger cell
Cai) = Viea5)Ci,

and verified the convergence error of the averaged solution around the centroid of Cj;), then the
expected high order of accuracy would have been reached because of two by two cancellations when
using Taylor expansions. As seen above, a third order cumulative error is obtained on each cell
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which indicates that the fully upwinded ENO method is only second order accurate in L' norm.
In above calculations, by using the time iteration scheme

Q?H = A(C).)_E‘(a, A)R(z,w"),

where E(a.At) is the time evolution operator of Runge-Kutta type, and letting a = 0, we proved
that ux(z;,t) is only second order accurate. However, we can notice that, if only one switch in
the search of the ENO stencil from the left to the right is assessed, then a gain of two order of
magnitude in the cumulative error is gained, which implies at least fourth order of accuracy.

In the same spirit. other questions of accumulation of errors were studied in [27, 29, 32]. In
[27], the selection of the smoothest stencil leads to a scheme which is linearly unstable in the whole
interval. It is shown that once the high order derivatives have begun to oscillate and grow, the
selection of the stencil became erratic which in turn stabilized the calculations with nevertheless a
reduced order of accuracy. In [29}, similar loss of accuracy are observed near points at which all
derivatives up to a certain order vanish. Finally, in [32], it is demonstrated that such unnecessary
loss of accuracy can be avoided by central biasing the selection of the stencil toward a central one
in the smooth part of the solution - which is emphasized in above calculations.

5.3 Hybrid ENO Method

In this section, we describe an hybrid reconstruction that allows the selection of a centered stencil
in smooth part of the solution and a classical ENO stencil near discontinuities. This algorithm is
also described in [15)].

To start with, we define two reconstruction operators - one is based on a central stencil R{)(z, &)
and the other is the classical ENO stencil R()(z,#). The hybrid reconstruction can be symbolically
written as

Ry(z,8) = (1 - 6;)RC);(z, &) + 8; R (2, 1),

where we defined the automatic switch 8; € [0, 1] so that ; is closed to 1 when J{?)(j) contains a
singularity and is of order O(h?~") when the solution is smooth in J(°)(5). Here, we have denoted
by J() and J(¢) the centered and ENO stencils, respectively. Moreover, r is the order of the ENO
reconstruction ; e.g if r = 1, then Rg-”(z, %) = %;. From the switch requirements, the formal order
of accuracy is preserved even in smooth regions. The switch can be defined as follows. If we denote
by
k _ Aks .
A: =A Uj,
the undivided differences of degree k where A is the forward differencing operator, then
-k
= —= ,
TOTiS lekllAR 4 ¢

where af = (=1P~*=1CP~* and C7, = ;(,:‘—Lny; when m > n, and ¢ is a small parameter propor-
tional to round off error. This switch satisfies all the previous requirements up to the k** derivative.
Two important cases can be investigated :
A= bip
k
af = (-1)1af,
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where &;, is the Kroneker § symbol. The first one corresponds to a step discontinuity in 8%,
whereas the second indicates a discontinuity in 8%, for ¢ < k. Therefore, 8% = 1 for a discontinuity
in 8% for k > ¢ > 0. Next, in the case 974 is smooth, we consider the product 8% D* where

D* = h*(8%a) + O(hP).

Clearly,
hP|3Pu| i :
k nk ki ok
= O(—"=_"1y. RP)) = Py.
0 D¥ = O(ggeap) (OWRH1*al) + O(R7)) = O(RP);
pote that this remains so even when some of the derivatives of 3*u vanish at a point ; i.e
Fu=..=98"""1y=0,

for some integer r. In this case, the denominator in 8* is O(h**7), but so is D*. Thus,
8* = O(h*~") and 6* D* = O(»?).

In summary, this method satisfies the following properties :

0 k>¢2>0
(1~ 65).(A(C;)Dy) = { (A(C;)Dr)+O(h?) k<g<p (24)
(A(C;)Di)+ O(h?) ¢2p

where ¢ is the first index for which a,‘,""u is discontinuous and Dy is any k** central divided
difference of @. This also implies that 8% = 1 for all k > ¢ > 0.

5.4 Central Biased ENO Methods

The second type of recipes to recover the formal order of spatial accuracy is based on the fact that
any upwinded or centered stencil is welcomed when the solution is smooth enough. To get a more
centered ENO stencil, we can modify the selection of the ENO stencil procedure by weighing up
the successive derivatives of u. To do so, instead of selecting the smoothest part of the solution by
making use of the classical unweighed divided differences

8
a( ) = [xk(.—"')-l’ eeey zk(s—l)+ _L]u’ a-nd

b(.)= [zk(' -1)_ l -1 azk('°‘)+' 1- l] u,

mn

where z£ Y is the left point of the ENO stencil at the induction level s — 1 and a(*), 5{*) are the s
divided differences computed from the (s — 1) ENO stencil with the addition of one data point to
the right and to the left, respectively ; we choose to pick the modified ENO stencil

if 6%a(® > 6{p(4),

then k) = k-1 and k) = K1 _ 1 otherwise. Here, 6 > 1 and 6 > 1 and 6{ or 6" is

msn mn mn mn

identical to 1 if the stencil at level (s—1) is mostly upwinded to the right or to the left, respectively.

In the linear advection problem described in section 5.1, we will take 6(') =1 and 6 = C for
some non negative constant C. Generally, this constant is chosen in the range 2 to 10. Some
numerical tests are presented in [32]. Note that if 8*u is discontinuous, then the smoothest part of
the solution is still taken since then one of the two undivided difference has a jump discontinuity
of the order O(1/h).
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5.5 Hybridjizing ENO and Central Differences

The last type of hybrid methods that we introduce in this lecture is based on the coupling of ENO
methods with more basic central difference approximations. In fact, as seen before, if the solution
is smooth, then a centered stencil leads to a non oscillatory scheme. The idea is to implement a
centered approximation for the flux functions as much as possible (refer to [30}).

In [30], high order 2p** central flux approximations are defined as follows :

e Second Order: (p=1)

fivi2 =

f(uj+1)2+ f(“j)’ (25)

e Fourth Order: (p = 2)
frarge = 1 (31) + J(u5)) = T5(f(ussa + S, (26)

o Higher Order Vp: It is a simple matter, using Richardson’s extrapolation to construct and
obtain arbitrary high order accurate centered difference methods

P
fimig = Y. Bif(uigs)s

t=—p+1
where f_;4y = Bifori=-p+1,..,p—-1,
P
and Z 8 = L

i=-p+1

The hybridization consists then in applying the following algorithm :
¢ FOR:=1,m DO
1. Approximate the partial differential equation such as (16) using above high order cen-
tered differences.
2. IF the updated numerical solution has spurious oscillations Then we correct it by re-
computing it using ENO fluxes.
¢ END DO.

