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Melting curve and fluid equation of state of carbon dioxide at high pressure and high

temperature
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Université Pierre et Marie Curie, 140 rue Lourmel, 75015 Paris, France

Agnès Dewaele
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The melting curve and fluid equation of state of carbon dioxide have been determined under
high pressure in a resistively-heated diamond anvil cell. The melting line was determined from
room temperature up to 11.1 ± 0.1 GPa and 800 ± 5 K by visual observation of the solid-fluid
equilibrium and in-situ measurements of pressure and temperature. Raman spectroscopy was used
to identify the solid phase in equilibrium with the melt, showing that solid I is the stable phase along
the melting curve in the probed range. Interferometric and Brillouin scattering experiments were
conducted to determine the refractive index and sound velocity of the fluid phase. A dispersion of the
sound velocity between ultrasonic and Brillouin frequencies is evidenced and could be reproduced by
postulating the presence of a thermal relaxation process. The Brillouin sound velocities were then
transformed to thermodynamic values in order to calculate the equation of state of fluid CO2 . An
analytic formulation of the density with respect to pressure and temperature is proposed, suitable
in the P − T range 0.1-8 GPa and 300-700 K and accurate within 2%. Our results show that the
fluid above 500 K is less compressible than predicted from various phenomenological models.

1. INTRODUCTION

Knowledge of the thermodynamic properties of simple
molecular fluids like water and carbon dioxide at high
density is important in a large number of scientific and
technological domains, such as planetary sciences or ma-
terial synthesis in supercritical conditions. On the other
hand, the investigation of simple fluids at high pres-
sure has led to important discoveries in the recent past,
like the first-order phase transition found in phosporus1.
Such transitions can be detected by kinks in the melt-
ing curve or discontinuities in the fluid equation of state,
provided these are measured with high accuracy.

The solid phase diagram of carbon dioxide has been
intensively studied in the past 15 years. Fig. 1
shows the phase diagram as presently determined for
P < 20 GPa2,3. At room temperature and 0.5 GPa,
CO2 crystallizes into a typical molecular solid, the cubic
phase I4, which transforms to the orthorhombic phase
III for P > 10 GPa5,6. For P > 12 GPa and high tem-
perature two other molecular phases exist: phase II for
T > 470 K and phase IV for T > 500 K2,3,7. Since both
of these phases can be quenched to room temperature
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without reverting to phase III, it has been proposed that
phase III is actually metastable. Finally, at higher pres-
sures and temperatures, carbon dioxide transforms to a
polymeric structure (phase V) with four-fold coordinated
carbon atoms8,9,10,11.

In contrast with the solid phases, there have been very
few studies on the high pressure fluid. To begin with, the
limit between the fluid and solid domains, i.e. the melting
curve, is still barely known. The one reported in Fig. 1
is based on data up to 366 K and 1.17 GPa published
by Bridgman12 in 1914 and one single point measured
by Iota and Yoo2 at 4 GPa and 640 K. The latter is
actually in strong disagreement with the extrapolation
of the melting curve reported by Grace and Kennedy13,
which gives a melting temperature lower by 130 K at
this pressure. It is clear then that new and extended
measurements are needed.

There is also a lack of experimental data on the fluid
equation of state at high pressures. PVT measurements
in static high pressure experiments have so far been lim-
ited to 0.8 GPa and 980 K14,15, while shock-wave exper-
iments have given a few points along the Hugoniot curve
up to 70 GPa and estimated temperatures of a few thou-
sand K16,17,18. There is thus a gap between these two
sets of data that remains to be bridged. Attempts have
been made to derive phenomenological equations of state
based on various formulations, but their accuracy in the
domain where experimental data are absent is unknown.
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The most sophisticated of these formulations has been
proposed by Span and Wagner (SWEOS)19, whose valid-
ity range was estimated to extend from the triple point
(P = 0.518 MPa, T = 216.59 K) to 0.8 GPa and 1100 K.
This is based on a phenomenological form of the Helmoltz
free energy with 42 free parameters fitted to a large bank
of thermodynamic experimental data available in the low-
pressure range. Although very accurate within its valid-
ity range, its adequacy in the extrapolated range is ques-
tionable, as shows the comparison between the experi-
mental Hugoniot curve and the predicted one19. Among
the other available models, the Pitzer-Sterner equation
of state (PSEOS)20 has been considered a good one at
high pressure because it was constrained by the shock
wave measurements.

