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M. Papadrakakis, E. Oñate and B. Schrefler (Eds)
c©CIMNE, Barcelona, 2005

DEVELOPMENT OF NUMERICAL METHODS FOR THE
REACTIVE TRANSPORT OF CHEMICAL SPECIES IN A

POROUS MEDIA : A NONLINEAR CONJUGATE GRADIENT
METHOD

Nicolas Bouillard∗, Philippe Montarnal∗ and Raphaèle Herbin†
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† Université de Provence
39 rue Joliot Curie,

13453 Marseille 13, France.
e-mail: Raphaele.Herbin@cmi.univ-mrs.fr - Web page: http://www.cmi.univ-mrs.fr/∼herbin

Key words: porous media, reactive transport, code coupling, nonlinear conjugate gra-
dient method, preconditioning

Abstract. In the framework of the evaluation of nuclear waste disposal safety, the French
Atomic Energy Commission (CEA) is interested in modelling the reactive transport in
porous media. At a given time step, the equation system of reactive-transport can be writ-
ten as a system of nonlinear coupled equations F(x) = 0. In the computational code which
is presently used, this system is solved using classical sequential iterative algorithms (SIA)
[2]. We are currently investigating nonlinear conjugate gradient methods to improve the
resolution of the system F(x) = 0 where x is the discrete unknown. Indeed, the handling
of the coupling is improved by numerical derivation along the descent direction. The orig-
inal feature of this method is the use of an explicit formula for the descent parameter. We
choose an approach involving two distinct codes, that is one code for the chemistry and
one code for the transport equations.

1 Introduction

According to a law adopted by the French Parliament in 1991, the French Atomic En-
ergy Commission (CEA) and the French Agency for the Management of Radioactive Waste
(ANDRA) are responsible for the disposal and storage of nuclear waste and spent nuclear
fuel in France. Both organisms are interested in providing simulation tools so as to evalu-
ate nuclear waste disposal safety. In this context, the ALLIANCES project was launched
by CEA [9]. Its aim is to produce a software platform for the simulation of nuclear waste
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storage and disposal repository. We focus in particular on reactive transport. The model
describes the spatial and temporal evolution of a set of chemical species submitted to
transport phenomena and chemical reactions. The transport is characterized by a set of
partial differential equations and the chemistry by a set of algebro-differential equations.
A sequential iterative coupling scheme has already been implemented, qualified and vali-
dated on numerous configurations involving aqueous speciation, dissolution-precipitation,
sorption and surface complexation [1].

Indeed, sequential iterative algorithms (SIAs) [2], in which the resolution of the trans-
port is separated from the resolution of the chemical speciation, are often used in industrial
computations. To ensure an accurate prediction of the storage geological sites evolution,
on large time and space scales, the coupling between chemistry and transport needs to
be improved since stronger coupling situations, such as a dissolution/precipitation front,
may occur, leading to difficulties when using SIAs. This paper presents conjugate gra-
dient algorithms (CG) with two goals in mind; the first goal is to improve the coupling
accuracy and to handle the CPU cost; the second goal is to handle the coupling of two
distinct codes, one for the chemistry and one for the transport.

After a description of our reactive transport model and its discretization, nonlinear
conjugate gradient methods are presented. Then, in the one dimensional case, nonlinear
CG methods are shown to be efficient compared with fixed point methods or Quasi-Newton
methods. These first results seem to be promising for more complex simulations.

2 Description of the reactive transport model

We introduce a classical model for reactive transport which describes the spatial and
temporal evolution of a set of chemical species submitted to transport phenomena and
chemical reactions.

2.1 Assumptions

The following assumptions were made :

• the porosity is assumed to be constant.

• the flow is stationary and the porous media is saturated.

• the dispersion-diffusion tensor D does not depend on the species.

• transport phenomena only affect species in liquid phase.

