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Abstract

We consider the Q-state Potts model in the random-cluster formu-

lation, defined on finite two-dimensional lattices of size L × N with

toroidal boundary conditions. Due to the non-locality of the clusters,

the partition function Z(L,N) cannot be written simply as a trace of

the transfer matrix TL. Using a combinatorial method, we establish

the decomposition Z(L,N) =
∑

l,Dk
b(l,Dk)Kl,Dk

, where the characters

Kl,Dk
=

∑

i(λi)
N are simple traces. In this decomposition, the am-

plitudes b(l,Dk) of the eigenvalues λi of TL are labelled by the number

l = 0, 1, . . . , L of clusters which are non-contractible with respect to

the transfer (N) direction, and a representation Dk of the cyclic group

Cl. We obtain rigorously a general expression for b(l,Dk) in terms of

the characters of Cl, and, using number theoretic results, show that

it coincides with an expression previously obtained in the continuum

limit by Read and Saleur.



1 Introduction

The Q-state Potts model on a graph G = (V, E) with vertices V and

edges E can be defined geometrically through the cluster expansion of the

partition function [1]

Z =
∑

E′⊆E

Qn(E′)(eJ − 1)b(E′) , (1.1)

where n(E ′) and b(E ′) = |E ′| are respectively the number of connected com-

ponents (clusters) and the cardinality (number of links) of the edge subsets

E ′. We are interested in the case where G is a finite regular two-dimensional

lattice of width L and length N , so that Z can be constructed by a transfer

matrix TL propagating in the N -direction.

In [2], we studied the case of cyclic boundary conditions (periodic in the

N -direction and non-periodic in the L-direction). We decomposed Z into

linear combinations of certain restricted partition functions (characters) Kl

(with l = 0, 1, . . . , L) in which l bridges (that is, marked non-contractible

clusters) wound around the transfer (N) direction. We shall often refer to l

as the level. Unlike Z itself, the Kl could be written as (restricted) traces of

the transfer matrix, and hence be directly related to its eigenvalues. It was

thus straightforward to deduce from this decomposition the amplitudes in Z

of the eigenvalues of TL. The goal of this work is to repeat this procedure in

the case of toroidal boundary conditions.

Note that as in the cyclic case some other procedures exist. First, Read

and Saleur have given in [3] a general formula for the amplitudes, based

on the earlier Coulomb gas analysis of Di Francesco, Saleur, and Zuber [4].

They obtained that the amplitudes of the eigenvalues are simply b(0) = 1 at

the level l = 0 and b(1) = Q − 1 at l = 1. For l ≥ 2 they obtained that,

contrary to the cyclic case, there are several differents amplitudes at each
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level l. Their number is equal to q(l), the number of divisors of l. They are

given by:

b(l,m) = Λ(l, m; e0) + (Q − 1)Λ

(

l, m;
1

2

)

, (1.2)

where l is the level considered, and m is a divisor of l which labels the different

amplitudes for a given level. Λ is defined as:

Λ(l, m; e0) = 2
∑

d>0 : d|l

µ
(

m
m∧d

)

φ
(

l
d

)

l φ
(

m
m∧d

) cos(2πde0) . (1.3)

Here, µ and φ are respectively the Möbius and Euler’s totient function [5].

The Möbius function µ is defined by µ(n) = (−1)r, if n is an integer that is

a product n =
∏r

i=1 pi of r distinct primes, µ(1) = 1, and µ(x) = 0 otherwise

or if x is not an integer. Similarly, Euler’s totient function φ is defined for

positive integers n as the number of integers n′ such that 1 ≤ n′ ≤ n and

n ∧ n′ = 1. The value of e0 depends on Q and is given by:

√

Q = 2 cos(πe0) (1.4)

Note that in Eq. (1.3) we may write cos(2πde0) = T2d(
√

Q/2), where Tn(x)

is the n’th order Chebyshev polynomial of the first kind. The term (Q −
1)Λ(l, m; 1

2
) in Eq. (1.2) is due to configurations containing a cluster with

“cross-topology” [4, 3] (see later).

The drawback of the derivation in Ref. [3] is that since it relies ultimately

on free-field techniques it is a priori valid only at the usual ferromagnetic

critical point (J = Jc) and in the continuum limit (N, L → ∞). But one

may suspect, in analogy with the cyclic case, that these amplitudes would be

valid for any finite lattice and for any inhomogeneous (i.e., edge-dependent)

values of the coupling constants J .

To our knowledge, no algebraic study proving this statement does exist

in the literature. Indeed, when the boundary conditions are toroidal, the
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transfer matrix (of the related six-vertex model, to be precise) does no longer

commute with the generators of the quantum group Uq(sl(2)). Therefore,

there is no simple algebraic way of obtaining the amplitudes of eigenvalues,

although some progress has been made by considering representations of the

periodic Temperley-Lieb algebra. A good review is given by Nichols [7].

Chang and Shrock have studied the Potts model with toroidal conditions

from a combinatorial point of view [6]. Using a diagrammatic approach they

obtained some general results on the eigenvalue amplitudes. In particular,

they showed that the sum of all amplitudes at level l equals

b(l) ≡
l

∑

j=0

b
(l)
j =







∑l

j=0(−1)l−j 2l
l+j

(

l+j

l−j

)

Qj + (−1)l(Q − 1) for l ≥ 2
∑l

j=0(−1)l−j
(

l+j

l−j

)

Qj for l ≤ 2

(1.5)

They also argued that it was because TL enables permutations among the

bridges, due to the periodic boundary conditions in the transverse (L) di-

rection, that there were different amplitudes for a given level l. Without

them, all the amplitudes at level l would be equal (to a global factor) to b(l).

