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Geometrically Exact Dynamic Splines

Résumé : Nous proposons ici un modèle physique complet d’objets 1D déformables.
Nous formulons les expressions continues des énergies d’élongation, de flexion et de torsion.
Celles-ci sont mcaniquement rigoureuses et géométriquement exactes. Les déformations
élastiques et plastiques sont prises en compte afin de simuler un large éventail de matériaux.
Nous validons le modèle proposé sur plusieurs expériences classiques. L’utilisation conjointe
d’énergies géométriquement exactes et de splines dynamiques permet aussi bien des résultats
très précis que des simulations en temps interactif, ce qui montre l’adéquation du modèle
proposé avec la conception assistée par ordinateur sous contraintes. Nous illustrons le
potentiel du modèle proposé par un système de pose virtuelle de câbles, qui peut être utilisé
pour tester la compatibilité entre la position de clips de fixation et les propriétés mécaniques
d’un câble.

Mots-clés : spline, théorie des poutres, elasticité, plasticité, équations de Lagrange
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1 Introduction

Figure 1: Virtual cable positioning on a car door.

One-dimensional flexible models are a CAD key element in number of practical situa-
tions. Cables of largely varying mechanical properties are nowadays used in industry. In
fields such as car and plane design, virtual prototyping is used to improve quality and to
reduce development costs. As a matter of fact, virtual prototyping includes more and more
assembly simulations: it allows early detection of potential problems, and also permits to
study ease of assembly. This implies to be able to accurately represent geometry, but also
mechanical behavior of involved parts. Among the many objects to be simulated, flexible
one-dimensional objects are of significant importance. They are involved in vehicle engi-
neering (e.g. electrical cable laying within the car structure [[Fl]), but also in fields such
as architecture (e.g. stiff electrical cable positioning within virtual buildings), or even in
medical simulation (surgical thread simulation is currently an active research question in
the medical simulation community [LCDN06]). For most unconstrained Computer Aided
Design applications, splines are probably the most classical tool for 1D objects. As a matter
of fact, NURBS have become an industry-standard representation for 1D objects. Dynamic
splines have been introduced by Qin and Terzopoulos [QT96]. They combine physics-based
constraining equations to spline geometry, in order to improve the design process. In this
article, we propose an approach that extends the mechanical accuracy of previously pro-
posed approaches. We propose, anywhere possible, geometrically exact formal expressions
that, along with spline analytical expressions, provide a powerful, real-time model. We call
this model Geometrically Exact Dynamic Splines, or GEDS for short.

In this paper we propose a spline-based model for real-time, mechanically accurate,
simulation of one-dimensional objects. Our model can handle both reversible (elastic) and
irreversible (plastic) deformations. The proposed formalism and energy expressions model
stretching, bending and twisting loads; at the very limit of material constraint, we show
how our model can be used to detect break points. We also show that interactive rate is
provided for a wide range of configurations. Finally, we describe a practical application of
our model, that permits to virtually validate electrical cable positioning and clipping along
a path on a car door. Our specific scientific contributions are the following:

An improvement of dynamic spline state-of-the-art, namely a formulation of stretching,
twisting and bending deformations in large rotations (or large displacements), through
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4 Theetten & Grisoni & Andriot & Barsky

geometrically exact energy expressions. Such terms allow accurate results, while still
running in interactive time. The proposed method is fully compatible with Lagrangian
multipliers;

The handle of twisting with an extended spline formulation, by decomposition of twist-
ing in a geometrical part and a roll part. Such a separation ensures numerical stability
for twisting energy evaluation. In addition to that, solving of the proposed mechanical
model does not require a local frame, which makes it all the more accurate (frames
are classically stabilized along a 1D curve using non-mechanical methods, see section
8);

An easy and efficient inclusion of plasticity within the Lagrange spline model.