• chemical processes are under thermodynamical equilibrium, except some precipitation-
dissolution processes assumed to be kinetics-controlled. We also assume that all
chemical processes, even kinetics, are instantaneous compared to transport pro-
cesses.
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2.2 Chemical equations

Definition of component species.
Let us consider a geochemical system composed of Ne aqueous chemical species, Np

precipitated chemical species and Ns sorbed chemical species. We assume that there
are Nr aqueous independent chemical reactions, with Nr ≤ Ne. Within the Ne aqueous
species, we choose Nc = Ne − Nr component species such that every species can be
uniquely represented as a combination of these components, and no component can be
represented by another component than itself [2]. All species other than components are
called secondary species. A secondary species is the result of a chemical reaction involving
the components as reactants. In the chemical system involved here, all precipitated and
sorbed species are secondary.

Aqueous equilibrium reactions for the secondary species. Each secondary
aqueous species i, for i = 1, . . . , Nr is connected to the component species by the equilirium
reactions, which read:

xi ⇋

Nc
∑

j=1

νx
ijcj, (1)

where xi is the concentration of the aqueous secondary species i, cj, the concentration of
the aqueous component species j, and νx

ij, the stoichiometric coefficient of the jth aqueous
component in the ith reaction. The equilibrium equation is based on the mass action law
which states that:

xi = Kx
i (xi, cj)

Nc
∏

j=1

c
νx

ij

j , (2)

where Kx
i (xi, cj) is the thermodynamic equilibrium constant.

Precipitation-dissolution. The kinetic of the precipitation-dissolution reaction:

pk ⇋

Nc
∑

j=1

νp
ijcj , (3)

where pk denotes the concentration of the k-th of the Np precipitated species, is written
as follows

dpk

dt
= ω̃k(1−

Nc
∏

j=1

c
ν

p
ij

j Kp

k(cj)) , (4)

where Kp

k(cj) and ω̃k are the thermodynamic equilibrium constant and the kinetic precip-
itation constant of the kth precipitated species. At equilibrium, pk verifies :

if Kp

k(cj)
∏Nc

j=1 c
ν

p

kj

j < 1, then pk = 0, i.e. precipitation occurs,

otherwise: Kp

k(cj)
∏Nc

j=1 c
ν

p

kj

j = 1 and pk 6= 0, i.e. no precipitation occurs.
(5)
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Adsorption reactions. Recall that all sorbed species are secondary; hence the equa-
tions for adsorption equilibrium are obtained using the mass action law for the Ns sorbed
secondary species sl, in the same way as in the case of the aqueous equilibrium reactions.

Mass conservation equation. For the j-th component species, the mass conservation
equation may be written as follows:

Tj = cj +
Nr
∑

i=1

νx
ijxi +

Np
∑

k=1

νp
ijpk +

Ns
∑

l=1

νs
ijsl = Cj + Fj, (6)

where Tj, Cj and Fj are the total analytical (dissolved, sorbed, and precipitated) concen-
tration, total dissolved concentration and total fixed (sorbed and precipitated) concentra-
tion, respectively, of the jth component species.

2.3 Hydrologic transport equations

The transport of solutes is described by a set of partial differential equations based on
the principle of mass conservation. The transport equation of the jth aqueous component
species writes:

ω
∂cj

∂t
−∇.

(

Dj∇cj − cj~u
)

= R
(c)
j (c1, .., cNc

, x1, .., xNr
, p1, ..., pNp

, s1, ..., sNs
), j = 1, . . . , Nc

(7)

where ω is the porous media porosity, supposed constant, Dj is the diffusion-dispersion

tensor, ~u is the Darcy velocity, R
(x)
j is a source term corresponding to the chemical re-

actions in the aqueous phase. Each secondary aqueous species, chemical precipitated or
sorbed species are linked to the other species via the reaction terms R

(x)
i , R

(p)
k and R

(s)
l :

ω
∂xi

∂t
−∇.