We present here the first study of fluid CO2 at static
pressures above 1 GPa. First, we measured the melting
curve up to 800 K in order to determine the fluid stability
domain. Using Brillouin scattering and interferometric
measurements, we then determined the sound velocity
and refractive index of fluid CO2 up to 700 K and 8 GPa.
From the measured sound velocity, we derived the fluid
equation of state in the same P −T range, which extends
the previously covered pressure range by a factor of 10.

This paper is organized as follows. In a first section,
we describe the experimental details of our experiments.
Then in section III we present the results obtained for
the melting curve, the refractive index and sound veloc-
ity and compare them with available literature data. In
section IV, the method used to derive the equation of
state is given along with the results. Finally, the conclu-
sion summarizes our main findings.

2. EXPERIMENTAL DETAILS

The present experiments were conducted in a mem-
brane diamond-anvil cell (mDAC) made of high-
temperature resistant alloy (PER72 from Aubert et Du-
val). CO2 (99.99 % purity) samples were loaded by con-
densing the gas at 273 K and 35 bars in a high-pressure
vessel. A golden ring about 10 µm large separated the
sample from the gasket material (rhenium) in order to
avoid any possible chemical reaction at high tempera-
ture. A ruby ball, a small amount of SrB4O7:Sm2+

and a 15 µm-size cubic BN crystal were loaded with
the sample. Pressure was primarily determined from the
5D0 −

7 F0 luminescence line of SrB4O7:Sm2+ and cross-
checked with the one obtained from the Raman shift of
the TO mode of c-BN, using the pressure scales reported
in Refs. [21,22,23]. The estimated uncertainty on pres-
sure was about 0.02 GPa at 300 K, 0.05 GPa at 500 K
and 0.1 GPa at 700 K.

The whole mDAC was heated by means of a ring-
shaped resistive heater enveloping the cell, whose tem-
perature can be regulated within 1 K using an electronic
module. Heating was done in air or in a reducing at-
mosphere (mixture of Ar and 2%H2) obtained by flush-

ing the gas directly into the cell. Because the cell is
globally heated, this setup provides minimal tempera-
ture gradients across the cell, as found from numerous
previous experiments performed in the same temperature
range21,23,24: the maximum difference observed between
the sample and other parts of the cell is 5 K. A K-type
thermocouple was placed in contact with the sides of one
of the diamond anvils and fixed in place by high tem-
perature ceramic cement. An independent and in-situ

measure of temperature was provided by using the ruby
as a thermometer, as described in Ref. [21]. This tem-
perature agreed with that of the thermocouple within ±5
K up to 600 K, as typically observed for this setup. At
higher temperatures the ruby R-doublet is very broad
and no more resolved, so that this temperature measure-
ment becomes increasingly inaccurate. We thus relied on
the temperature given by the thermocouple. The reli-
ability of the temperature reading is supported by the
very good reproducibility of the present results between
experiments performed on different samples, and by the
continuous aspect of the melting line as shown below.
On this basis, we can confidently claim that the error on
temperature is within ±5 K.

The melting curve was determined by visually monitor-
ing the solid–fluid equilibrium. The sample was brought
to its room temperature melting pressure (0.55 GPa)
where a single crystal was grown by finely tuning the
load and kept in equilibrium with its melt. The sample
was then slowly heated and compressed in order to main-
tain the coexistence of the crystal and the fluid, as shown
in the inset of Fig. 2. The difference in refractive index
between the fluid and solid phases remained large enough
to observe a good contrast between the two phases up to
our highest pressure. A melting point was defined by the
measurement of pressure and temperature when equilib-
rium was observed and stable in P and T . This method
allows a fine sampling of the melting curve and precludes
any error that could originate from metastabilities such
as under-cooling or over-pressurization.