At each time, an oscillation is detected at a point, the ENO fluxes are computed for updating the
numerical solution in an extended region in order to avoid low frequency oscillations. Moreover, a
non linear detector for detecting rapid changes in the gradient of the numerical solution from one
time step to the other is implemented

AxuAzut! < (Az)P(-1+4 cosa\ﬂ + (A§:7)2\/1 + (Ai‘zﬂ)?),

where a is a preset angle and Atu;-‘“ = *(u;3; — u;) are the forward and backward differences.

When the above test is positive, then one switches to ENO.
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6 Vectorized and Parallelized ENO Methods
First of all, it is easy to derive a fully vectorized ENO algorithm

o 1.) Compute the undivided differences of u; as follows: let &(3,0) = u;, for j = 1,..., NV
and construct the undivided difference table &7,k + 1) = Hj+1,k)— (s, k), fork =1,...,p
and j = 1,..., N, where N is the number of grid points.

e 2.) Fork = 1, ..., p, at each grid point z;, evaluate the ENO interpolating polynomials P;:)L(z)
2

as follows : first compute the ENO stencil and start with kf:?n = j. Then, define the successive

ENO stencils by this procedure : if (|¢(kf:,~)n, k)| > |¢(kf:'-)ﬂ,k)| then kf::’ = kf:)" -1

¢ 3.) Compute the fluxes Fj4,/; = Kl; k=1 C(k,(:‘),‘ -7 k)¢(kf:l-)n, k), where C is a small matrix
with coefficients C(n,p) = J T332~ S74P0] (-1).

Notice that the matrix C is independent of u, and thus can be computed once and then
stored. Moreover, this algorithm can be extended to several dimensions by dimension by dimension
techniques. The overall algorithm is convenient for vectorization purpose since the loop in k is outer
whereas the loops over the grid points in any space dimensions are the inner ones. The interior
numerical test for the selection of the stencil deteriorates the maximum performance by a reduction
factor of approximately 10 to 20 %.

For parallelizing the ENO algorithm, we investigate two different approaches. The first one is
closely related to the domain decomposition in which the domain is partitioned into several blocks of
approximately identical sizes. In that case, the fluxes or the reconstructions are computed on each
processor on a given subdomain. To accomplish all the calculations, the reconstruction procedure
needs (p—1) data points which have to be stored. Therefore, an overlapping set of p~1 points in each
direction of the subdomains must be taken. For example, if the subdomain has size (0,n1) x (0, n2)
for some integers (n1, n2), then all data points in the square (~p+1, —p+1),...,(nl+p—-1,n24+p—1)
are necessary within the reconstruction procedure.

The last algorithm that we present describes the optimal procedure for implementing the ENO
method on a multiple processor parallel computer such as a connection machine. The following 1D
example is written in CM Fortran.

% the divided differences are stored in the array d(0..p - 1, j), where d(0, j) = u;.

1. sum = d(0,:)

2. A=0

3. A(0,:)=1

4. inc=10

5. DOk=1,p
(a) d1=0
(b) d2=0

(c) temp(0,:) = d(k,)
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(d) DOk1=0,k-1
i. dl = d1 4+ A(kl,:)» temp(kl,:)
ii. temp(kl + 1,:) = eshift(temp(kl,:),2,-1)
ii. d2 = d2+ a(kl,:)temp(kl +1,:)
(e) END DO
(f) WHERE (d2.ge.d1)
(g) tnc=1tnc +1
(h) ENDWHERE
(i) DO k1 =0,k
i. WHERE (inc.eq.k1)
ii. A(kl,))=1
iii. ELSE WHERE
iv. A(kl,:)=0
v. END WHERE
(j) END DO
(k) % Update the polynomial reconstruction.
(1) DO k1 =0,k
i. sum=sum+temp(kl,:) * A(kl,:) * coef(kl)
(m) ENXD DO
In this algorithm, the main difficulty resides in avoiding communications between two nodes.
This is why we use the intermediate matrices inc and A to hide unnecessary values of the divided
differences. Moreover, this algorithm becomes rapidly costly because of many cshift operations.
For a p** order reconstruction, (p — 1)(p — 2)/2 =0+ 1 + ... + p — 1 shifts are necessary in order
to avoid intermediate indexing in the ENO selection process. Here, it is replaced by the A matrix

which is all zero at each level k1 except one coefficient which is identical to one for selecting the
appropriate ENO stencil.

7 The reconstruction problem on unstructured meshes

7.1 Preliminaries

In the sequel, the symbol IR,[X,Y] denotes the set of polynomials P in the variables X and Y of
total degree less or equal to n :

PX,Y)=)Y" Y a;XY?
I=11i4;5=!

The set R,{X,Y] is a vector space of dimension N(n) = M’#ﬂ, a basis of which is the set of

monomijals ' _
{(X - 20)'(¥ - wy}

1+5<n
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where (29, w) is any point of R% The total degree of P does not depend on the choice of (zo, %)
As we will show it latter, this kind of basis is not the best suited for practical calculations.

Let M be a mesh of the finite element type. Associated with this mesh, we also consider a
triangulation 7. We may consider several kind of control volumes, for example the triangles of T
themselves or the dual mesh (see Figure 7). They are constructed as follows : for each point M,.
the control volume is obtained by connecting the midpoints of the segments adjacent to it and the
center of gravity of the triangles it is a vertex of. Let us denote by {C;} the set of control volume.
We only require the following properties :

e For any 1 # j, C; (N C; is of empty interior,
o (;is connected,

o There is an algebraic dependency of the C;’s in term of the points of M. This is true for the
two above examples.

o The boundary of C; is a locally regular curve. This is also true for the two above examples.
We consider the following problem (problem P or approximation in the mean for short) :

Let u be a regular enough function (say in L!). Given N and n two integer numbers,
a set of control volumes S = {C; h1<icn, find a element P € R,[X,Y] such that for

1<I<N,
/ud::
def JC

<udc, = —d—rv=< P> 273
y area(C;,) Cu (24)

For that problem to have a unique solution, one must fulfill two conditions :
o N = (n3ln42) - N(p)
¢ the following Vandermonde type matrix must be non singular :

V=[< XY >c,] =

1+j<n

1<I<N
1 <X>c, <Y>q, -« <X">c, <X"1Y>c ... <X">¢
1 <X>¢, <Y>q, ... <X">c, <X™Y > .. <XM>c¢

(28)

If As = det V # 0, then we will often say that this stencil is admissible. In that case, there is
a unique solution to problem P that will be denoted by P,.