(

Di∇xi − xi~u
)

= R
(x)
i (c1, .., cNc

, x1, .., xNr
, p1, ..., pNp

, s1, ..., sNs
), (8)

i = 1, . . . , Nr,

ω
∂pk

∂t
= R

(p)
k (c1, .., cNc

, x1, .., xNr
, p1, ..., pNp

, s1, ..., sNs
), (9)

k = 1, . . . , Np,

ω
∂sl

∂t
= R

(s)
l (c1, .., cNc

, x1, .., xNr
, p1, ..., pNp

, s1, ..., sNs
), (10)

l = 1, . . . , Ns,

The Darcy velocity ~u is modelled by the Darcy equation in the stationary state if we
assume that the fluid is incompressible :

~∇.~u = 0 with ~u = −K ~∇h , (11)
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where h is the hydraulic head and K the hydraulic conductivity tensor. Assuming that
the transport coefficients are the same for all species, Eq. (6) is used to obtain a set of
transport equations for the total concentrations of component species :

ω
∂Cj

∂t
+ ω

∂Fj

∂t
−∇.

(

D∇Cj − Cj~u
)

= 0. (12)

Eq. (12) can also be written following:

ω
∂Cj

∂t
+ ω

∂Fj

∂t
− L(Cj) = 0, (13)

where L(Cj) represents the linear convection-diffusion operator.

2.4 The coupling reactive transport model

From Eq. (6) and (13), for the jth component species, we have
{

ω∂tCj + ω∂tFj − L(Cj) = 0
Tj = Cj + Fj .

The coupling between the transport model and the chemistry is written as:

Cj = Ψj(T ) , (14)

where T = (T1, . . . , TNc
). Let Ψ(T ) = (Ψ1(T ), . . . , ΨNc

(T )) denote the overall chemical
operator, which computes chemical equilibriums and some kinetics. The formalism of
Eq. (14) is reasonable since we assume that the characteristic time of kinetics is negligible
compared to that of transport processes. Let the overall transport operator be L =
(L1, . . . , LNc

) with Lj = L. Now, we may write the whole coupling system in the following
condensed form:

for every component species j,







ω∂tTj − L(Cj) = 0 ,
Cj = Ψj(T ) ,
Tj = Cj + Fj .

(15)

3 Discretization and formulation of coupled system

3.1 Discretization by a finite volume scheme

The finite volume method [8] was chosen for treating the system (15). The time deriva-
tion term is discretized by a shift scheme of order one. The diffusion is implicit and the
convection is treated by an upstream scheme and a θ method in time. We denote by
L the discrete operator of L. The discrete unknowns at time n are denoted by Cn =
(Cn

1 , · · · , Cn
Nc

)t, with Cn
j ∈ RN . Thus, we obtain the discrete system:







Cn+1 − L(Cn+1) + Fn+1 = Sn ,
Cn+1 = Ψ(T n+1) ,
T n+1 = Cn+1 + Fn+1 ,

(16)

where Sn depends on Cn, Fn and the boundary conditions. This system must be solved
at each time n.
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3.2 Reformulation of the global system

We can reformulate the system (16) as a problem of solving a nonlinear system F(x) = 0
the main unknown x of which could be Cn+1, Fn+1 or T n+1. If we choose Fn+1, the
nonlinear function is :

F(Fn+1) = Fn+1 − Sn + (id− L) ◦Ψ
(

(id− L)−1(Sn −Fn+1) + Fn+1
)

. (17)

Indeed, if Cn+1, Fn+1, T n+1 are solutions of the system (16), we have

Fn+1 = Sn − (id− L) (Cn+1)

= Sn − (id− L) ◦Ψ(T n+1) . (18)

Note that in the pure diffusion case, the operator id−L is invertible, and this is also the
case in the convection diffusion case with an adequate approximation of the convection
fluxes. So,

T n+1 = Cn+1 + Fn+1

= (id− L)−1 (Sn −Fn+1) + Fn+1 . (19)

Replacing Eq. (19) in Eq. (18) leads to define F(Fn+1) as in Eq. (17). Proceeding in the
same way, one can show that the system (16) is associated with the resolution of one of
the three following nonlinear systems :

F(Cn+1) = Cn+1 −Ψ
(

Sn + L(Cn+1)
)

= 0 , (20)

F(T n+1) = T n+1 − L ◦Ψ(T n+1)− Sn = 0 , (21)

F(Fn+1) = Fn+1 − Sn + (id− L) ◦Ψ
(

(id− L)−1(Sn −Fn+1) + Fn+1
)

= 0 . (22)

We emphasize that no analytical expression of F is known, since one may only compute
the value of F at point x. In the next section, we propose different algorithms to solve
F(x) = 0 which mainly use the three following primitives:

• a computation of F at point x, (P1).