The remainder of the paper is organized as follows: next section describes related work.
In section 3, we provide a short summary of elasticity and plasticity theory, that constitutes
the core mechanical knowledge for understanding the remainder of the article. Then we
define in section 4 the formalism we use to describe geometrical model configurations. In
section 5, we propose a method (including elegant formalism) handling elastic deformations
of the model, in a geometrically exact manner. In section 6, we show how elastic deforma-
tion simulation can be combined with plastic behavior detection and simulation. For the
sake of completeness, we provide in section 7 the (classical) tools we use to handle worlds
interaction with the 1D model. Section 8 provides some comments about twisting handling
in the proposed deformation model, which is one of the very crucial points in the method.
Finally, section 9 describes tests and practical results:first, for ease of understanding, we
provide a complete overview of the animation algorithm, which links the equations all to-
gether. Second, we compare numerical results of our model to several classical reference
configurations. Third, we describe an advanced practical application of the model:a virtual
system for electrical cable position testing on a car door (see visual example of Fig. 1).

2 Previous Works

Constraints solver has now become a standard part of most CAD modelers, and is still a very
active research field [MFLS06]; the range of applications of such techniques is potentially
very large (e.g see [BKV+02]). Constraint solving most often relates to finding a compat-
ible solution between user modeling requirements, and pre-imposed geometric constraints.
Variational modeling[WW92] minimizes the global energy of a constrained geometric de-
formable object, and can be seen as an introduction of physical behavior into constraint
solving. Physics-based modeling is more and more involved into the field of constrained
geometrical design: it permits to extend constraints to the intrinsic mechanical properties
of the modeled object.

Study of one-dimensional deformable objects has been a recurrent problem in computer
graphics for about 20 years [TPBF87]. Many existing results, from most computationally
efficient to most numerically accurate, try to catch complexity of one-dimensional deformable

INRIA



Geometrically Exact Dynamic Splines 5

models. Simple models, like particles, networks of mass-springs[JL04] or rigid articulated
bodies[RGL05], provide solutions on arbitrary linear discretization. Most of these models
provide fast and interactive simulations, but are difficult to precisely tune for some given
material, as their parameters do not directly relate to the coefficients provided by mechanic.
These shortcomings have been addressed by developing more accurate models that underly
physics. Inspired by classical numerical simulation methods, finite element and boundary
element methods (see [JP99], [MDM+02]) are known to yield accurate numerical results
for fine discretization of the studied object; such an accuracy is difficult to combine with
reasonable computation time in practice.

In robotics community, several recent works use Cosserat theory. Cosserat medium was
first described in 1909 by Cosserat brothers[CC09]. This medium is described by a set of ori-
ented micro-solids. Pai [Pai02] first introduced Cosserat’s rod theory in computer graphics
to model cantilever objects. In this work the animation step is done in two passes: the first
one calculates the forces and torques iteratively along the rod discretization, the second one
evaluates the geometrical configuration in backward iterations. Wakamatsu [WH04] achieves
a very accurate static solution of a cable simulation by considering it as a succession of ori-
ented frames and by minimizing its potential energy; this approach is mechanically accurate,
but demands very high computation cost. Bertails & al [BAC+06] define Super-Helices for
simulating dynamics of human hair strands. A Lagrangian formulation of inextensible Kirch-
hoff rods is used. This method is fast to compute and visually realistic for low resolution
rods; the quadratic complexity of the algorithm is still a key problem for real-time simulation
of high complexity rods. The main drawback of these three methods is that it is difficult
to combine such models to constrains. Moreover, these methods need at least a reference
point for calculation, that might not always be available in practical cases (e.g. modeling
rest state position of a deformable cable within a recipient shape). Gregoire [GS06] very
recently proposed a mass-spring model based on Cosserat theory, that resembles realistic
and interactive twisting and bending deformations. This model uses consistent mechanic,
and is based on simple, continuous, energy terms that provide efficient computation time;
it is anyhow unclear in which measure this model is numerically accurate, if compared to
real-life objects with known material properties.

Spline-based techniques are still quite isolated within physical animation literature. Ter-
zopoulos & al initiated deformable models in Computer Graphics, including physics-based
curves [TPBF87], using a lagrangian form of newton equation. The model of Qin and
Terzopoulos [QT96], Dynamic Non-Uniform Rational B-Splines (DNURBS), first combined
spline representation with physics laws. Nocent and Rémion [NR01] define the Dynamic
Material Splines (DMS), a full Lagrange-based simulation framework for splines. They con-
sider spline control points as the degrees of freedom of the underlying continuous object.
Continuous stretching energy is defined. Lagrange multipliers are used to constrain point
position and tangent orientation. Lenoir [LMGC04] propose a curvature energy formulation
for DMS that is not geometrically exact, but that provides real-time manipulations, as well
as adaptive simulations[LGMC05]. We do not address in the present article the simulation of
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6 Theetten & Grisoni & Andriot & Barsky

fracture: Lenoir & al [LGMC05] provide an elegant manner to compute topological changes,
by combining lagrangian mechanics with B-Splines knot-refinement properties.