A similar problem was first consider by Barth et al. [17] for smooth functions, then by Harten
et al. [15], Vankeirsblick et al. [16, 28] and Abgrall [13]. In the four first references 17, 15, 16, 28],
the authors consider overdetermined systems for two reasons : first, the problem P has not always
a unique solutijon, second they claim that the condition number of the overdetermined svstem is
better than that of problem P. In [13], the same approach as here was adopted. To support that
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choice, we must notice, as it is explained in remark 1, that (28) is generally not singular. Second,
the condition number of the linear system mainly depends on the basis used for the polynomial
expansion, as it is shown in section 7.4. For these two reasons, we have preferred this approach
which has the advantage of simplifying the coding of the global scheme. We will come back to this
problem, and related ones, in the section 7.7.

Remarks :

1. We do not know if the admissibility condition admits a geometric interpretation (except for
n = 1). We do not even know whether there is a systematic way of constructing admissible
stencils, as it is the case for the Lagrange interpolation [18]. Nevertheless, one may say that
in general, any stencil is admissible : one may consider the equation As = 0 as an algebraic
surface in IR?** for some integer k 2. This surface is then of empty interior, from a topological
point of view, so that if S is not admissible, one only have to change slightly the elements of
S for it to become admissible. Nevertheless, the condition number of the linear system may
be very bad. We will discuss that point in section 7.4.

2. This admissibility condition is independent of the basis chosen for expanding the polynomial
P.

7.2 Some general results about the approximation in the mean

In this section, we give two results on the reconstruction in the mean approximate a given function
u when it is smooth or not. They generalize well known properties on the Lagrange interpolation
of 1D real valued functions that have been used as a corner stone by Harten and his coauthors to
design an essentially non oscillatory reconstruction. We have to emphasis that the reconstruction
in the mean in not directly related to the Lagrange one. Throughout this section, if S(™) is an
admissible stencil for degree n, the symbol K(S{")) denotes the convex hull of the union of the
elements of S™),

7.2.1 Case of a smooth function

In [13}, we have shown the following result. Its proof follows easily from Ciarlet & Raviart’s proof
(22] on Lagrange and Hermite interpolation :

Theoreme 7.1 Let S be an admissible (for degree n) stencil of R?, let h and p be respectively the
diameter of K(S) and the supremum of the diameters of the circles contained in K(S). Let u be a
Junction that admits everywhere in K(S) a n + 1** derivative D"+1u with

May1 = sup{[|D"*'u(z)l;z € K(S)} < +o0

If P, is the solution of problem P, then for any integer m, 0 < m < n,

sup{{|D™u(z) — D™ Py(z)|l;z € K(S)} < CMn4y h;:

*because we have assumed an algebraic dependency of the control volumes in terms of the points of M
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for some constant C = C(m, n,S). Moreover, if S' is obtained from S by an affine transformation
(i.€ there erists o € R? and A invertible matriz such that

C, € S’ iff there exists Cy € S such that C;, = A Cx + 20 )

then
C(n,m,S8) = C(n,m,S’)

This result basically expresses that if the stencil S is not too flat, i.e. the ratio A/p is not too
big. then P, will be'a good approximation of u. Let us turn now to the case of unsmooth functions.

7.3 Case of an unsmooth function

We only discuss the case of piecewise smooth functions. This is large enough for our purpose.
To do the analysis, we have to introduce the following property which prevents from geometrical
degeneration :

Property 7.2 Let us give € > 0. The admissible stencil S\™) belongs to PP if and only if : for any
vector U which component are either 0 or 1 such that both values are represented, let P the nth
order polynomial defined by

< P>c, =Uj, foral Ci € s,

The sum of the absolute value of the n-th order coefficients of P is greater or equal to ¢, that ts

N(n) det(Ro...RN(n_‘)"'El"'RN(R))

‘=N("E_l)“ det(Ro- -+ Rn(a-1) - Ri* Rn(n)

)| X3 (29)

In (29), we have adopted the lericographic ordering for the monomials {X iy’ Yitj<n, S0 that Ry
stands for the k** column of the determinant (28) and R, = U.

Then we can prove [13] the following theorem that describes the asymptotic behavior of the
leading coefficients of the approximation in the mean of a piecewise smooth function :

Theoreme 7.3 Let € be a positive real number and S an admissible stencil for degree n such that
there ezists an affine transformation A as in theorem 7.1 for which A(S) € P! Let (2o, ) be any
point of the set K(S) and u a real valued function defined on a open subset ) of R? containing
K(S). We assume that u is CP~1 p < n, in Q and, ezcept on a locally C' curve, admits a
continuous and bounded p** derivative with a jump [DPu], |[DPu]| > My, > 0. Then, the highest
degree coefficients of the Taylor ezpansion of P, satisfies

S laiil 2 Cln, p, )22 (30)

i+j=n

where C(n,p,¢) is a constant independent of S and invariant by affine transformation.

24



7.4 Study of the linear problem to solve for the reconstruction

In this section, we intend to study the numerical system to solve to get P, from the data. We will
consider two kinds of expansion of P, :

1. the “natural” expansion : for any point (zo, %) € R?,

Pu= ) aii(X —z0)(Y - w) (31)

1+5<n

2. an expausion using “barycentric” coordinate that we describe now : let
S = {Cl,C'z, Cs,.. .,CN(,,)} be an admissible stencil. Hence, at least one subset of three

elements of S(™) is an admissible stencil for n = 1.We may assume that the set {C;,C;, C3)}
is admissible. We consider the three polynomials A; of degree 1 defined by :

<Ai>c,=6,1<i<38, 1<j<3. (32)

The symbol 6? is the Kronecker symbol. Clearly, we have A; + A2+ A3 = 1. These polynomials
are the barycentric coordinates of the triangle constructed on the gravity centers of C,, Cs,
and C;. In order to get expansion (31), a strategy may be to look first for the expansion of
the polynomial P, in terms of power of A; and A3 :

P= Y ai;AbA] (33)
i+3<n

and then to get the Taylor expansion of P, around the center of gravity of Cy from (33) (the
theorems 7.1 and 7.3 give the behavior of the leading coefficients of P, whatever the point
chosen in the convex hull of S).

In order to get the expansions (31) or (33), one has to solve linear N(n) x N(n) systems :
B(am cee ao")T = (< u >C"] el U >C3N(n))T (34)

where the matrix B is obtained by taking the average of (X — zo)'(Y — yo) for (31) and A}A for
(33). Let us now study the properties of these linear systems.

7.4.1 Case of expansion (30)

A very easy consequence of the inequality (30) is that :

Proposition 7.4 Let us assume that the conditions of theorem 7.3 holds, and let h be the supremum
of the diameters of the spheres containing K(S(")). Then the condition number of system (84) is
at least O(h™™) for h small enough.