• a computation of ∇F(x)d, for some d ∈ R
N , which can be made by a direct approx-

imation or a numerical derivation, (P2).

• a preconditioning step, (P3).

The preconditioner is denoted by C.
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4 Nonlinear conjugate gradient methods

4.1 Outline of the method

We propose a nonlinear conjugate gradient method with two variants which differ in
the way of computing the primitive (P2). Algorithm 1 states the complete method with
its two variants. We outline this algorithm. At iteration (k), compute

ȳ(k) = ∇F(x(k))d(k) . (23)

with one of the variants of primitive (P2) given below, where x(k) is the current iterate
and d(k) the descent direction. The stepsize in the direction d(k) is given by

α(k) =
zT
(k)d(k)

dT
(k)ȳ(k)

, (24)

where z(k) is the residual after preconditioning. To compute the descent direction d(k), we
use the Polak-Ribière formula [5], that is:

βPR
(k) =

zT
(k)(r(k) − r(k−1))

zT
(k)r(k)

with direct restarts

d(k) =

{

z(k) if k = 1

z(k) + β(k)d(k−1) else, with β(k) = max
(

βPR
(k) , 0

)

,
(25)

which seems to be the best method in practice [5].

Remark 4.1 (Precisions on the choice of the stepsize formula) Assume that F is
the gradient of some function f ∈ C2(RN , R). Then finding a zero of F is related to finding
an optimum to f . If d(k) is a descent direction for f in x(k), a Taylor expansion yields
that:

f(x(k) + αd(k)) = f(x(k)) + α∇f(x(k))
T d(k) +

α2

2
dT

(k)∇
2f(x(k))d(k) + o(α2).

If f reaches its optimum in x(k) + αd(k) for some α, then we wish to have an optimum of
α 7→ f(x(k) + αd(k)); hence a reasonable choice for α(k) is

α(k) = −
∇f(x(k))

T d(k)

dT
(k)∇

2f(x(k))d(k)

= −
F(x(k))

T d(k)

dT
(k)∇F(x(k))d(k)

.
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4.2 Approximation of ȳ(k)

We have considered two ways of computing ȳ(k) which lead to two variants of Algorithm
1 called GC ND and GC SPD.

• The first one GC ND, is inspired by [3] in which ȳ(k) is computed by numerical
derivation,

ȳ(k) =
1

ε
(F(x + εd)− F(x)) .

• The second one, GC SPD, supported by a theorical result [4], uses an explicit
formula,

ȳ(k) = Q(k)d(k) ,

where (Q(k))k∈N is some sequence of symmetric positive definite matrix. It may be
proven [4] that such a nonlinear conjugate gradient method is globally convergent
when it is used for solving unconstrained optimization problems. The assumption
required on β(k) includes our choice.

The computation of Q(k) is performed with the BFGS formula in order to preserve
symmetric positive definiteness [5] [7]. Moreover, this formula is known as a way
of approximating ∇F(x(k)), in particular in unconstrained optimization. The third
advantage of this formula is to provide a limited memory strategy for handling
BFGS updates in the case of large systems [6]. In our tests, performed in one
dimension, we did not have to use limited memory strategy since the number of
unknowns was not too high (< 500). Lastly, the matrix which initializes the BFGS
formula could behave as a preconditioning.

5 Numerical results

We compare the methods GC ND, GC SPD with the fixed point method (PF , Algo-
rithm 2) and a Quasi-Newton method (QNewton BFGS, Algorithm 3). The PF method,
which searches a fixed point of x 7→ x−C−1F(x), is in fact the steepest descent method.

We first study the influence of taking C, F or T as the main variable of the system,
that is solving one of the three formulations (20), (21) or (22) with a given algorithm. It
can be either x = C, or x = F or x = T . Then, in the second subsection, we compare
different algorithms.