Finally, they computed explicitly the amplitudes at levels l = 2 and l = 3;

one may check that those results are in agreement with Eq. (1.2).

Using the combinatorial approach we developed in [2], we will make the

statements of Chang and Shrock more precise, and we will give in particular a

new interpretation of the amplitudes using the characters of the cyclic group

Cl. Then, by calculating sums of characters of irreducible representations

(irreps) of this group, we will reobtain Eq. (1.2) and thus prove its validity

for an arbitrary finite L×N lattice. As will become clear below, the argument

relies exclusively on counting correctly the number of clusters with non-trivial

homotopy, and so the conclusion will hold true for any edge-dependent choice

of the coupling constants J as well.
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Our approach will have to deal with several complications due to the

boundary conditions, the first of which is that the bridges can now be per-

muted (by exploiting the periodic L-direction). In the following this leads

us to consider decomposition of Z into more elementary quantities than Kl,

namely characters Kl,P labeled by l and a permutation of the cyclic group

Cl. However, Kl,P is not simply linked to the eigenvalues of T , and thus we

will further consider its expansion over related quantities Kl,Dk
, where Dk

labels an irreducible representation (irrep) of Cl. It is Kl,Dk
which are the

elementary quantities in the case of toroidal boundary conditions.1

The structure of the article is as follows. In section 2, we define appro-

priate generalisations of the quantities we used in the cyclic case [2] and we

expose all the mathematical background we will need. Then, in section 3,

we decompose restricted partition functions—and as a byproduct the total

partition function—into characters Kl and Kl,P . Finally, in section 4, we

obtain a general expression of the amplitudes of eigenvalues which involves

characters of irreps of Cl. Using number theoretic results (Ramanujan sums)

we then proceed to prove its equivalence with the formula (1.2) of Read and

Saleur.

1In a previous publication on the same subject [8] we have studied the decomposition

in terms of the full symmetric group Sl. The present approach, using only the cyclic group

Cl, is far simpler and for the first time allows us to prove Eq. (1.2). Note also that some

misprints had cropped up in Ref. [8], giving in particular wrong results for the amplitudes

at level l = 4.
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2 Algebraic preliminaries

2.1 Definition of the Zj,n1,P

As in the cyclic case, the existence of a periodic boundary condition allows

for non-trivial clusters (henceforth abbreviated NTC), i.e., clusters which are

not homotopic to a point. However, the fact that the torus has two periodic

directions means that the topology of the NTC is more complicated that in

the cyclic case. Indeed, each NTC belongs to a given homotopy class, which

can be characterised by two coprime numbers (n1, n2), where n1 (resp. n2)

denotes the number of times the cluster percolates horizontally (resp. verti-

cally) [4]. The fact that all clusters (non-trivial or not) are still constrained

by planarity to be non-intersecting induces a convenient simplification: all

NTC in a given configuration belong to the same homotopy class. For com-

parison, we recall that in the cyclic case the only possible homotopy class for

a NTC was (n1, n2) = (1, 0).

It is a well-known fact [9,10] that the difficulty in decomposing the Potts

model partition function—or relating it to partition functions of locally equiv-

alent models (of the six-vertex or RSOS type)—is due solely to the weighing

of the NTC. Although a typical cluster configuration will of course contain

trivial clusters (i.e., clusters that are homotopic to a point) with seemingly

complicated topologies (e.g., trivial clusters can surround other trivial clus-

ters, or be surrounded by trivial clusters or by NTC), we shall therefore

tacitly disregard such clusters in most of the arguments that follow. Note

also that a NTC that span both lattice directions2 in the present context

corresponds to n1 = 1.

2Such a cluster was referred to as “degenerate” in Ref. [10], and as a cluster having

“cross-topology” in Ref. [4].
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Figure 1: Cluster configuration with j = 2 non-trivial clusters (NTC), here

represented in red and blue colours. Each NTC is characterised by its number

of branches, n1 = 2, and by the permutation it realises, P = (12). Within a

given configuration, all NTC have the same topology.

Consider therefore first the case of a configuration having a single NTC.

For the purpose of studying its topology, we can imagine that is has been

shrunk to a line that winds the two periodic directions (n1, n2) times. In

our approach we focus on the the properties of the NTC along the direction

of propagation of the transfer matrix TL, henceforth taken as the horizontal

direction. If we imagine cutting the lattice along a vertical line, the NTC

will be cut into n1 horizontally percolating parts, which we shall call the n1

branches of the NTC. Seen horizontally, a given NTC realises a permutation

P between the vertical coordinates of its n1 branches, as shown in Fig. 1.

Up to a trivial relabelling of the vertical coordinate, the permutation P is

independent of the horizontal coordinate of the (imaginary) vertical cut, and

so, forms part of the topological description of the NTC. We thus describe

totally the topology along the horizontal direction of a NTC by n1 and the

permutation P ∈ Sn1.

Note that there are restrictions on the admissible permutations P . Firstly,

P cannot have any proper invariant subspace, or else the corresponding NTC
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would in fact correspond to several distinct NTC, each having a smaller value

of n1. For example, the case n1 = 4 and P = (13)(24) is not admissible, as P

corresponds in fact to two distinct NTC with n1 = 2. In general, therefore,

the admissible permutations P for a given n1 are simply cyclic permutations

of n1 coordinates. Secondly, planarity implies that the different branches of

a NTC cannot intersect, and so not all cyclic permutations are admissible P .