Proof : For the sake of simplicity, we consider the following norm on R,[X,Y] : for P =
Titjcn 8ii(X = 20)(Y = %), [IPll = Liyjcn l0ijl. On RV™), we consider the L' norm. Let
U be a set of data for the right hand side of (34), and consider the perturbation §U,

U =(0---¢-9)T
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where € is at the I th position, ! > N(n - 1)+ 1. All the other entries of U are zero. If one considers
the function u defined on |JC; by :

z€C;, u(x)=6U;,
one can apply theorem 7.3. Hence, the perturbation § P has a norm satisfying :
€
6P 2 3 loayl > Co
14y=n

since ||6U|| = e. This complete the proof. e

This fact is well known for 1D Lagrange interpolation and has motivated the search of more
efficient algorithms, such as the Newton algorithm. There exist algorithms that generalizes it
[19. 20]. They involve numerous solutions of linear systems, so that we have preferred a more
classical approach (see section 7.5), for which the coefficients of the linear systems are obtained
from the "barycentric“ coordinate expansion (33) as it is explained now.

7.4.2 Case of expansion (32)

In the case of expanvsion (33), we have the following result :

Proposition 7.5 If property 7.2 holds for some € > 0, then the condition number of the system
(34) for the expansion (33) is bounded above and below by constants independent of h, the supremum
of the diameters of the circles containing K(S™).

Proof : The proof is also based on that of theorem 7.3. As in proposition 7.4, the only thing
that we have to do is to study the effect on the a;;’s of a perturbation 6U. We denote by P the
polynomial which averages are defined by 6U. The proof can be achieved in two stages :

1. Let B any invertible matrix. Consider the stencil

§® = {BICy )+ 20}, i

for any zo. It is clear, from the definition of the A;’s that X,(E) = Ai(z) if £ = Bz + zo.
Hence, the sum S(P) of the absolute values of the coefficients of P in the basis Ay(z)A(z)
is the same as that of the development of P in the basis A}(Z)A3(Z). This is an homogeneity
property.

2. Since the set of stencils defined by property (7.2) is compact, S(P) is bounded below and
above, independently of B, hence independently of k :

C12 F 2 Cy(e,n) > 0.
The constant Cz(¢, n) is larger than zero because §U # 0

This achieves the proof e
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7.5 The explicit calculation of the reconstruction

From the previous results, the evaluation of the coefficients a;; in (31) is done through those of
(33) and hijerarchally. For the sake of simplicity, we assume that for any p < n, the set S(®) of
the N(p) first elements of S™ is an admissible for order p. This can be achieved with a suitable
numbering of the elements of S("). The idea is, instead of looking directly for the coefficients of
P™ 1o get first those of all of the P(*)’s, the reconstruction over S*! for 1 < k < n and then to
construct those of P(*), In the ENO algorithm described in section 7.6, this involves no extra cost
and simplifies the evaluation of the a;;’s. This has also the advantage of reducing the size of the
linear systems and also to improve their condition number. Assume that P{}) ..., P(?) are known.
We first get the coefficients of P(P+1) — p(®),

ple+)) _ plo) — Y A3
s+5<p+1

by solving the linear system

4 )= Ay  Bppn .7 N N . §
APH(!‘.Z) (CPP'H Dp?“)(“—2) (l‘l) 3%

In equation (35), a; (respectively a;) stands for the coefficients {a;;}i4j<p (resp. {ai;}iyj=ps1)-
The block matrices Ap, Bp p41, Cp p4+1 and Dy py are defined according to this decomposition. In
particular, we notice from the hypothesis that A, is invertible.

From the conservativity property, we get u; = 0, so that the system (33) can be splitted :

(36)
[_CP p+1451 By pi1 + Dy p+1] a2 = Uz

Since S®*1) is admissible, E, = [—Cp p+145 By 511+ Dy ,+1] is also invertible, so that one can

get ay, then a; and last the coefficients of P(P+1),
Simple manipulations show that

4! = ( AT By p1 ES1Cy g ASt + AT —AD By pa E )
P+l — -1

-E;1Cp p+)A;l EP

so that one can quite easily look for the next step. In our case, since the total degree of the
reconstruction is less or equal to 4, at most two stages of that method is needed.

Last, one must notice that the condition number of that method is always better that that of
the original one because it depends only on that of parts of the original system.

7.6 The E.N.O reconstruction

In [13], we have found that only a few number of stencils was indeed necessary to achieve an
essentially non-oscillatory reconstruction of a piecewise smooth function. This set has to be as
isotropic as possible. Moreover, the ENO reconstruction was found to achieve the expected order
of accuracy for smooth functions, even on very irregular meshes. In what follows, a,; always stands
for any of the coefficients of the reconstruction P in the natural basis, {(X — zo)(Y - %) }.

Let us describe our procedure up to fourth order : '
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Figure 4: Stencils for third and fourth order reconstruction

1. Let us start from a given cell, Co assigned to a point of M, say (zg, yo).

2. Consider all the triangles having (zo,y0) as a vertex, and choose the one, say Tpin, that

minimize
> lail.
+5=1
Here, S is the set of control volumes affected to the vertices of Ty, (see Figure 4-a). For
a regular unstructured mesh, there are about six possible triangles.

3. Consider Tpy;n. For any of its three edges, consider the three triangles, Ty, Ty, T3 as in Figure
4-a. There are three possible configurations. We choose the one that minimize the sum

Y laijl-

1+5=2

4. Consider, as in Figure 4-b, the configuration for third order. It is obtained as follows : for
a stencil S{®) made of the control volumes associated to the vertices of {Tinin, Ty, T2, 15},
one may consider its "edges“ made of the external sides of {T2, T3}, {T2, Tmin}s {Tmin, T3}-
Consider one of them, say {T2, T3}, and the vertices a, 3 and 9. Since the triangulation is
conformal, there exist a triangle Ty # T; on the other side of [a,8]. Consider Ts for [3,7).
Then, for the same reasons, one can construct Tg, T7, Tg and Ty. The stencils for fourth order
reconstruction are the union of S(?) and the control volumes associated to the additional
vertices of either {Ty, Ts, Te, T7} or {Ty, Ts, To, Ts} or {T4,Ts, Tz, Ts}. For a stencil S(?), there
are at most 12 stencils for fourth order reconstruction.

The situations seems to be become more and more complicated as the degree increases. Neverthe-
less, there is a very eacy way to simplify it, so that at each level only three stencils for n + 1th
order have to be considered from a n-th order one, as we did from second order to third order.
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Let us give a mesh M, we want to derive a k + 1 th order reconstruction method. The idea is to
work with the control volumes defined for a mesh M’ the points and the triangulation of which
are constructed from those of M by adding, for each triangle of M, the points and the triangles
associated to a the P, Lagrange interpolation [21].