The coexistent solid phase was identified by Raman
spectroscopy all along the melting curve. Raman spec-
tra were collected in a back-scattering geometry using
the 514.53 nm line from an Ar+ laser and a T64000 Ra-
man spectrometer (Jobin-Yvon-Horiba, f = 0.64 m, 1800
grooves/mm grating, 100 µm entrance slits) equipped
with a ℓN2-cooled CCD array detector.

The refractive index of the fluid was measured by an
interferometric technique described in detail in Refs. [25]
and [26]. Briefly, this method involves measurements of
the interference patterns obtained by illuminating the
sample with parallel white light (500 < λ < 700 nm)
on one hand and monochromatic light (λ = 632.8 nm,
Fabry-Perot rings) on the other hand. By combining the
two interference patterns, we were able to determine both
thickness and refractive index n of the sample. The rela-
tive uncertainty on the refractive index measured by this
method is approximately 5 × 10−3.

Brillouin scattering experiments were performed using
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a 6-pass tandem Fabry-Perot interferometer from JRS
Scientific27. The scattered light from a Ar+ laser excita-
tion was collected in a back-scattering geometry. In this
case, the Brillouin frequency shift is given by:

∆σ = 2nvs/λ0c0 (1)

where vs, λ0 = 514.53 mn and c0 are respectively the
sound velocity, the excitation wavelength and the speed
of light in vacuum. The frequency shift was determined
with an accuracy of 2 × 10−3 cm−1.

3. RESULTS AND DISCUSSION

3.1. The melting curve

The melting curve of CO2was determined in three sep-
arate experiments covering the temperature range 300-
800 K and pressure range 0.55-11.1 GPa. The measured
melting points are shown in Fig. 2 along with the avail-
able literature data. The different runs showed very good
reproducibility, within the uncertainty of our pressure
and temperature readings. The large number of collected
data constrain very well the melting curve in the covered
range.

Our data are in excellent agreement with those re-
ported by Bridgman12 where they overlap (300 < T <
366 K). Comparison with the work of Grace and
Kennedy13 also shows a good agreement up to 373 K and
1.27 GPa but their melting points start to deviate from
ours at higher temperatures, reaching a pressure differ-
ence of 0.45 GPa at 423 K. This difference is outside our
experimental uncertainty. We also note that a difference
of the same magnitude was observed between the argon
melting points measured by Grace and Kennedy and data
from other authors (see Ref. [24] and references therein).

At higher temperature, the only melting point to com-
pare our data with is the one reported by Iota and Yoo2

at 4 GPa and 640 K . We find here that this point is well
inside the fluid domain and overestimates the melting
temperature by about 100 K at 4 GPa or underestimates
the melting pressure by 2 GPa at 640 K. This discrep-
ancy could be explained by a temperature overestimation
in Ref. [2]; as a matter of fact, since the authors used
ruby luminescence for pressure measurements, which has
a 0.0073(1) nm/K temperature dependence21, a temper-
ature overestimation of 45 K would lead to a 0.9 GPa
pressure underestimation, which brings their point in nice
agreement with ours.

The melting curve of molecular compounds are usually
well described by semi-empirical melting laws like the
Simon-Glatzel (S-G)28 or Kechin29 equations. The first
one can be written as:

T = T0

(

1 +
P − P0

a

)
1

b

(2)

where T0 = 216.59 K and P0 = 0.518 MPa are the triple
point temperature and pressure respectively, and a and b

are two fit parameters. Fitting this expression to our data
gives a = 0.403(5)GPa and b = 2.58(1). Figure 2 shows
that this form reproduces very well our data, with a rms
deviation of 3.7 K. The Kechin equation was proposed
as an improvement over the Simon-Glatzel one and is
able to represent melting curves with negative slopes or
going through a maximum melting temperature; it can
be expressed as:

T = T0

(

1 +
P − P0

a

)
1

b

exp[c(P − P0)] (3)

In the case of CO2 , the melting temperature is a regular
increasing function of pressure and a fit to the Kechin
equation only gives a small improvement over the S-G
law. The obtained parameters are: a = 0.443(9)GPa,
b = 2.41(3) and c = 4.7(7) × 10−3 GPa−1, with a rms
deviation of 3.5 K.