None of the previously mentioned works deals with irreversible deformations. One-
dimensional objects like electrical wires, telephone cables, suturing threads remain partially
deformed after relaxation. Few papers deal with plasticity. Terzopoulos & al [TF88] first in-
troduced non-elastic behavior in Computer Graphics community. They proposed physically-
based models to simulate viscoelasticity, plasticity and fracture effects, for the purposes of
animation, in the case of volumic objects. [WSG05] describes a point-based method for
animation, that can handle fracture on shells. O’Brien & al[OBH02] propose a method for
realistic ductile fracture animation in common solid materials, such as plastics and metals.
In the present work we use a similar decomposition of strains to handle plasticity.

3 Mechanics Background

This section provides a very short overview of the mechanical background, necessary for
understanding the extension of Dynamic spline we propose, in the next section.

When a force is applied on a deformable object, object geometry is extended or com-
pressed, and local topology may even change (i.e. material might break) if the force is large
enough. Although both load and extension/compression are primary quantities, material
scientists tend to use two derived quantities, stress σ and strain ε, to analyze materials un-
der load. Stress is the force per unit area and strain is the extension/compression per unit
length. In the general case, both σ and ε are manipulated using tensors. However, in most
practical cases, the relationship between the stress applied to a material and the resulting
strain is described in mechanics by a simple relation separately in each direction: a curve
can be produced that is characteristic of the material. Figure 2 is a typical representation
of a stress-strain curve.

Figure 2: Schematic representation of a typical stress-strain curve. Elasticity is usually
linear, whereas plasticity is assumed to be perfect.

INRIA



Geometrically Exact Dynamic Splines 7

Table 1: Physical parameters for several materials[How01]
Material E(GPa) ν µ (Mg/m3)
Nylon 2.7 0.33 1.1
Alluminium alloys 71.7 0.34 2.8
Copper 120.7 0.35 8.9
Steel, carbon 206.8 0.28 7.8
Steel, stainless 189.6 0.28 7.8

The behavior of the material fully depends on strain magnitude: elastic (i.e. reversible)
deformations occur for small strains, plasticity (i.e. non-reversible) for more significant
strain magnitudes. When strain intensity reaches the fracture point, geometry local topology
changes, and continuous mechanics can no longer be applied.

3.1 Elasticity

When strain magnitude is relatively small (assumption of small strains in mechanics), it
can be considered as directly proportional to stress (Hooke law). The elasticity domain
only contains reversible deformations: when stress is relaxed, the material returns to its rest
state. A nonlinear elastic region sometime needs to be studied, depending on the material:
the mechanical model is then said to be defined for large strains. In practice, a wide range
material available in real-life one-dimensional objects do not need such non-linear methods
for good simulation accuracy. A a result, we only consider in this paper small strains
(we show in section 9.2 that this approximation anyhow allows to reach good mechanical
accuracy).

Several parameters characterize an elastic material. The longitudinal rate and the
transversal rate between a stress and a related strain (i.e. the strain in the direction and the
strain orthogonal to the stress, respectively) are given by Young modulus E (longitudinal
elasticity modulus) and shear modulus G (transversal elasticity modulus), respectively.These
two moduli are interrelated by a formula incorporating Poisson’s ratio ν, which links longi-
tudinal and transversal rates:

G =
E

2(1 + ν)
(1)

The units of the two moduli are Pascals (1Pa = 1N.m−2) whereas Poisson’s ratio is di-
mensionless; specific values for several materials are provided in table 1. These parameters
completely identify a given material.

3.2 Plasticity and fracture

If the stress in a material exceeds the elastic limit A, also called yield point, for the material,
then the stress is no longer linearly proportional to strain, and the deformations become non-
reversible; when the stress is relaxed, the material remains partially deformed. After a plastic
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8 Theetten & Grisoni & Andriot & Barsky

deformation, the strain-stress curve and the elastic region is translated along the strain axis.
In the case of perfect plasticity, measured stress is independent of the applied strain: external
work above the threshold value is fully turned into material, non-reversible, deformations.
Under growing strain, when material strain limit is reached, a break (potentially fracture if
applied strain is more important) occurs.