7.7 Comparison with different authors

Several authors have studied the problem of the reconstruction of unsmooth function on unstruc-
tured grid. We may cite P. Vankeirsbilck [28, 16] and A. Harten in collaboration with S.K.
Chakravarthy {15]. In this subsection, we would like to compare our method and theirs.

7.7.1 Evaluation of the reconstruction

Here, we assume that a stencil S is given for the cell € in the vicinity of which we want to
reconstruct some function u represented by its averages on cells with a polynomial P of degree k.
This polynomial should fit the data according to two properties :

o The mean of P on C is that of u,

e The reconstruction procedure must represent the polynomial functions of degree < k exactly
over the whole cell C. '

P. Vankersbilck uses three algorithms to represent such a polynomial. In the first one, directly
inspired of Barth’s [17], P is the linear combination of the constant polynomial (P = 1) and zero
mean value polynomials :

. . /C(z - 20)'(y — wo) dzdy
Fij(z,9) = (2 - z0)'(y — w¥ - Area(C)

The constraints are that all the polynomial functions of degree < k are exactly represented, so that
at least (k + 1)(k + 2)/2 cells are needed. In practice, more cells are given (see further subsection),
mainly to improve the condition number of the linear system. This one is solved by a modified
Gram-Schmidt algorithm with column pivoting. When the system is overdetermined, the arbitrary
constants are obtained by imposing the sum of the square of the coefficients on the F;; basis of the
monomials (X — 2¢)'(Y — yo ) is minimal on each cells. Vankeirsbilck notes that this algorithm does
not guaranty that the average of P on C is that of u so that he modifies it slightly by imposing :

P=<u>¢c+ Z Vijﬂj(-"’a y)
1<i+5k

The property on the mean is got by construction. In his last algorithm, the mean value in a cell is
affected to its gravity center and a Lagrange polynomial expansion is applied.
In [15], the decomposition of the polynomial function P is done on the standard basis,

P(z,y)= Y. aij(z - z0)(y - w)

0<i+i<k

and is obtained by imposing the same condition as we do : P should have the same mean as u on
all the elements of S. This stencils should have at least (k 4+ 1)(k 4 2)/2 cells but in practice, the
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authors claims that it is better to increase the number of element to improve the condition number
of the system.

In these two examples, the key problem is the condition number of the linear system which
solution describes the reconstruction P. The reconstructions of Vankeirsbilck or that of Harten and
Chakravarthy use polynomial expansions that are very near or similar to the natural expansion. We
have shown above that the condition number of the system become very poor, so that we believe
that our choice is better. Moreover, since the control of the condition number is better, less stencils
may be used. Last, our choice leads to a rather natural hierarchical algorithm that looks like the
Newton algorithm for one-dimensional functions.

7.7.2 Stencil selection

In each case, the stencils contains the cell C; on which the reconstruction is affected. P. Vankeirsbilck
proposes two methods for selecting a stencil :

e Algorithm “Support Selection by Marching” (SSM). It is based on a marching procedure
where the marching is done on a criteria such that both the first order gradient and its
relative variation on the whole stencil are minimal. One first starts from the cell C and add
two neighbouring cells. With these three cells, it is possible to compute, in general, a gradient.
The first stencil is the set of three cells that minimizes this gradient. Once this is done, we
add cell by cell to this first stencil, but enough to be able to compute a reconstruction of
order k ; hence, at least (k + 1)(k + 2)/2 cells. The criterion for selecting or not a stencil is
based on the minimization of the linear gradients and their relative variation on the whole
stencil. Hence, as this is explained in theorem 7.3, all the informations on the possible jumps
of derivative > 1 are lost. In our opinion, this is the main reason why the author tells this
method should be used with care [28].

o Algorithm “Support Selection for Global norm mimization” (SSG). This one is also used by
Harten et al [15] and this time is base on the minimization of the global norm :

i+5<k i+ 2
> (a - P) (37)

=
4730 dz'oz

so that all derivative are taken. As theorem 7.3 claims it, the criterion is much better. Now,
the stencil selection is processed in two step :

1. One first look to the sector of the plane that give a minimal second order reconstruction
(k=1),

2. then one looks in that sector for the elements of the stencils that minimize (37)( see
Figure 5, directly inspired from [28]).

Overdetermined systems are used in each case.

The problem of this method may be the following : once a direction has been chosen, one has
to stay in that direction. For example, take the 1-D example of Figure 6 as Vankeirsbilck.
The cell is located around P, and the algorithm will tend to select point 1 for the first step.
Then one has to move in the direction of P1, contarily to the ENO philosophy. Depending
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Figure 6: Discontinuous

31



on the shape of u and the hights of P, 1 and 2, this method may lead to creating spurious
oscillations. On the contrary, our method enable to “come back” if necessary. For a one-
dimensional problem, it is similar to the classical 1-D Eno algorithm.

Last these authors have used the concept of central stencils contrarily to us : the selection of the
stencil is biased toward the central stencil when u is smooth. This is a good choice in principle.
Nevertheless, this concept is left rather vague, to our opinion. Within the Finite Element like
framework that is ours, this concept could probably be precised by inspiring oneself of the Galerkin
methods [23].

8 Numerical examples

We have performed several tests on the second, third and fourth order E.N.O. interpolation and
E.N.O. reconstruction, but we only report the third and fourth order results since they are a priors
more challenging. In particular, we intend to check numerically that the expected order of accuracy
is in fact reached for smooth functions.

In all these examples, we have assumed that the control volumes are of the element of the dual
mesh (see Figure 7). The practical calculations of the averages in these control volumes have been
performed with a 5-th order quadrature formula [21].

The tests on smooth functions are performed on :

u(z,y) = cos(2x(z? + y*)).

The mesh size h has been measured by choosing the largest segment of the triangulation. All
the error estimates have been obtained on irregular meshes as the one presented on Figure 8. These
meshes are obtained as random perturbations of regular structured meshes. The set of points that
one obtains is triangulated by the Brower algorithm to get a Delaunay triangulation. The main
difference between such a mesh and the regular structured one is that the number of triangles each
node belongs to is different. We also have done the same tests with regular meshes, and we have

not seen any degradation of the convergence.
The locally smooth function we have chosen is obtained by a modification of that used by Harten

in [11] for example : if ¢ is any angle, let fy be :

if r< —% fe(z,y) = —rsin (?
fo(z,9)=¢ if r> 1} 3 Jo(z,y) = 2r — 1 + gsin(3xr), where r=z+tan(g)y, (38)

if [ri<3, fo(z,9)= Ism(i’")l,
and let u be :

{ if z< ?coswy, u(z,y) = f\/,,—/—(z v) (39)

if z> Qcoswy, u(z,y)= f_ \/—(z y) + cos(27y).