For example, the case n1 = 4 and P = (1324) is not admissible. In general

the admissible cyclic permutations are characterised by having a constant

coordinate difference between two consecutive branches, i.e., they are of the

form (k, 2k, 3k, . . .) for some constant k, with all coordinates considered mod-

ulo n1. For example, for n1 = 4, the only admissible permutations are then

finally (1234) and (1432).3

Consider now the case of a configuration with several NTC. Recalling that

all NTC belong to the same homotopy class, they must all be characterised

by the same n1 and P . Alternatively one can say that the branches of the

different NTC are entangled. Henceforth we denote by j the number of NTC

with n1 ≥ 1 in a given configuration. Note in particular that, seen along the

horizontal direction, configurations with no NTC and configurations with one

or more NTC percolating only vertically are topologically equivalent. This

is an important limitation of our approach.

Let us denote by Zj,n1,P the partition function of the Potts model on an

L × N torus, restricted to configurations with exactly j NTC characterised

3Note that we consider here the permutations that can be realised by a single cluster,

not all the admissible permutations at a given level. We shall come back to this issue later

(in Sec. 3.3) when we discuss in detail the attribution of “black points” to one or more

different NTC. It will then be shown that the admissible permutations at level l correspond

to the cyclic group Cl. For example, the admissible permutations at level l = 4 are Id,

(1234), (13)(24) and (1432).
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by the index n1 ≥ 1 and the permutation P ∈ Sn1; if P is not admissi-

ble, or if n1j > L, we set Zj,n1,P = 0. Further, let Zj,n1 be the partition

function restricted to configurations with j NTC of index n1, let Zj be the

partition function restricted to configurations with j NTC percolating hor-

izontally, and let Z be the total partition function. Obviously, we have

Zj,n1 =
∑

P∈Sn1
Zj,n1,P , and Zj =

∑L

n1=1 Zj,n1, and Z =
∑L

j=0 Zj. In par-

ticular, Z0 corresponds to the partition function restricted to configurations

with no NTC, or with NTC percolating only vertically.

In the case of a generic lattice all the Zj,n1,P are non-zero, provided that

P is an admissible cyclic permutation of length n1, and that n1j ≤ L. The

triangular lattice is a simple example of a generic lattice. Note however that

other regular lattices may be unable to realise certain admissible P . For

example, in the case of a square lattice or a honeycomb lattice, all Zj,n1,P

with n1j = L and n1 > 1 are zero, since there is not enough “space” on the

lattice to permit all NTC branches to percolate horizontally while realising

a non-trivial permutation. Such non-generic lattices introduce additional

difficulties in the analysis which have to be considered on a case-to-case

basis. In the following, we consider therefore the case of a generic lattice.

2.2 Structure of the transfer matrix

The construction and structure of the transfer matrix T can be taken over

from the cyclic case [2]. In particular, we recall that T acts towards the right

on states of connectivities between two time slices (left and right) and has a

block-trigonal structure with respect to the number of bridges (connectivity

components linking left and right) and a block-diagonal structure with re-

spect to the residual connectivity among the non-bridged points on the left

time slice. As before, we denote by Tl the diagonal block with a fixed number

9



of bridges l and a trivial residual connectivity. Each eigenvalue of T is also

an eigenvalue of one or more Tl. In analogy with [6] we shall sometimes call

Tl the transfer matrix at level l. It acts on connectivity states which can be

represented graphically as a partition of the L points in the right time slice

with a special marking (represented as a black point) of precisely l distinct

components of the partition (i.e., the components that are linked to the left

time slice via a bridge).

A crucial difference with the cyclic case is that for a given partition of

the right time slice, there are more possibilities for attributing the black

points (for 0 < l < L). Considering for the moment the black points to

be indistinguishable, we denote the corresponding dimension as ntor(L, l). It

can be shown [6] that

ntor(L, l) =



















1
L+1

(

2L

L

)

for l = 0
(

2L−1
L−1

)

for l = 1
(

2L

L−l

)

for 2 ≤ l ≤ L

(2.1)

and clearly ntor(L, l) = 0 for l > L.

Suppose now that a connectivity state at level l is time evolved by a

cluster configuration of index n1 and corresponding to a permutation P .

This can be represented graphically by adjoining the initial connectivity state

to the left rim of the cluster configuration, as represented in Fig. 1, and

reading off the final connectivity state as seen from the right rim of the

cluster configuration. Evidently, the positions of the black points in the final

state will be permuted with respect to their positions in the intial state,

according to the permutation P . As we have seen, not all P are admissible.

We will show in the subsection 3.3 that the possible permutations at a given

level l (taking into account all the ways of attributing l black points to cluster
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configurations) are the elements of the cyclic group Cl.
4the number of possible

connectivity states without taking into account the possible permutations

between black points, the dimension of Tl is l ntor(L, l), as Cl has l distinct

elements.

Let us denote by |vl,i〉 (where 1 ≤ i ≤ ntor(L, l)) the ntor(L, l) standard

connectivity states at level l. The full space of connectivities at level l, i.e.,

with l distinguishable black points, can then be obtained by subjecting the

|vl,i〉 to permutations of the black points. It is obvious that Tl commutes with

the permutations between black points (the physical reason being that Tl

cannot “see” to which positions on the left time slice each bridge is attached).

Therefore Tl itself has a block structure in a appropriate basis. Indeed, Tl

can be decomposed into Tl,D where Tl,D is the restriction of Tl to the states

transforming according to the irreducible representation (irrep) D of Cl. Note

that as Cl is a abelian group of l elements, it has l irreps of dimension 1.