In addition to the visual observation of melting, we
used Raman spectroscopy in order to identify the solid
phase in equilibrium with its melt. Fig. ?? reports spec-
tra collected along the melting curve at 430, 733 and 800
K after subtraction of the liquid diffusion background.
Spectra of solid phase I at 300 K, 2.1 GPa and of solid
phase IV at 580 K, 15 GPa are added for comparison. De-
spite the line broadening at high temperatures, the three
phonon modes of phase I are clearly recognizable on the
spectra of the melting solid up to 800 K. The absence
of solid-solid phase transition can also be inferred from
the continuous evolution of the melting curve. Solid I is
thus the stable phase along the melting curve up to 800
K and 11.1 GPa at least. This result contrasts with the
phase diagram reproduced in Fig. 1, since the reported
I-IV transition line2 should intersect our melting line at
ca. 700 K and 7.8 GPa. Our findings suggest that the
I–IV–Fluid triple point is at higher temperature.

3.2. Refractive index

The refractive index n of fluid CO2was measured along
several isotherms (298, 395, 454, 500, 550 and 599K) be-
tween 0.2 and 4.7 GPa, on two different samples. The
evolution of n with pressure and temperature is repre-
sented in Fig. 4, together with literature values available
in the same pressure range30. In the inset, the same
data are shown with respect to the density ρSW calcu-
lated with the SWEOS. It is apparent from the latter plot
that, within error bars, the refractive index does not ex-
hibit an intrinsic temperature dependence, but depends
only on the density in the range of our experiments. As
a matter of fact, since the refractive index is a property
related to the electronic structure of the material, it is
expected that density variations will have a greater in-
fluence than temperature variations, unless the material
undergoes temperature-driven structural changes.

The following equation was found to reproduce our re-
fractive index data together with those measured in the
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critical region by Sengers et al.
31:

n(ρSW ) = 1 + 0.2153ρSW + 0.03868ρ2
SW − 0.01563ρ3

SW

(4)
The data from Ref. 30 were not used in the fit be-

cause of their large scatter and poor agreement with our
measurements. Eq. (4) was used here only as an inter-
mediate step to determine values of the refractive index
at the P − T conditions of the Brillouin measurements.
As will be shown below, the SWEOS is found to under-
estimate the density of fluid CO2 at HP-HT and another
expression of n(ρ) will be given with respect to our new
equation of state in section 4.

3.3. Brillouin scattering

We performed Brillouin scattering experiments on the
fluid along five isotherms at 300, 400, 500, 600 and 700 K
up to the respective freezing pressures. The Brillouin
peaks were easily observable up to our highest tempera-
ture and pressure values (700 K, 8 GPa): a typical Bril-
louin spectrum collected in these conditions is shown in
Fig. 5.

The sound velocity is deduced from the Brillouin fre-
quency shift using Eqs. (1) and (4). We note that, al-
though our index measurements only extends to 599 K
and 4.7 GPa, the insensitivity of n with respect to tem-
perature changes and its smooth variation with respect
to density gives good confidence in extrapolating Eq. (4)
in the near region. The evolution of vs with pressure and
temperature is represented in Fig. 6. The temperature
dependence of the sound velocity is small compared to
its pressure dependence and becomes almost unobserv-
able above 4 GPa.

There are only two previous sources of experimental
data for the high-pressure sound velocity which can be
compared to ours; the first one is from Pitaevskaya and
Bilevich32 who performed ultrasound measurements up
to 0.45 GPa and 473 K, with an estimated uncertainty
of 1-2%; the second one is from Shimizu et al.