These material properties are handled by simulation using equations that define the
dynamic relation between the geometry of the object (i.e. its deformations) and the applied
forces.

3.3 Energy balance

The principle of least action, first formulated by de Maupertuis in 1747, is that nature always
finds the most efficient path from one configuration to another. The Lagrange equations are
deduced from this principle. They involve the kinetic energy T and the potential energy U
of the system. The kinetic energy is the energy of motion whereas the potential energy is the
stored energy of position possessed by an object. F is the sum of external forces. Assuming
the mass distribution to be homogeneously distributed between the n degrees of freedom qi

of the object, the Lagrange equation, that can be used for movement resolving is formulated
as follows:

∀i ∈ {1, ..., n}, d

dt

(

∂T

∂q̇i

)

= Fi −
∂U

∂qi

(2)

In the case of Dynamic Splines, control points are used as the degrees of freedom if the
object.

4 GEDS definition

4.1 Beam geometry definition

Beam theory is the study of one-dimensional objects in mechanics. Consider a cross-section
of diameter D and area S, as shown in Figure 3. The neutral fiber or neutral axis, denoted
f , is the oriented curve of length L that passes through the center of every cross-section.
The volume defined by these cross-sections is a beam.

Figure 3: Scheme of a beam with its geometrical parameters and local frame.

INRIA



Geometrically Exact Dynamic Splines 9

4.2 Spline formulation

The beam configuration is entirely described by two fields: a position field r = (x, y, z),
which determinates neutral fiber f position, and a rotation field θ, which provides the roll
of the cross-section. We propose to combine these two fields in a unique field described by
a set of polynomial spline curves: q = (r, θ) = (x, y, z, θ). Each resulting spline is given by

q(u) =

n
∑

i=1

bi(u)qi (3)

where bi are the ith spline basis functions of the control points qi, and u is between 0 and
ℓ, the length of the neutral fiber. The jth derivative of q with respect to u is given by:

q(j)(u) =
n

∑

i=1

bi
(j)(u)qi. (4)

Arc length is denoted by s. The derivative of control point q, position r and roll θ with
respect to u are denoted by q′,r′ and θ′ respectively. The displacement elements ds and du
are interrelated by ds = ‖r′‖du.

Since control points completely define the position of the spline and the orientation of
the cross-sections, they can be considered as the degrees of freedom of the system and used
in the Lagrange equations (2).

Although any kind of spline can be used, we have selected the cubic interpolatory
Catmull-Rom spline for its efficiency and its ease of computation and the non-uniform ra-
tional B-spline (NURBS) to exploit adaptive subdivision.

Once we have described our one-dimensional object geometrically with splines, we may
now use mechanics to make it evolve in space. In the following subsection, we define the
physical part of the spline, using linear elastic but geometrically exact deformations.

5 GEDS in the elastic domain

To obtain the motion of control points with the Lagrange equations, deformation energies
must be first formulated from physical parameters, and then differentiated with respect to
the degrees of freedom. In this section, we propose a unified formulation to describe the
deformations of a one dimensional object and the exact calculation of the corresponding
forces.

5.1 Constitutive laws and strain energies

Every action on a beam can be modeled by forces and torques on the neutral fiber f ; we
express the force and the torque in the local frame instead of using stresses. They are here
proportional to stresses and moreover easier to manipulate.

We elucidate here some terminology and notation, as shown in figure 4.

RR n 0123456789



10 Theetten & Grisoni & Andriot & Barsky

Figure 4: From left to right: rest state, stretching, twisting and bending on a beam.

The normal force to the cross-section, which results in stretching, is denoted by FS .
The cross-section may rotate around the neutral fiber, due to the torsional torque, denoted
by FT . The bending torque, denoted by FB, corresponds to the oriented curvature of the
neutral fiber f . The Kirchhoff assumption presumes that cross-sections are stiff; only the
neutral axis is distorted : we neglect shearing, force in the plane of the cross-section. This
yields the Rayleigh model.