One can obtain the corresponding basis by applying the projectors pD on all

the connectivity states at level l, where pD is given by

pD =
1

l

∑

P

χ̄D(P ) P . (2.2)

Here χD(P ) is the character of P in the irrep D and χ̄D(P ) is its complex

conjugate. The application of all permutations of Cl on any given standard

vector |vl,i〉 generates a regular representation of Cl, which contains therefore

once each representation D (of dimension 1). As there are ntor(L, l) standard

vectors, the dimension of Tl,D is thus simply ntor(L, l).5

4We proceed differently from Chang and Shrock [6] who considered the group Sl of all

permutations at level l, not just the admissible permutations. Therefore the dimension of

Tl they obtained was l! ntor(L, l). Although this approach is permissible (since in any case

Tl will have zero matrix elements between states which are related by a non-admissible

permutation) it is more complicated [8] than the one we present here.
5Note that if had considered the group Sl instead of Cl we would have had algebraic
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2.3 Definition of the Kl,D

We now define, as in the cyclic case [2], Kl as the trace of (Tl)
N . Since

Tl commutes with Cl, we can write

Kl = l

ntor(L,l)
∑

i=1

〈vl,i| (Tl)
N |vl,i〉 . (2.3)

In distinction with the cyclic case, we cannot decompose the partition func-

tion Z over Kl because of the possible permutations of black points (see

below). We shall therefore resort to more elementary quantities, the Kl,D,

which we define as the trace of (Tl,D)N . Since both Tl and the projectors pD

commute with Cl, we have

Kl,D = l

ntor(L,l)
∑

i=1

〈vl,i|pD (Tl)
N |vl,i〉 . (2.4)

Obviously one has

Kl =
∑

D

Kl,D , (2.5)

the sum being over all the l irreps D of Cl. Recall that in the cyclic case the

amplitudes of the eigenvalues at level l are all identical. This is no longer the

case, since the amplitudes depend on D as well. Indeed

Kl,D =

ntor(L,l)
∑

k=1

(λl,D,k)
N . (2.6)

In order to decompose Z over Kl,D we will first use auxiliary quantities,

the Kl,Pl
defined as:

Kl,Pl
=

ntor(L,l)
∑

i=1

〈vl,i| (Pl)
−1 (Tl)

N |vl,i〉 , (2.7)

degeneracies, which would have complicated considerably the determination of the ampli-

tudes of eigenvalues. In fact, it turns out that even by considering Cl there are degeneracies

between eigenvalues of different levels, as noticed by Chang and Shrock [6]. But these de-

generacies depend of the width L, and have no simple algebraic interpretation.
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Pl being an element of the cyclic group Cl. So Kl,Pl
can be thought of

as modified traces in which the final state differs from the initial state by

the application of Pl. Note that Kl,Id is simply equal to Kl

l
. Because of

the possible permutations of the black points, the decomposition of Z will

contain not only the Kl,Id but also all the other Kl,Pl
, with Pl ∈ Cl. We will

show that the coefficients before Kl,Pl
coincide for all Pl ∈ Cl that belong to

the same class with respect to the symmetric group Sl.
6 We will note these

classes (di, n1) (corresponding to a level l = din1) and it is thus natural to

define K(di,n1) as:

K(di,n1) =
∑

Pl∈(di,n1)

Kl,Pl
, (2.8)

the sum being over elements Pl ∈ Cl belonging to the class (di, n1). This

definition will enable us to simplify some formulas, but ultimately we will

come back to the Kl,Pl
.

Once we will obtain the decomposition of Z into Kl,Pl
, we will need to

express the Kl,Pl
in terms of the Kl,D to obtain the decomposition of Z into

Kl,D, which are the quantities directly linked to the eigenvalues. Eqs. (2.4)

and (2.2) yield a relation between Kl,D and Kl,Pl
:

Kl,D =
∑

Pl

χD(Pl)Kl,Pl
. (2.9)

These relations can be inverted so as to obtain Kl,Pl
in terms of Kl,D, since

the number of elements of Cl equals the number of irreps D of Cl. Multiply-

ing Eq. (2.9) by χ̄D(P ′
l ) and summing over D, and using the orthogonality

relation
∑

D χ̄D(Pl)χD(P ′
l ) = lδPl,P

′

l
one easily deduces that:

Kl,Pl
=

∑

D

χ̄D(Pl)

l
Kl,D (2.10)

6Since Cl is an abelian group, each of its elements defines a class of its own, if the

notion of class is taken with respect to Cl itself. What we need here is the non-trivial

classes defined with respect to Sl.
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Note that
∑

D

χ̄D(Pl) = l δPl,Id (2.11)

2.4 Useful properties of the group Cl

In the following we will obtain an expression of the amplitudes at the

level l which involves sums of characters of the irreps D of Cl. In order to

reobtain Eq. (1.2), we will have to calculate these sums. We give here the

results we shall need.

Cl is the group generated by the permutation El = (12 . . . l). It is abelian

and consists of the l elements Ea
l = (El)

a, with 1 ≤ a ≤ l.7 The cycle

structure of these elements is given by a simple rule. We denote by di (with

1 ≤ i ≤ q(l)) the integer divisors of l (in particular d1 = 1 and dq(l) = l),

and by Adi
the set of integers which are a product of di by an integer n such

that 1 ≤ n ≤ l
di

and n ∧ l
di

= 1,8 If a ∈ Adi
then Ea

l consists of di entangled

cycles of the same length l
di

. We denote the corresponding class
(

di,
l
di

)

.