30, who
performed Brillouin scattering experiments at room tem-
perature up to 0.55 GPa. Fig. 7 shows the comparison
at 300 K (top) and 400 K (bottom) of the experimental
data, together with the predictions from the SWEOS. At
both temperatures, the sound velocities determined from
the SWEOS reproduce very well the ultrasonic measure-
ments of Ref. [32]: there is a maximum deviation of 1%
at 300K and 2% at 400 K, i.e. within the experimental
error bars. At 300 K, Shimizu et al.’s sound velocities
are smaller than those of Pitaevskaya and Bilevich with
differences up to 40%. Our results are in much better
agreement with those of Pitaevskaya and Bilevich, al-
though there is a systematic deviation towards higher
values of about 3%. At 400 K, our sound velocities are
larger than the ultrasonic ones by about 8% up to 0.45
GPa, and the deviation with respect to the SWEOS in-
creases up to 9% at 2.17 GPa.

Since the frequencies at which the ultrasonic and Bril-
louin experiments probe the sound velocity are differ-
ent, the apparent discrepancy between the two data sets
suggests the presence of a dispersion effect as the one
observed in a relaxation phenomenon. As a matter of
fact, in a molecular fluid like CO2 , a thermal relaxation
of the vibrational degrees of freedom of the molecule is
expected33 whenever the relaxation time τv of these vi-
brations, i.e. the time needed to reach thermal equilib-
rium between vibrational and translational modes, be-
comes smaller than the probe period 1/ω. As a con-
sequence, for ωτv ∼ 1 the sound velocity goes from its
low-frequency (“static”) value v0

s to an unrelaxed value
v∞s .

The presence of a thermal relaxation in gaseous and
liquid CO2 is a long-known and well documented phe-
nomenon34,35,36. The relaxation frequency ωr was found
to be a linear function of density in the gas phase,
whereas it increases more rapidly in the liquid. The val-
ues for ωr lie in the range 0.016-25 MHz for pressures
between 0.7·10−3 and 0.16 GPa. The ultrasonic mea-
surements of Pitaevskaya and Bilevich were performed
at frequencies between 0.36 and 5 MHz in the pressure
range 0.05–0.45 GPa; this is below the relaxation fre-
quency, thus the observed sound velocities correspond
to v0

s . On the other hand, in our Brillouin scattering
experiments the frequency of the probed thermal sound
waves was in the range of 4.6–26 GHz, which is much
higher than the reported values of ωr. We thus expect to
be in the unrelaxed region, as already found in previous
Brillouin studies at low pressure37,38.

In order to test this hypothesis, we calculated the pre-
dicted thermodynamic values of the sound velocity ob-
tained by applying the procedure described in Appendix
A to our measured Brillouin velocities. They are com-
pared to ultrasonic and SWEOS velocities in Fig. 8. It
can be seen that at room temperature the agreement with
ultrasonic measurements is now very good, thus support-
ing the fact that Brillouin frequencies are higher than the
relaxation frequency. At 400 K our ”corrected” sound ve-
locities remain about 4% larger than the ultrasonic ones
up to 0.45 GPa, but they now both agree within error
bars. At higher pressures, the deviation from SWEOS
predictions becomes larger than the experimental un-
certainty, which shows that this EoS becomes increas-
ingly inaccurate outside its validity range. At 700 K and
8 GPa, the SWEOS underestimates the sound velocity
by about 9%.

For the purpose of integration, as described below, we
looked for a convenient analytical form to represent both
pressure and temperature dependence of the Brillouin
sound velocity. We found that the following relation re-
produces well our data, except for a few points at low
pressure:

ln(vs) = (a0 + a1T ) + (b0 + b1T ) ln(P ) (5)

with a0 = 0.926(5), a1 = −0.00026(1), b0 = 0.279(3) and
b1 = 0.000134(7) for vs in km/s, P in GPa and T in K
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(numbers in parentheses give the standard error on the
last digit).