The function defined by (38)-(39) shows discontinuities in the function itself and its first order
derivatives; some of the discontinuities are straight lines (never aligned to the mesh), one is a
curved line where the jump changes from one point to another. Last, the behavior of u is basically
one-dimensional on the left of the curve z = cos ry/2 and really two-dimensional on the right.

A plot of this function is given in Figure 9. One should obtain straight lines and smooth
discontinuity transitions contrary to what is shown in the Figure : this is an effect of the graphic
device adapted to P, interpolation.
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Third order interpolation and reconstruction We have displayed in Figure 10 the L error
of the interpolation for the smooth test case. The plain curve with squares is obtained with the
E.N.O. interpolation, the plain curve with circles is obtained with the E.N.O. reconstruction. The
dashed line indicates the slope ~3. One can see that the expected order of accuracy is indeed
reached. ,

In Figures 12-(a) and 13-(a), we have displayed the node values of the E.N.Q. reconstruction
for two meshes (1600 nodes and 6400 nodes). To better see the behavior of the approximation
technique, we also present cross-subsection on three lines : ¥ = 0.75, Y = 0 and Y = -0.45
(Figures 14, 15 and 16. The approximations are obtained from the 1600 nodes mesh (see Figure 8).
The latter line goes through one of the triple points (see Figure 9). One can see that the various
discontinuities and the smooth regions are well captured by both techniques.

In [13], another selection procedure has also been proposed. It includes a much richer choice of
stencil but no real improvement has been noticed. From all our experiments, we can conclude that
this choice is indeed sufficient.

Fourth order interpolation and reconstruction The same tests have been performed for the
fourth order interpolation and reconstruction of the smooth function. The Figure 11 shows the
L% error of the ENO reconstruction for random meshes. The Figures 12-(b) and 13-(b) shows an
overall picture of the fourth order ENO reconstruction. A better capture of the area surrounding
the triple points is the only visible difference between third and fourth order reconstruction.

To end this subsection, we must note that the algorithm for choosing the stencils may lead to
some difficulties at the boundaries as can be seen in Figure 9 on the left upper corner : the most
left upper triangle of the mesh (Figure 8) does not admit any additional points of the type we
consider to make a stencil.

9 A class of high order numerical scheme for compressible flow
simulations

9.1 The Euler equations

Let us quickly recall elementary things about the Euler equation of a calorically perfect gas :
aw + OF(W)  IGW) _ 0
ot oz dy

As usual, in equation (40), W stands for the vector of conserved quantities and F (respectively G)
is the flux in the z direction (resp. y direction) :

+ (40)

P pzu pv
| pu _ pu+p _ p uy
w=| 2,1 Fm=| P00 em=| L (41)
E u(E + p) v(E + p)

with initial and boundary conditions. In equation (41), p is the density, u,v are the components
of the velocity, E is the total energy and p the pressure, related to the conserved quantities by the
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Figure 7: Element of the dual mesh

equation of state : .
p=(1-1)(E - 3007 + ")) (42)

The ratio of specific heats, 7, is kept constant.
It is well known that the system defined by equations (40}, (41) and (42) is hyperbolic : for any
vector i = (ng,ny), the matrix :

o0 OE 86
T oW T Yow
is diagonalizable and has real eigenvalues and eigenvectors. Let us describe now the construction
of a k th order scheme.

Az (43)

9.2 Finite volume formulation

We consider a mesh M and the control volumes as on figure 7. The semi discrete finite volume
formulation of (40) is :

8
o

1

Wilt) = " area(C;) Jac;

FalW(z, O)dl = Li(2) (44)

Here, W(t) is the (spatial) mean value of W(z,t) at time t over C;, fi = (nz,n,) is the outward
unit normal to 8C;, and Fz = n.F + n,G. We first describe the spatial approximation of (44), then
the temporal discretization of the resulting set of ordinary differential equations. Last, we detail
the boundary conditions.

9.2.1 Spatial discretization

For the sake of simplicity, we define the integer number p such that either k = 2por k = 2p + 1.
The first step is to discretize £;(t) up to k** order. First, we can rewrite area(C;)L;(t) as :

/x‘ Fa[W(z, ))dl = rz /r FW(z, ) (45)
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where, as on figure 7, the set of the I',’s is that of the linear edges of ;. On each T',, # is constant.
We consider, on any T,, the p Gaussian points {Gi}1<i<p associated to the Gaussian formula of
order 2p + 1. The integral f., Fz[W(z,t)]d! is approximated by

| 4
Y wiGa,(t) (46)
=1

where term Gz (t) is defined now. Set C; the other control volume of which T, is a part of the
boundary. In C; and C; , one compute the ENO reconstructions at time t of W, R,[W( . ,t),k]
and R,;{W( . ,t),k], up to order k. The ENO reconstruction of section 7 is applied to the physical
variables, then one deduce the conserved ones. From that, we set, in equation (46) :

Gri(t) = FRP{RIAW( . ,1), K{(G), RiIW( . ,1), k{(G)} - (47)

In equation (47), F{*™*"" may be any of the available Riemann solvers. In all the example below,
we have chosen Roe’s Riemann solver with Harten-Hyman entropy correction.

9.2.2 Temporal discretization

The equations (44), (45), (46) and (47) defines a finite set of ordinary differential equations that

we symbolize by 3

at
In (48), £,(t) is the discrete version of £;(t). This equation is discretized by the k** order version
of the Runge-Kutta scheme of Shu [10] :

Wi(t) = Li(t) (48)

Wl = TollamW™ 4+ BmL™),  1=1,200p, LM = LW
(49)
o n
"V'-( ) = Wi , W‘.(P)V = W.jn-H.

The order of accuracy, as well as its TVD properties, is achieved by adequate sets of coefficients
Qim, Bim and p (see [10] for details).

9.2.3 Boundary conditions

Let I be the boundary of the computational domain and i be the outward normal unit on I'. We
assume that T is divided into two parts, I' = I'g N ', on which different boundary conditions will
be used. Here, I'g represents a solid wall while I', represents the far-field (inflow or outflow).

We do not treat a boundary condition by forcing the value of a variable to a prescribed boundary
value, but consider instead the integral formulation (44) and apply boundary condition by modifying
the flux integrals on 8C; for those cells such that I' N 3C; # 9.