Let define the vector F as the data of FS , FT and FB :

F =





FS

FT

FB



 (5)

F is related to the strain ǫ. The rest strain is denoted ǫ0.
The elastical relationship between ǫ and F is well described in beam theory by Courbon

[Cou80]. Considering linear elasticity facilitates the calculation of strain energies of a beam,
as strains are directly proportional to stresses:we use the small strain assumption, which is
accurate if the radius of curvature is large relative to the radius of the cross-section (usually
about 5 times).

From these considerations, we provide the following result, which derives from Hooke’s
law:

F = H
(

ǫ− ǫ0
)

=





ES 0 0
0 GIo 0
0 0 EIs





(

ǫ− ǫ0
)

(6)

where Io is the polar momentum of inertia whereas Is is the cross-section momentum of iner-
tia; ES, GIo and EIs are the stretching, the twisting and the bending rigidities respectively
(see [Cou80]). We call H the Hooke matrix.

INRIA



Geometrically Exact Dynamic Splines 11

Assuming cross-section is circular and its diameter constant, we can obtain the following
expression of H:

H =
D2π

4





E 0 0

0 GD2

8 0

0 0 ED2

16



 (7)

Strain energy U is formulated by the following integration along the beam:

U =
1

2

∫ L

0

(

ǫ− ǫ0
)t Fds (8)

Using expression 6 of F , we get:

U =
1

2

∫ L

0

(

ǫ− ǫ0
)t

H
(

ǫ− ǫ0
)

ds (9)

We now have all the background in mechanics necessary to determine the motion of our
one-dimensional object by solving the Lagrange equations 2. In the two next subsections,
we will study the two terms of the equations so as to obtain a numerical solution.

5.2 Handling twisting in Dynamic Splines

Since the one-dimensional object is specified by position and rotation, its kinetic energy
comprises translation energy and rotational energy. Translation energy corresponds to the
displacement of control points and rotation energy is due to the motion of cross-sections
around the neutral axis. We define the inertia matrix, denoted J, which is the same every-
where along the spline, since diameter is constant:

J =









µ 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 Io









(10)

µ corresponds to linear density and Io to the polar momentum of inertia. We thus propose
a simple definition of the spline kinetic energy T :

T =
1

2

∫ L

0

dq

dt

t

J
dq

dt
ds (11)

where t denotes a transpose. Differentiating kinetic energy T with respect to qi yields the
left term of the Lagrange equations:

d

dt

∂T

∂q̇i

=
1

2

∫ L

0

d

dt

∂ dq
dt

t
J

dq
dt

∂q̇i

ds (12)
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12 Theetten & Grisoni & Andriot & Barsky

Replacing q by the expression given in equation 3 in a similar way as described by Nocent
and Rémion [NR01], yields:

d

dt

∂T

∂q̇i

=
n

∑

j=1

J

∫ L

0

(bi(s)bj(s))ds
d2qj

dt2
(13)

Considering J
∫ L

0
(bi(s)bj(s))ds and

d2qj

dt2
as matrices M and vector A components Mi,j and

Aj respectively, this equation yields:

d

dt

∂T

∂q̇i

=

n
∑

j=1

Mi,jAj (14)

Considering all degrees of freedom, this sum or Kinetic term can consequently be written as
a matrix-vector product:

MA (15)

To obtain Nocent and Rémion kinetic energy, replace J by the following matrix:





µ 0 0
0 µ 0
0 0 µ



.

The use of J considers twisting inertia.

5.3 Geometrically Exact energy evaluation

In this subsection, we propose an expression of the derivatives of strain energies with respect
to generalized coordinates. They compose the right term of the Lagrange equations 2;

P i = − ∂U

∂qi

= −1

2

∫ L

0

∂
(

ǫ− ǫ0
)t

H
(

ǫ− ǫ0
)

∂qi

ds (16)

they are homogeneous to three generalized forces : stretching force Ps, twisting force Pt and
bending force Pb.

To solve the Lagrange equations, we need to express these generalized forces about
position r and its derivatives r′,r′′,r′′′, spline basis functions bi and their derivatives b′i,b

′′
i ,b′′′i .

This allows us to evaluate the integral terms using classical Riemann sums [PFTV88].
The expressions involving generalized forces are quite complicated, but fast to compute

enough. For the sake of clarity and brevity, we will provide them here, but not every detail
of the calculation; please see the appendix for more details. We also consider separatly

differentiations of strains with respect to position r and roll θ. Note that ∂r(j)

∂ri
= bj

i and
∂θ(j)

∂θi
= b

(j)
i where b

(j)
i is the jth derivative of bi with respect to u.