The number of elements of Ali, and so the number of such Ea
l , is equal to

φ
(

l
di

)

, where φ is Euler’s totient function whose definition has been recalled

in the introduction.9

Consider C6 as an example. The elements of C6 in the class (1, 6) are E6 =

(123456) and E5
6 = (165432). The elements in (2, 3) are E2

6 = (135)(246) and

E4
6 = (153)(264).10 There is only one element E3

6 = (14)(25)(36) in (3, 2),

and only E6
6 = Id in (6, 1). Indeed, the integer divisors of 6 are 1, 2, 3, 6,

and we have A1 = {1, 5}, A2 = {2, 4}, A3 = {3}, A6 = {6}.
Cl has l irreps denoted Dk, with 1 ≤ k ≤ l. The corresponding characters

7With the chosen convention, the identity corresponds to a = l.
8Note that the union of all the sets Adi

is {1, 2, . . . , l}.
9Note that

∑

di|l
φ

(

l
di

)

= l.
10Note that for example (123)(456) is not an element of C6 since it is not entangled.
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are given by χDk
(Ea

l ) = exp
(

−i2π ka
l

)

.11 We will have to calculate in the

following the sums given by:

∑

Pl∈
(

di,
l

di

)

χ̄Dk
(Pl) =

∑

a∈Adi

exp

(

i2π
ka

l

)

. (2.12)

These sums are slight generalizations of Ramanujan’s sums.12 Using Theorem

272 of Ref. [5], we obtain that:

∑

Pl∈
(

di,
l

di

)

χ̄Dk
(Pl) =

µ
(

m
m∧di

)

φ
(

l
di

)

φ
(

m
m∧di

) , (2.13)

where k is supposed to be in Ad and m is given by l
d
. The Möbius function µ

has been defined in the Introduction. Note that all k which are in the same

Ad lead to the same sum; we can therefore restrain ourselves to k equal to

an integer divisor of l in order to have the different values of these sums.

Indeed, we will label the different amplitudes at level l by m.

3 Decomposition of the partition function

3.1 The characters Kl

By generalising the working for the cyclic case, we can now obtain a

decomposition of the Kl in terms of the Zj,n1. To that end, we first determine

the number of states |vl,i〉 which are compatible with a given configuration of

Zj,n1, i.e., the number of initial states |vl,i〉 which are thus that the action

by the given configuration produces an identical final state. The notion of

compatibility is illustrated in Fig. 2.

11With the chosen convention, the identity representation is denoted Dl.
12The case where the sum is over a ∈ A1 corresponds exactly to a Ramanujan’s sum.
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Figure 2: Standard connectivity states at level l = 1 which are compatible

with a given cluster configuration contributing to Z2,1.

We consider first the case n1 = 1 and suppose that the k’th NTC connects

onto the points {yk}. The rules for constructing the compatible |vl,i〉 are

identical to those of the cyclic case:

1. The points y /∈ ∪j
k=1{yk} must be connected in the same way in |vl,i〉

as in the cluster configuration.

2. The points {yk} within the same bridge must be connected in |vl,i〉.

3. One can independently choose to associate or not a black point to each

of the sets {yk}. One is free to connect or not two distinct sets {yk}
and {yk′}.

The choices mentioned in rule 3 leave ntor(j, l) possibilities for constructing a

compatible |vl,i〉. The coefficient of Zj,1 in the decomposition of Kl is therefore

l ntor(j,l)
Qj , since the allowed permutation of black points in a standard vector

16



Figure 3: Standard connectivity states at level l = 1 which are compatible

with a given cluster configuration contributing to Z2,2.

|vl,i〉 allows for the construction of l distinct states, and since the weight of

the j NTC in Kl is 1 instead of Qj . It follows that

Kl =

L
∑

j=l

l ntor(j, l)
Zj,1

Qj
for n1 = 1. (3.1)

We next consider the case n1 > 1. Let us denote by {yk,m} the points

that connect onto the m’th branch of the k’th NTC (with 1 ≤ m ≤ n1 and

1 ≤ k ≤ j), and by {yk} = ∪n1
m=1{yk,m} all the points that connect onto

the k’th NTC. As shown in Fig. 3, the |vl,i〉 which are compatible with this

configuration are such that

1. The connectivities of the points y /∈ ∪j
k=1{yk} are identical to those

appearing in the cluster configuration.

2. All points {yk,m} corresponding to the branch of a NTC must be con-

nected.
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3. We must now count the number of ways we can link the branches of

the k NTC and attribute l black points so that the connection and the

position of the black points are unchanged after action of the cluster

configuration. For l ≥ 2, there are no compatible states (indeed it

is not possible to respect planarity and to leave the position of the

black points unchanged). For l = 1 and l = 0 there are respectively
(

2j−1
j

)

= 1
2
·
(

2j

j

)

and
(

2j

j

)

compatible states. Note that these results do

not depend on the precise value of n1 (for n1 > 1).

The rule 3 implies that the decomposition of Kl with l ≥ 2 does not contain

any of the Zj,n1 with n1 > 1. We therefore have simply

Kl =

L
∑

j=l

l ntor(j, l)
Zj,1

Qj
for l ≥ 2 . (3.2)

The decomposition of K1 and K0 are given by:

K1 =

L
∑

j=1

ntor(j, 1)
Zj,1

Qj
+

⌊L
2 ⌋

∑

j=1

(

2j

j

)

2

Zj,n1>1

Qj
(3.3)

K0 =
L

∑

j=0

ntor(j, 0)
Zj,1

Qj
+

⌊L
2 ⌋

∑

j=1

(

2j

j

)

Zj,n1>1

Qj
. (3.4)

Note that the coefficients in front of Zj,n1 do not depend on the precise value

of n1 when n1 > 1. To simplify the notation we have defined Z0,1 = Z0.