For example, for a vertex i located on I'g, we do not impose the slip condition U.i = 0 but take
this condition into account in the evaluation of the convective flux :

0

/ Fn: 4+ Gny = fr°nac‘ s
TonacC; Fondc; Py
0
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The pressure integrals are computed as :

/ pnr =~ Pi/ Nr, / my = Pi/ ne.
Ion3C, TonadcC; [oNaC; TondC,

For a vertex located on I',, Wwe again use an approximate Riemann solver. We define a far field
state W, ii; = frxnac. i and set, in agreement with what has been done in the interior of the
computational domain

/ Fng + Gn, = ®(W;, Weo, iis). (50)
oo N8C;

In equation (50), ® is a numerical flux function. For simplicity reasons, we have chosen a modified
Steger-Warming flux instead as the Roe one,

S(W;, Weo, 7) = AFW; + Az Weo

The matrices A}: and A are the positive and negative parts of the matrix A defined in (43) and
evaluated for W = W,

In all the examples we have treated below, the boundary where either fully subsonic or either
fully supersonic, so that the procedure was really simple, contrarily to what would have appended
in mixed type boundary condition.

Finally, we have reduced the order of accuracy of the reconstruction for cells that are too near
from the boundary. For them, a proper calculation of the ENO stencil may be impossible because
the set of possible stencil is biased in one direction due to the boundary. For the third order scheme,
these cells are those related to a mesh point that belongs to a triangle having at least one point
on the boundary. For the fourth order scheme, they are those belonging to a triangle a vertex of
which is related to a cell for which a reduction of order must be done for third order.

9.3 Positivity of the density and the pressure

As pointed out by Harten et al. [24], in some situation and for extremely few cells, the ENO
reconstruction of the density and pressure may lead to negative values. For these cells, and these
cells only, following [24), we reduce the order of accuracy with the following inductive method (w
is either the density or the pressure, w; is its average on C;). Consider, in C;, the reconstruction

Rlw,n|(X,Y) = Z Z ape(X — (Y — y,)',

=0 p+g=!

B3 s Y piq=t18pll(z = 2,)P(y - ¥5)7| > afw;| at a Gaussian point (z, y), then the reconstruction,
for that point, is set to R[w,n — 1)(z,y). Then, we repeat the test if necessary. Usually, the
parameter «a is set to 0.95.

In all the simulations we have done, the tests were positive for a very small set of cells and a
zeroth order reconstruction was never used. They were never positive for the second order scheme.
This number is problem dependent. For example, only at most three points caused problems from
time to times for the facing step problem with a 5000 nodes mesh. They all were located in the
front shock.
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10 Numerical tests

All the example we propose now have been computed with the second and third ENO schemes.
The ratio of specific heats, ¥ is always set to 1.4.

10.1 A Shock tube problem

We have set up a two dimensional shock tube problem in the square [0,1] x [0,1]. Its boundary are
solid. The initial conditions are :

p=1
If £ <0.5and |y—-0.5] <0.25, u=v=0.
p=1

else u=v=0.

The mesh is completely unstructured with 2127 nodes and 4088 triangles. The velocity field ob-
tained by the third order scheme at time t = 0.9 is displayed in Figure 18.The differences between
both results are more clearly visible in the near stagnation zone. In order to better represent that
area, we have removed from the velocity field all the points for which the sum of the absolute
values of its two components is larger than 0.15. The result is shown on Figures 19 (second order)
and 20 (third order). One can clearly observes that the number of small structures of the flow is
much more important in Fig. 20 than in Fig. 19. The shocks in the upper and lower part of the
© pictures have also a different resolution. Their location is also different but this can be seen only
by superimposing the pictures.

One should also mention that this test is not particularly easy for our method. After a few
time, the shock reflects with the wall. The reflected shock interacts with the others structures of
the flow, leading to interactions between the various kind of discontinuities and with the smooth
parts of the flow. The multiple points, as shown on our figures, with different kind of discontinuities
(contact and shock) are resolved by our method without any particular trick.

10.2 A Mach 3 wind tunnel with a step

‘We have run this test case, that is well documented in [25], for the second order and third order
ENO schemes on a 5140 nodes and 9958 triangles mesh. This discretization corresponds to the
medium mesh used in [25]. A portion of it is displayed in Figure 21. It is totally unstructured.
The conditions of the problem are the following : a uniform Mach 3 flow is set in a channel. At
the initial time, a step of relative height 0.2 is installed in it. The channel length is 3 and the step
is located at 0.6. This situation creates a shock that reflects on the upper part of the channel then
it-evolves to a lambda shock as the time increases. It interacts with the upper part of the step.
A weak shock is also created by the expansion wave at the corner. This shock interacts with the
reflected one creating a slip line. The location of this slip line i is very dependent on the boundary
conditions that are set at the corner.

Here, no special treatment is done, contranly to what is advocated in [25], so that the quality
of the second reflected shock is poor. We only want to verify the effect of the increasing order of
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accuracy on the solution, so that we will only look at the first reflected shock. The solutions of Fig.
23 (second order ENQ) and Fig. 24 (third order ENO) are shown. A clear improvement on the
thickness of that reflected shock can clearly be seen from the horizontal cross section of the density
at y = 0.5, Figure 22. The slip line coming from the lambda shock is also more visible in Figure
24 than in Fig. 23 as well as the weak shock near the corner.

10.3 Reflection of a shock on a wedge

This problem is also well documented in the literature. In order to achieve a correct solution, one
has either to use very fine meshes or adapted meshes (see [6] for example). We have chosen a case
where the planar shock enters from the left in a quiescent fluid. Its Mach number is Ms = 5.5
and is defined towards the flow values in the quiescent fluid where the density is set to 1.4 and the
pressure to 1. One expects a double Mach reflection.

The mesh has only 8569 points and 16806 triangles. A part of it is shown in Figure 25. The
density contours of the two calculations are displayed in Figures 26 (second order) and Figure
27 (third order). A very clear improvement of the slip line coming from the Mach stem can be
observed. The second triple point can also been observed in Figure 27, though of poor quality
because of the unsufficient resolution of the present mesh, but is totally undistinguishable in Figure
26. Generally speaking, all the discontinuities are better resolved by the third order scheme.

11 Conclusions and perspectives

In this lecture, we have tried to give an as broad as possible overview of ENO finite volume type
schemes with much emphasis on the reconstruction problem, first for one-dimensional problems
and then for multi-dimensional ones. We have also tried to give an as objective as possible opinion,
in particular we have shown some of their problems and possible ways to solve them.

A third order ENO scheme has been derived on triangular type unstructured meshes ; this
demonstrates that deriving ENO schemes on unstructured meshes is something possible. We indi-
cate how to build higher order ENO schemes and give some comments on the numerical stability
of the reconstruction step.