4. CALCULATION OF THE EQUATION OF

STATE

From the sound velocity data, corrected for the ther-
mal relaxation, the equation of state of fluid CO2 can be
obtained by recursively integrating the following equa-
tions:

∂ρ

∂P

∣

∣

∣

∣

∣

T

=
1

(v0
s)2

+
Tα2

Cp

(6)

∂cp

∂P

∣

∣

∣

∣

∣

T

= −T
∂2V

∂T 2

∣

∣

∣

∣

∣

P

(7)

where ρ, V, α, and cp are the density, specific volume,
volume thermal expansion and isobaric heat capacity re-
spectively. The method consists in integrating Eq. (6) in
a small temperature range around the desired isotherm,
by first neglecting the second term giving the correction
between isothermal and adiabatic compressions. From
the value of v∞s given by Eq. (5), v0

s is calculated using
Eqs. (A3)-(A4). The second term of Eq. (6) is then eval-
uated using the deduced value for α = 1/V (∂V/∂T ) and
the one of cp obtained by integrating Eq. (7). Eq. (6) is
integrated again and the procedure iterated until conver-
gence. This procedure was first tested using the sound
velocity derived from the SWEOS (which directly gives
v0

s); the calculated ρ, α and cp were in excellent agree-
ment with those directly derived from the SWEOS.

The integration starts at a point P0 for which density,
α, cp and cv need to be known. We chose P0 = 0.25 GPa,
value above which Eq. (5) provides a reliable representa-
tion of our data at all temperatures. The starting values
for the thermodynamic quantities were calculated using
the SWEOS, which provides a consistent frame for the
evaluation of any thermodynamic property. The uncer-
tainty at this pressure estimated by Span and Wagner is
±1% for density and ±2% for cp.

The calculated density vs pressure curves for
300 < T < 700 K are shown in Fig. 9. The propagation
of experimental error bars ∆vs on vs to the calculated ρ
was estimated by integrating Eqq. 6 and 7 using vs±∆vs.
The resulting error ∆ρ/ρ reaches 0.6%. However, this es-
timation does not include the uncertainty of 1% of the
initial density value given by the SWEOS. Furthermore,
the approximations underlying the procedure applied to
correct for the thermal relaxation introduce a larger un-
certainty on the sound velocity. The difference between
the density calculated with and without thermal correc-
tion on the velocity data is at most 2%. We thus indicate
2% as a reasonable estimate of the error for the present
density data.

When expressed on a logarithmic scale for ρ and P , an
analytical relation was found that well reproduces our
densities in the covered P − T range:

ln(ρ) =

2
∑

i=0

3
∑

j=0

aijT
i(ln(P ))j (8)

with the density expressed in g/cm3, P in GPa and T in
K. The aij parameters, obtained by a least-squares fit,
are listed in Table I.

The evolution of n with density, according to our new
equation of state, is well described by the polynomial
form:

n(ρ) = 1 + 0.21(1)ρ + 0.04(1)ρ2
− 0.017(5)ρ3 (9)

Fitting Eq. (5) to the thermodynamic values of the
sound velocity deduced from our calculations leads
to the following coefficients: a0 = 0.9249(5), a1 =
−0.000392(1), b0 = 0.2683(6) and b1 = 0.000197(1).

As mentioned in the Introduction, there are a number
of phenomenological equations of state for fluid CO2 .
These equations have usually been parameterized in or-
der to accurately reproduce the properties at low pressure
and around the critical point; their predictions at high
pressure need to be tested against experimental data.

In Fig. 10 (a) and (b) we compare our calculated EoS
with the SWEOS and the PSEOS, respectively. As it
can be seen, our results show that the fluid becomes
less compressible than predicted by the SWEOS above
500 K, with a difference in density which grows continu-
ously larger with temperature, up to -4.2% at 8 GPa and
700 K. The PSEOS densities remain within about 2.2%
of our data and the general agreement is better than for
the SWEOS, although this EoS also tends to overesti-
mate the density at HP-HT.