3.2 The coefficients b(l)

Since the coefficients in front of Zj,1 and Zj,n1>1 in Eqs. (3.3)–(3.4) are

different, we cannot invert the system of relations (3.2)–(3.4) so as to obtain

Zj ≡ Zj,1+Zj,n1>1 in terms of the Kl. It is thus precisely because of NTC with

several branches contributing to Zj,n1>1 that the problem is more complicated

than in the cyclic case.
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In order to appreciate this effect, and compare with the precise results

that we shall find later, let us for a moment assume that Eq. (3.2) were valid

also for l = 0, 1. We would then obtain

Zj,1 =
L

∑

l=j

b
(l)
j

Kl

l
, (3.5)

where the coefficients b
(l)
j have already been defined in Eq. (1.5). The coef-

ficients b(l) play a role analogous to those denoted c(l) in the cyclic case [2];

note also that b(l) = c(l) for l ≤ 2. Chang and Schrock have developed a

diagrammatic technique for obtaining the b(l) [6].

Supposing still the unconditional validity of Eq. (3.2), one would obtain

for the full partition function

Z =
L

∑

l=0

b(l) Kl

l
. (3.6)

This relation will be modified due to the terms Zj,n1>1 realising permuta-

tions of the black points, which we have here disregarded. To get things

right we shall introduce irrep dependent coefficients b(l,D) and write Z =
∑L

l=0

∑

D b(l,D)Kl,D. Neglecting Zj,n1>1 terms would lead, according to Eq. (3.6),

to b(l,D) = b(l)

l
independently of D. We shall see that the Zj,n1>1 will lift this

degeneracy of amplitudes in a particular way, since there exist certain rela-

tions between the b(l,D) and the b(l).

In order to simplify the formulas we will obtain later, we define the coef-

ficients b̃(l) for l ≥ 1 by:

b̃(l) =
l

∑

j=0

(−1)l−j 2l

l + j

(

l + j

l − j

)

Qj + (−1)l(Q − 1) . (3.7)

For l ≥ 2, b̃(l) is simply equal to b(l), they are different only for l = 1, as we

have b(1) = Q− 1 but b̃(1) = −1. In order to reobtain the expression (1.2) of
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Read and Saleur for the amplitudes we will use that:

b̃(l) = 2 cos(2πle0) + (−1)l(Q − 1) , (3.8)

where e0 has been defined in Eq. (1.4).

3.3 Decomposition of the Kl,Pl

The relations (3.2)–(3.4) were not invertible due to an insufficient number

of elementary quantities Kl. Let us now show how to produce a development

in terms of Kl,Pl
, i.e., taking into account the possible permutations of black

points. This development turns out to be invertible.

A standard connectivity state with l black points is said to be Pl-compatible

with a given cluster configuration if the action of that cluster configuration

on the connectivity state produces a final state that differs from the initial

one just by a permutation Pl of the black points. This generalises the notion

of compatibility used in Sec. 3.1 to take into account the permutations of

black points.

Let us first count the number of standard connectivities |vl,i〉 which are Pl-

compatible with a cluster configuration contributing to Zj,n1,P . For n1 = 1,

Sn1 contains only the identity element Id, and so the results of Sec. 3.1

apply: the Zj,1 contribute only to Kl,Id. We consider next a configuration

contributing to Zj,n1,P with n1 > 1. The |vl,i〉 which are Pl-compatible with

this configuration satisfy the same three rules as given in Sec. 3.1 for the case

n1 > 1, with the slight modification of rule 3 that the black points must be

attributed in such a way that the final state differs from the initial one by a

permutation Pl.

This modification makes the attribution of black points considerably more

involved than was the case in Sec. 3.1. First note that not all the Pl are ad-
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Figure 4: Standard connectivity states at level l = 2 which are (12)-

compatible with a given cluster configuration contributing to Z2,2. The ac-

tion of the cluster configuration on these connectivity states permutes the

positions of the two black points.

missible. To be precise, the cycle decomposition of the allowed permutations

can only contain P , as P is the permutation between the branches realised

by a single NTC. Therefore the admissible permutations contain only P and

are such that l = din1, denoting by di the number of times P is contained.

We note (di, n1) the corresponding classes of permutations and K(di,n1) the

corresponding K, see Eq. (2.8). Note that the number of classes of admissible

permutations at a given level l is equal to the number of integers di dividing

l, i.e. q(l). Furthermore, inside these classes, not all permutations are admis-

sible. Indeed, the entanglement of the NTC imply the entanglement of the

structure of the allowed permutations. We deduce from all this rules that, as

announced, the admissible permutations at level l are simply the elements of

the cyclic group Cl.
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Let us now consider the decomposition of Kl,Pl
, which is depicted in Fig. 4,

Pl being an authorized permutation different from identity and containing

di times the permutation P of length n1. Then, only the Zj,n1,P , with j ≥
di, contribute to the decomposition of Kl,Pl

. We find that the number of

|vl,i〉 which are Pl-compatible with a given clusters configuration of Zj,n1,P is
(

2j

j−di

)

.13 Therefore we have:

Kl,Pl
=

⌊

L
n1

⌋

∑

j=di

(

2j

j − di

)

Zj,n1,P

Qj
. (3.9)

From this we infer the decomposition of K(di,n1):

K(di,n1) =

⌊

L
n1

⌋

∑

j=di

(

2j

j − di

)

Zj,n1

Qj
. (3.10)

We will use the decomposition of K(di,n1) in the following as it is simplier to

work with Zj,n1 than with Zj,n1,P (but one could consider the Zj,n1,P too).