This new scheme has been tested on a set of well known test cases and compared to a second
order one. In all cases, the results are clearly improved. Our results also demonstrates its robust-
ness. The cost of the scheme is 4 times that of the second order one (on a Cray YMP) but the
code is far from being optimized. In particular, no effort bas been done in the ENO reconstruction
procedure, the most expensive routine by far, so that this ratio can be considered as a bad upper
bound. Last, this present version is fully upwinded, so that we have not yet taken into account the
results of section 5.1 and following. '

In the near future, we will derive the fourth order version of this class of schemes. The hy-
bridization with central schemes will be studied. The two schemes will be coupled with a dynamic
adaptation procedure {4] to improve its efficiency. Last, improvement of the Riemann solver has to
be done : up to now, they assume a one-dimensional structure of the waves (material and acous-
tic). This is a crude approximation (see {33] for a review and the references therein). We intend to
couple the new genuinely multidimensional Riemann of [34] with our fully multidimensional ENO
procedure or to adapt the ideas of [35] with this ENO method.
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Figure 8: Typical mesh. 1600 nodes, 3042 triangles.
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Figure 10: L* error for f(z,y) = cos{2x(z? + y?)]. Squares : E.N.O. interpolation only, Circles :
E.N.O. + reconstruction. Dashed line : slope -3
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(a) E.N.O. interpolation.
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Figure 14: Cross-subsection at Y = 0 of the E.N.O interpolation (a) and the E.N.O. reconstruction
(b) for 1600 nodes the mesh. 48



(a) E.N.O. interpolation.
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(b) E.N.O. reconstruction.
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Figure 15: Cross-subsection at Y = 0.75 of the E.N.O interpolation (a) and the E.N.O. reconstruc-
tion (b) for the 1600 nodes mesh. 49
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Figure 17: Representation of the logarithm of the L, error in term of the logarithm of the maximum
radius of the circumcircles.
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Figure 18: Shock tube : velocity field at time ¢t = 0.9
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Figure 19: Zoom of the velocity field in [0.5,1] x [0.25,0.75). Second order solution
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Figure 21: Portion of the mesh used for the step case
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Figure 22: Cross-section of the density, y = 0.5 © : second order, 4+ : third order

Figure 23: Density contours for the second order ENO solution, t=4, min=0.329, max=4.64. Den-
sity contours from 0.287 to 4.584, Ap = 0.14
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0.287, max=4.584, Ap =
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Figure 24: Density contours for the third order ENO solution, t=

0.14

Y
é
\D

4

\/
LEOASEEREN

\/
1)4»4»; A2\

%
SYAVAY
A‘AN
R
oI b
Va0
SOV
SO
A'AVAV(

8
AV
4V,
<]
>
i
/\/
X)
>

<N
KD
IS,
LRI
TAVAVAY
"AVAVA
<N/
VAV‘
(N>
W
X
N
\ XN
AVAY

R,
SO
KN
YAV
%%
Va
Y
<
/

[

LVA
R0
VA
AV,
\/\
%V
4
N
S
N
X
\/
S
«
N
»

A

[

A

e‘
50

oS

A
I
S
S

QY.
VAVAVS, <iVg

A
1\
/\/
X
\/
N
]
%
I\?
i »
\/
>

N/
S
X
-
QV
A
R
Ay
val
N

%4

G
vy
\ >

K
v

\ /]
N
AVAVAY
K \/
(X0
A
Y
N
KJ
\/
X
N/
RO
5]
N
’4}

AKTIIENIS\
\ /A ISEXS
AVAVA YA, AV A G Vav, o, ot A
AV AVAVAVAYAW N, QVAVAWLS. .
wﬂﬂWvﬂfovéivﬁﬂﬂn»«»ﬂAvﬂ.?AmWwboNﬂb

'

ok

Df
N
AV
;V
KN
oY,
N

N RSIRISOREAA DRSSO
RIS ARIROOOROOEISKR

AZNAVGY €V Y VAVAS.
ORI RRERIRRKITIVEN
bﬂﬂv»éﬁhﬁ»ﬂ«hvbﬂﬂv»ﬂﬂu»«&hEV 0%&»05»
4”4”‘““0«4 0’4?4»4»4»154)4&04 Vbﬂb<b<>1>‘bﬂ>¢>0’Ar

RaratA OVAV VAV (YO b’ib‘bﬂ NAVAVE 0’1& OO\
DU AVAYL Y AVAVAYaraypvirg
VAMMVAV L«»ﬂr‘»ﬂ vsrAVLﬂ S

NA
X7
N
WA
\d

\>
<]
AVA
VAVAS
\/

AV
P

DSTAVA%a w5t

[N
AVA'
Ve'

X

Va

2%
S5
PaYAY.
VAV
\V
\/
VY
Yav4

/N
N/
V4

]

AW
N,
\\
N
O
Q
gm

d
R
I/
¢

)
Y
A%
NN
24
N

'1
g
I
\/
9‘7

Q
N
~,
vaY
ev
5
KN
IS
A
Y
<
\X

X

Vg

</

Q
5

;;: AVAY
Vi A

A
)
AV,
B
»
N
N
N
A
VAPas
YV
‘;"Q
KD
o
X
’dﬂ
g'A
X A
G0
4V
K5
{
A'A' &L

N
\ /]
%
7aY
N
N
[N

NN/
‘v
S
WA
e'»
X
1>
<

%
X
\/
%
>
5
Bt
[\
\/X
N
A%
SIS
\\/
AVA
VA%
N
5
K
2
N
24
X
\ X7

N
N/
I\
\/
VAY
N
\/\
\
Y
N

AV,
2\
N

NS A IAARIK

v?&ﬂ«»ﬂrd»d»ﬂwﬁ&wu JK)
BRI

SISO a0\ v,

B AT oA A PA AL S

‘ \’
N ANAV 3 403 ¥AVav =AY

W,
\/
VA%
Vo
W
Y
-,
\I3
N
X7

ava
P

A
KN
72
NP
Vi
A
AV
A
AN
A

PR

\/

\7
v

N
DO
'Ané
/\/\/

L’

%
9
N
S

N
\A
Y,
N
A

WAV,
N/
WA

AVAYA

Figure 25: Portion of the mesh used for the Mach reflection problem
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Figure 26: Refection of a planar shock by a wedgé : density contoufs, second order solution.
Min=1.4, Max=17.3. Contour from 1.4 to 19.088, Ap = 0.36 o '

58



[

et

g*o

Figure 27: Refection of a planar shock by a wedge : density contours, third order solution. Min=1.4,
Max=19.088, Ap = 0.36
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