Comparison with the classical molecular dynamics cal-
culations of Belonoshko and Saxena39 is reported in
Fig. 10 (c). For these simulations, an effective inter-
molecular pair potential of the exp-6 form was used. A
fit to the densities obtained at various P -T points was
provided by the authors for 0.5 < P < 100 GPa and
400 < T < 4000 K. The discrepancy with respect to
the presently determined densities is within 2% at 400 K
but increases with temperature up to about -8.8% at 8
GPa and 700 K, largely outside the present uncertainty.
This finding indicates that the effective potential used in
these simulations is too soft at high P and T; this could
be corrected by adopting a larger value for the stiffness
parameter α of the exp-6 potential.

5. CONCLUSIONS

In this work we have first accurately determined the
melting curve of CO2 up to 800 K by visual observation
of the solid-fluid equilibrium and in-situ P -T measure-
ments. The melting line shows a continuous, monotonic
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increasing evolution with pressure in this P -T range, and
is very well reproduced by melting laws of the Simon-
Glatzel or Kechin form. The present determination is in
very good agreement with the work of Bridgman12 up to
366 K, but significantly deviate at higher T from data of
other authors2,13. Furthermore, we found that the solid
phase in equilibrium with the fluid remains phase I up
to 800 K, indicating that the I-IV-Fluid triple point is
located at higher temperature than previously thought.

Secondly, we have reported the first measurements of
the refractive index and Brillouin frequency shift in the
temperature and pressure range [300–700] K and [0.1–
8] GPa. From the deduced sound velocities, corrected for
the effect of thermal relaxation, we have calculated the
equation of state of fluid CO2 with an estimated uncer-
tainty of ∆ρ = 2% (Eq. 8, table I), and compared it
with various EoS proposed in the literature. The model
of Pitzer and Sterner provides the best agreement at the
highest P-T conditions, but all tested models were found
to overestimate the compressibility of the fluid at high
temperature. This work should thus be useful in order
to better constrain these EoS in the high pressure regime.

APPENDIX A: THERMAL RELAXATION AND

DISPERSION OF THE SOUND VELOCITY.

The thermodynamic definition of the adiabatic sound
velocity v0

s is:

(v0
s)2 = (c0

p/c0
v)

dP

dρ

∣

∣

∣

∣

T

(A1)

where c0
p and c0

v are the thermodynamic (or“static”) val-
ues of the specific heats at constant pressure and constant
volume respectively. As long as the frequency ω at which
the sound waves are probed remain below any relaxation

frequency, then the measured sound velocity is given by
Eq. (A1).

The specific heats include several contributions, one of
which, cvib, is due to the vibrational degrees of freedom
of the molecules. In the condition ωτv ≃ 1 (τv being the
thermal relaxation time), the contribution to the specific
heat from the vibrational modes is modulated by their
degree of relaxation. For ωτv ≫ 1, these modes will be
frozen-like and their contribution to the specific heats
relaxes out33, so that the effective specific heats will be
c∞i = c0

i − cvib, with i = p, v. The unrelaxed sound
velocity may then be calculated as:

(v∞)2 = (c∞p /c∞v )
dP

dρ

∣

∣

∣

∣

T

(A2)

and thus:

(v0/v∞)2 = (c0
p/c0

v)(c
∞
v /c∞p ) (A3)

The value of cvib may be deduced from the knowledge
of the vibrational frequencies νi and their degeneracies
gi, using the Planck-Einstein formula (R is the ideal gas
constant):

cvib = R
∑

i

gi(hνi)
2/kBT 2 exp(−hνi/kBT )

(1 − exp(−hνi/kBT ))2
(A4)

To our knowledge, there are no data on the vibrational
frequencies of the fluid in our P − T range; however,
the measurements made on solid I showed that these
modes are very weakly pressure and temperature depen-
dent 40,41,42, which should also be valid for the fluid. The
estimation of cvib was thus based on the gas values for
the vibrational frequencies34, and assumed to be pressure
independent.
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Figures

• Fig. 1: (Color online) Phase diagram of CO2 as
presently known up to 20 GPa from the work of
Ref. [2], and modified to take into account the
experimental results of Ref. [3]. The dashed line
is the kinetic barrier between phases III and II.
The symbols show the experimental melting points
available in the literature. ◦: Bridgman12; ×:
Grace and Kennedy 13; �: Iota and Yoo 2.