The comparisons are performed on a one dimensional case of Portlandite leaching
involving five component species. The transport operator is a pure diffusion operator
with a constant diffusion parameter. The number of discrete unknowns is N = 200. All
the chemical phenomena are under equilibrium. This case is inspired from [10] where
some water in equilibrium with calcite CaCO3 (pH = 7.5) is transported by diffusion in a
concrete (pH = 12.5), leading to the dissolution of the Portlandite Ca(OH)2 (see Figure
1). The Portlandite models the concrete. The main reaction is the following dissolution,

Portlandite + 2 H+ ⇒ 2 H2O + Ca2+ , K = 1011.7 (26)
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Dissolution of Portlandite

Diffusion phenomena

Homogenous
Neumann
conditions

Dirichlet
conditions
(pH = 7.5)

Figure 1: Portlandite leaching in 1D

The performance of the algorithms are presented for different values of the following
parameter (which is sometimes called the Fourier parameter):

λ = d
∆t

∆x2
,

where d is the diffusion coefficient, ∆t the time step and ∆x the spatial step. This adi-
mensional number is essential to establish stability properties of explicit schemes applied
to classical linear diffusion equation. In practice, λ is going to vary with the time step, at
fixed spatial step.

5.1 Influence of the main variable

We compare the efficiency of the various algorithms taking as unknown x = C or T or F ,
and varying the adimensional parameter λ. The formulation (20) in C denoted by (20,C),
is the fastest, see Figures 2,3,4, since the number of iterations is directly linked to the CPU
time. Nevertheless, the most robust formulations are (21,T ) and (22,F). Indeed, even
if λ is increased, the algorithms converge with these formulations, however sometimes
slowly. Formulation (22,F) is robust since one computation of F(F) implies solving a
linear system which plays the role of preconditioning. However, the formulation (22,F)
is often too costly in terms of the number of iteration. For large values of λ, formulation
(21,T ) is competitive with (20,C) but seems to be more robust only for QNewton BFGS
algorithm. For all other algorithms, the best formulation is (20,C).

5.2 Comparison of the algorithms

In Table 1, the computation time of the different primitives is given. A computation
of (P2) with a matrix update is cheaper than a computation of (P2) with numerical
derivation. We call matrix update, the process of updating the BFGS matrix (resp.
the BFGS matrix) which arises in the QNewton BFGS algorithm (resp. the GC SPD
algorithm). We refer as BFGS updates an approximation of a Jacobian matrix and as
BFGS updates an approximation of the inverse of a Jacobian matrix.
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primitives (P1) (P2) (P3) BFGS updates
ND SPD updates

average CPU time(s) 1.310−2 1.210−2 2.10−3 10−3 8.10−3

relative cost 1 0.92 0.15 0.08 0.62

Table 1: Computation time of the different primitives

ND : numerical derivation, SPD updates : BFGS updates

algorithm / primitives (P1) (P2) (P3) BFGS updates relative cost
ND SPD updates

PF 1 0 0 1 0 1
GC ND 1 1 0 1 0 1.85
GC SPD 1 0 1 1 0 1.14

QNewton BFGS 1 0 0 1 1 1.57

Table 2: Main computations during one iteration of each algorithm

ND : numerical derivation, SPD updates : BFGS updates

In Table 2, the main computation of each algorithm during one iteration is precised.
We also give the relative cost of one iteration using the average CPU time of Table 1. One
iteration of GC ND costs 1.85 iterations of PF whereas one iteration of GC SPD costs
1.14 iterations of PF . Hence, in order to be competitive with respect to PF , GC ND
(resp. GC SPD) must use half (resp. 85% of) the number of iterations of PF . As men-
tionned above, the formulation (20) in C denoted by (20,C) is the most efficient in terms
of iteration number and CPU time in the case of convergence. Hence this formulation is
used in the comparison of the different algorithms which we now present, taking the PF
algorithm as a reference (See Figure 5).

5.2.1 GC SPD vs PF .

Numerical results of the GC SPD method are not presented in this paper. In fact, this
method works for low values of λ, but it requires over 10 times the number of iteration
used by PF to reach convergence. For higher λ values, the algorithm does not seem to
converge. We try to initialize the BFGS update by I or I−L (which is symmetric definite
positive if there is only diffusion); the results were in the same range. If a true step of
preconditioning (P3) is used, the results are not improved. This unexpected behaviour is
not yet understood. As a matter of fact, the use of BFGS formula to compute Qk needs
to be improved by a suitable preconditioning or initializing step.