It remains to study the special case of Pl = Id. This is in fact trivial.

Indeed, in that case, the value of n1 in Zj,n1 is no longer fixed, and one must

sum over all possible values of n1, taking into account that the case of n1 = 1

is particular. Since Kl,Id = Kl

l
, one obtains simply Eqs. (3.2)–(3.4) of Sec. 3.1

up to a global factor.

3.4 Decomposition of Zj over the Kl,Pl

To obtain the decomposition of Zj,n1 in terms of the Kl,Pl
, we invert

Eq. (3.10) for varying di and fixed n1 > 1 and we obtain:

Zj,n1 = Qj

⌊

L
n1

⌋

∑

di=j

(−1)di−j 2di

di + j

(

di + j

di − j

)

K(di,n1) for n1 > 1 . (3.11)

13Note that
(

2j

j−di

)

is simply ntor(j, di) for di ≥ 2 but is different for di = 1, see Eq. (2.1).
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Since the coefficients in this sum do not depend on n1 (provided that n1 > 1),

we can sum this relation over n1 and write it as

Zj,n1>1 = Qj

⌊L
2 ⌋

∑

di=j

(−1)di−j 2di

di + j

(

di + j

di − j

)

K(di,n1>1) (3.12)

where we recall the notations Zj,n1>1 =
∑L

n1=2 Zj,n1 and K(di,n1>1) =
∑L

n1=2 K(di,n1),

corresponding to permutations consisting of di cycles of the same length > 1.

Consider next the case n1 = 1. For j ≥ 2 one has simply

Zj,1 =
L

∑

l=j

b
(l)
j

l
Kl , (3.13)

recalling Eq. (3.5) and the fact that for l ≥ 2 the Zj,n1>1 do not appear in

the decomposition of Kl. However, according to Eqs. (3.3)–(3.4), the Zj,n1>1

do appear for l = 0 and l = 1, and one obtains

Z1,1 =

L
∑

l=1

b
(l)
1

l
Kl −

Q

2

⌊L
2 ⌋

∑

j=1

(

2j

j

)

Zj,n1>1

Qj
. (3.14)

Inserting the decomposition (3.12) of Zj,n1>1 into Eq. (3.14) one obtains the

decomposition of Z1,1 over Kl and K(di,n1):

Z1,1 =
L

∑

l=1

b
(l)
1

l
Kl + Q

⌊L
2 ⌋

∑

di=1

(−1)diK(di,n1>1) . (3.15)

We proceed in the same fashion for the decomposition of Z0 ≡ Z0,1, finding

Z0 =

L
∑

l=0

b
(l)
0

l
Kl −

1

2

⌊L
2 ⌋

∑

j=1

(

2j

j

)

Zj,n1>1

Qj
. (3.16)

Upon insertion of the decomposition (3.12) of Zj,n1>1, one arrives at

Z0 =
L

∑

l=0

b
(l)
0

l
Kl +

⌊L
2 ⌋

∑

di=1

(−1)diK(di,n1>1) . (3.17)
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Since Zj = Zj,1 + Zj,n1>1, we conclude from Eqs. (3.13)–(3.12) and from

Eq. (3.7) that, for any j,

Zj =
L

∑

l=j

b
(l)
j

l
Kl +

⌊L
2 ⌋

∑

di=j

b̃
(di)
j K(di,n1>1) . (3.18)

The decomposition of Z ≡ ∑

0≤j≤L Zj is therefore

Z =

L
∑

l=0

b(l)

l
Kl +

⌊L
2 ⌋

∑

di=1

b̃(di)K(di,n1>1) . (3.19)

4 Amplitudes of the eigenvalues

4.1 Decomposition of Z over the Kl,D

The culmination of the preceeding section was the decomposition (3.18)

of Zj in terms of Kl,Pl
(as K(di,n1) is the sum of the Kl,Pl

with Pl being an

element of Cl belonging to the class (di, n1)). However, it is the Kl,D which

are directly related to the eigenvalues of the transfer matrix T. For that

reason, we now use the relation (2.10) between the Kl,Pl
and the Kl,Dk

to

obtain the decomposition of Zj in terms of Kl,Dk
. The result is:

Zj =
∑

l,Dk

b
(l,Dk)
j Kl,Dk

(4.1)

where the coefficients b
(l,Dk)
j are given by

b
(l,Dk)
j =

b
(l)
j

l
+

∑

(di<l)|l

b̃
(di)
j

l

∑

Pl∈
(

di,
l

di

)

χ̄Dk
(Pl) . (4.2)

Indeed, Kl =
∑

Dk
Kl,Dk

, and since K(di,n1) corresponds to the level l = din1,

we have K(di,n1) =
∑

Dk∈Cdin1

χ̄Dk
((di,n1))

l
Kdin1,Dk

. (Recall that (di, n1) is the

class of permutations consisting of di cycles of the same length n1 = l
di

.)
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As explained in Sec. 3.2, the b
(l,Dk)
j are not simply equal to

b
(l)
j

l
because of

the n1 > 1 terms. Using Eq. (2.11) we find that they nevertheless obey the

following relation
∑

Dk∈Cl

b
(l,Dk)
j = b

(l)
j . (4.3)

But from Eq. (4.2) the b
(l,Dk)
j with l < 2j are trivial, i.e., equal to

b
(l)
j

l
in-

dependently of D. This could have been shown directly by considering the

decomposition (3.2) of Kl.