• Fig. 2: (Color online) Experimental melting
points determined from three separate exper-
iments (•, H, N) along with literature data (◦
from Bridgman12, � from Grace and Kennedy13

and � from Iota and Yoo2). The solid line is
the fit to our data using the the Simon-Glatzel
melting law [Eq. (2) with a=(0.403 ± 0.005) GPa,
b=(2.58± 0.01)]; the dotted lines are guides to the
eyes. The inset shows a photograph of the single
crystal (a) in equilibrium with its melt (b) taken
at 560 K. The pressure gauges are visible: ruby
(c), cBN (d) and SrB4O7:Sm2+ (e).

• Fig. ??: Raman spectra collected on the solid
phase in equilibrium with the melt along the
melting curve at 430 K, 733 K and 800 K. A
spectrum of phase I at 300 K and 2.1 GPa and one
of phase IV at 580 K and 15 GPa (dashed line) are
shown for comparison.

• Fig. 4: (Color online) Refractive index n of
fluid CO2 as a function of pressure. Diamonds:
this work; crosses: Ref. [30]; squares: Ref. [31].
Inset: same data plotted as a function of the
SWEOS predicted density ρSW . The dashed line
is the fit to our data and those of Ref. [31] [Eq. (4)].

• Fig. 5: Brillouin spectrum from the CO2 sample
collected at 700 K and 8 GPa. The intensity was
scaled to emphasize the two Brillouin peaks B1
and B2 (Stokes and anti-Stokes components). The
weak features at ∼ ±0.8 cm−1 are the ”ghosts”
of the neighboring interference orders resulting
from the tandem arrangement of the Sandercock
interferometer27.

• Fig. 6: (Color online) Evolution of the sound
velocity as determined by the present Brillouin
scattering and refractive index measurements,
along isotherms at 300(+), 400(�), 500(•), 600(◦)
and 700 K(H). The error bars on sound velocities
include the ones for pressure and are more impor-
tant at low pressure due to the larger sensitivity of
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the sound velocity to variations of pressure. The
inset shows a zoom of the 0-2 GPa region.

• Fig. 7: Comparison between present sound velocity
measurements (circles) at 300 K (a) and 400 K
(b) with the available literature data. Squares:
Pitaevskaya and Bilevich32; triangles: Shimizu
et al30. The sound velocities predicted from the
SWEOS are reported as dashed lines.

• Fig. 8: Comparison between the thermodynamic
sound velocity obtained by ”correcting” the Bril-
louin velocities for the effect of thermal relaxation
(◦), with the ultrasonic (�) and SWEOS (dashed
line) velocities at 300 K (a) and 400 K (b).

• Fig. 9: Calculated densities along several isotherms
in the range 300-700 K.

• Fig. 10 (Color online) The relative deviation
(ρexp − ρeos)/ρexp of our calculated densities with
respect to the predictions from SWEOS19 (a),
PSEOS,20 (b) and the simulations of Belonoshko
and Saxena39 (c) is reported for different isotherms
between 300 and 700 K.

Tables

• Tab. I: Values of the parameters aij obtained by
fitting Eq. (8) to the calculated densities.

FIGURES
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TABLES TABLE I:

i�
j 0 1 2 3

0 0.6521(5) 0.0301(7) −0.0139(8) −0.0150(6)

1 −0.000700(2) 0.000520(3) 8.1(3) · 10−5 4.0(2) · 10−5

2 2.14(2) · 10−7 −2.75(2) · 10−7 −1.28(3) · 10−7 −2.1(2) · 10−8