10
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5.2.2 GC ND vs PF .

• GC ND converges in three times less iterations than PF .

• From Table 2, it is clear that GC ND is faster than PF , and this is confirmed by
Figure 5.

• Both algorithms have the same slope.

5.2.3 QNewton BFGS vs PF .

• For low values of λ (≤ 1), QNewton BFGS may compete with PF .

• For higher values of the λ (≥ 4), the use of the BFGS formula entails a high number
of iterations, and therefore in this latter case PF is much more suitable.

5.3 Further tests

In our tests, GC ND is shown to be more competitive than PF contrary to GC SPD
which is too slow. Nevertheless, we need to improve two points,

• the comprehension of GC SPD which poorly performs whereas it seems to be
promising. In particular, we will focus on the optimization of Q(k) matrix com-
putations and the initializing choice of BFGS updates.

• the preconditioning of GC ND. Indeed, we see that the GC ND method performs
better than PF ; but it in these tests there is no effective preconditioning and in
practical situations, we expect to need one. We performed some tests precondition-
ing the whole system by C = I − L but the results were not satisfactory. In fact,
the preconditioning of the whole system is not easy since it must use information on
both transport and chemistry. Hence we plan to test preconditioning the transport
computations only.

Other directions of ongoing reseach include the implementaiton of a variable time step, the
study and implementation of the Newton-GMRES method and the nonlinear BiCGStab
method. In the case of transport phenomena involving a non-symmetric matrix, this latter
method consists in formally replace the product matrix / descent direction by a numerical
derivation.
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Algorithm 1 GC ND or GC SPD

Choose x(1) and ε = 10−6

x(k) ← x(1)

k ← 1
r(1) ← −F(x(1)), (P1)
r(k) ← r(1)

while ‖r(k)‖/‖r(1)‖ > threshold

1. solve Cz(k) = r(k), (P3)

2.

d(k) =







z(k) if k = 1

z(k) + β(k)d(k−1) else, with β(k) =

(

zT
(k)

(r(k)−r(k−1))

zT
(k)

r(k)

)+

3.

(P2)







GC SPD :

{

upgrade :H(k+1) = BFGS(H(k), r(k) − r(k−1), x(k) − x(k−1))
ȳ(k) = H(k+1)d(k)

GC ND : ȳ(k) =
F(x(k)+εd(k))+r(k)

ε

4. α(k) =
zT
(k)

d(k)

dT
(k)

ȳ(k)

5. x(k+1) ← x(k) + α(k)d(k)

6. r(k+1) ← −F(x(k+1)), (P1)

7. k ← k + 1

endwhile
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Algorithm 2 PF

Choose x(1), k ← 1
r(1) ← −F(x(1)), (P1)
while ‖r(k)‖/‖r(1)‖ > threshold

1. solve Cz(k) = r(k), (P3)

2. x(k) ← x(k) + z(k)

3. r(k) ← F(x(k)), (P1)

4. k ← k + 1

endwhile

Algorithm 3 QNewton BFGS

Choose x(1), k ← 1
r(1) ← −F(x(1)), (P1).
r(k) ← r(1).
while ‖r(k)‖/‖r(1)‖ > threshold

1.

H
(−1)
(k+1) =







I if k = 1

BFGS(γH
(−1)
(k) , r(k) − r(k−1), x(k) − x(k−1)) else, with γ =

yT
(k)

s(k)

yT
(k)

H
(−1)
(k)

y(k)

2. solve Cz(k) = H
(−1)
(k+1)r(k), (P3)

3. x(k+1) ← x(k) + z(k)

4. r(k+1) ← −F(x(k+1)), (P1)

5. k ← k + 1

endwhile
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Figure 2: Influence of the Fourier parameter λ, PF algorithm
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Figure 3: Influence of the Fourier parameter λ, QNewton BFGS algorithm
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Figure 4: Influence of the Fourier parameter λ, GC ND algorithm
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Figure 5: Comparison of the algorithms
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