The decomposition of Z over Kl,Dk
is obviously given by

Z =
∑

l,Dk

b(l,Dk)Kl,Dk
(4.4)

where

b(l,Dk) =

l
∑

j=1

b
(l,Dk)
j , (4.5)

i.e.

b(l,Dk) =
b(l)

l
+

∑

(di<l)|l

b̃(di)

l

∑

Pl∈
(

di,
l

di

)

χ̄Dk
(Pl) . (4.6)

This is the central result of our article: we have obtained a rather simple

expression of the amplitudes b(l,D) in terms of the characters of the irrep D.

A priori, for a given level l, there should be l distinct amplitudes b(l,D) because

Cl has l distinct irreps D. However, because of the fact that two different

permutations in the same class
(

di,
l
di

)

correspond to the same coefficient

b(di), there are less distinct amplitudes: some b(l,D) are the same. Indeed,

the Eq. (4.6) giving the amplitudes of the eigenvalues contains generalized

Ramanujan’s sum, so using the subsection 2.4, the Dk whose k are in the

same Ad correspond to the same amplitude b(l,Dd). For example, at level

6, there are only four distinct amplitudes: b(6,D1), b(6,D2), b(6,D3) and b(6,D6),

since we have b(6,D1) = b(6,D5) and b(6,D2) = b(6,D4).
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An important consequence of the expression of the b(l,Dk) is that they

satisfy
∑

Dk∈Cl

b(l,Dk) = b(l) , (4.7)

i.e., the sum of the l (not necessarily distinct) amplitudes b(l,Dk) at level l

is equal to b(l). This has been previously noted by Chang and Shrock [6],

except that they stated it was the sum of l! amplitudes, not l, as they did

not notice that only permutations in the cyclic group Cl were admissible.

Note also that for l ≥ 2, Eq. (4.6) can be written more simply as:

b(l,Dk) =
∑

di|l

b̃(di)

l

∑

Pl∈
(

di,
l

di

)

χ̄Dk
(Pl) , (4.8)

since b(l) = b̃(l) for l ≥ 2. We now restrict ourselves to this case, as the

amplitudes at levels 0 and 1 are simply b(0) = 1 and b(1) = Q − 1.

4.2 Compact formula for the amplitudes

We now calculate the Ramanujan’s sums appearing in Eq. (4.8). Using

Eq. (2.13), we obtain:

b(l,m) =
∑

di|l

µ
(

m
m∧di

)

φ
(

l
di

)

lφ
(

m
m∧di

) b̃(di) (4.9)

Remember that m is given by l
d

for k in the set Ad, and so is an integer divisor

of l. Using the expression of the b̃(di) given in Eq. (3.8), we finally recover

the formula (1.2) of Read and Saleur. In particular, the term (−1)l(Q−1) in

the definition (3.7) of b̃(l) corresponds to degenerate cluster configurations.

Note that the number of different amplitudes at level l is simply equal

to the number of integer divisors of l. In particular, when l is prime, there

are only two different amplitudes: b(l,1) which corresponds to b(l,Dl) (Dl is the
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identity representation) and b(l,l) which corresponds to the l − 1 other b(l,Dk)

(as they are all equal). Using that b(1) = −1, we find:

b(l,1) =
b(l) − l + 1

l
(4.10)

b(l,l) =
b(l) + 1

l
(4.11)

This could have been simply directly showed using Eq. (4.8). Indeed, for l

prime, Cl contains Id and l − 1 cycles of length l. As b(1) = −1, we deduce

that b(l,1) = b(l)−l+1
l

. For b(l,l), one needs just use that
∑l−1

k=1 exp
(

i2πk
l

)

= −1.

5 Conclusion

To summarise, we have generalised the combinatorial approach developed

in Ref. [2] for cyclic boundary conditions to the case of toroidal boundary

conditions. In particular, we have obtained the decomposition of the parti-

tion function for the Potts model on finite tori in terms of the generalised

characters Kl,D. We proved that the formula (1.2) of Read and Saleur is

valid for any finite lattice, and for any inhomogeneous choice of the coupling

constants. Furthermore, our physical interpretation of this formula is new

and is based on the cyclic group Cl.

The eigenvalue amplitudes are instrumental in determining the physics

of the Potts model, in particular in the antiferromagnetic regime [11, 12].

Generically, this regime belongs to a so-called Berker-Kadanoff (BK) phase

in which the temperature variable is irrelevant in the renormalisation group

sense, and whose properties can be obtained by analytic continuation of the

well-known ferromagnetic phase transition [11]. Due to the Beraha-Kahane-

Weiss (BKW) theorem [13], partition function zeros accumulate at the val-

ues of Q where either the amplitude of the dominant eigenvalue vanishes, or
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where the two dominant eigenvalues become equimodular. When this hap-

pens, the BK phase disappears, and the system undergoes a phase transition

with control parameter Q. Determining analytically the eigenvalue ampli-

tudes is thus directly relevant for the first of the hypotheses in the BKW

theorem.

For the cyclic geometry, the amplitudes are very simple, and the real

values of Q satisfying the hypothesis of the BKW theorem are simply the

so-called Beraha numbers, Q = Bn = (2 cos(π/n))2 with n = 2, 3, . . ., in-

dependently of the width L. For the toroidal case, the formula is more

complicated, and there can be degeneracies of eigenvalues between different

levels which depend on the width L of the lattice, as shown by Chang and

Shrock [6]. The role of the Beraha numbers will therefore be considered in a

future work.
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