Furthermore, we introduce the following variables for compactness of the equations:

C = r′ × r′′

P = ∂r′×r′′

∂ri

INRIA



Geometrically Exact Dynamic Splines 13

T = Cb′′′i − P × r′′′ − 2τ (C × P)

The geometrical twisting τ will be detailled forward.
We lay stress on the fact again that we consider our object materially linear elastic (small

strains) but geometrically exact (large transformations).

Stretching force

In small strains, the stretching strain is defined by ǫs = 1− ‖r′‖. Nocent [NR01] used
the large strain assumption,but the difference of accuracy between small strains and
large strains is not significative for high rigidities.

The stretching force term P i
s yields:

P i
s(r) = −πED2

4

∫ L

0

(

1− ‖r
′
0‖
‖r′‖

)

r′b′ids (17)

Since stretching strain energy Us does not depend on θ,

P i
s(θ) = 0 (18)

Twisting force

The twisting comprises two scalar parts: geometrical or Frenet twisting τ and roll θ.
Geometrical twisting is due to the bending of the neutral fiber and is reponsible for
bending-twisting coupling, whereas roll corresponds to the rotation of material around
the neutral fiber, as described in [BP04]. Chouaeb [Cho04] etablished that twisting is
the sum of Frenet twisting and a rotation about the tangent.

The twisting results in the following expression:

ǫt =
dθ

ds
+ τ

{

dθ
ds

= θ′

‖r′‖

τ = r′×r′′·r′′′

‖r′×r′′‖2 = C·r′′′

‖C‖2

(19)

This expression is also considered in [GS06].

The geometrical twisting contribution P i
t (r) yields:

P i
t (r) = −πGD4

32

∫ L

0

(

ǫt − ǫ0t
)

( T
‖C‖2 −

θ′b′ir
′

‖r′‖3
)

ds (20)

The roll contribution P i
t (θ) yields:

P i
t (θ) = −πGD4

64

∫ L

0

(

ǫt − ǫ0t
)

(

bi
′

‖r′‖

)

ds (21)

RR n 0123456789



14 Theetten & Grisoni & Andriot & Barsky

Bending force

The bending force is a function of the scalar Frenet curvature k which is equal to
bending strain ǫb:

ǫb = k =
‖r′ × r′′‖
‖r′‖3 =

‖C‖
‖r′‖3 (22)

Lenoir approximated k by r′′, considering small rotations. In order to have acurate
results, we keep the original definition of the curvature in our calculation.

The bending force term P i
b yields:

P i
b (r) = −πED4

64

∫ L

0

ǫb − ǫ0b
‖r′‖2

( C × P
‖C‖‖r′‖ − 3kb′ir

′

)

ds (23)

Since bending strain energy Ub does not depend on θ, P i
b (θ) = 0.

Strain force is the sum of vectors provided by the strain equations in stretching (17),
twisting (20, 21) and bending (23) and its calculation is expanded in appendix A.

5.4 Numerical solving of the Lagrange equations

The Lagrange equations 2 can now be transformed into matrix form,

MA = F + P (24)

The four sub-systems corresponding to x,y,z and θ can be solved independently. Since the
spline possesses the local control property, the matrix M is banded with width 2l− 1, where
l is the spline locality.

We solve the system by using a simple LU decomposition at each simulation step. Ac-
celerations are then integrated, at every time step, to determine control point velocities
and positions. We use two integration methods: the explicit Runge Kutta method is fast
but unstable for high rigidities; the implicit Euler Broyden method described in [HMC01]
guarantees numerical stability, but adds damping to the simulation.

We can now simulate an elastic physically-based spline. Adding plasticity to the model
only requires a few other considerations, that we describe in the following section.

6 GEDS in the plastic domain

In this paper, we may also treat one-dimensional objects as perfectly plastic, and breakable,
with a stress-strain curve of the form shown in figure 2 with perfect plasticity. It is possible
to simulate real plasticity using a function of ǫ and ǫA which gives the part of the force F to
convert into strain ǫ. In practice, we used ideal plasticity materials: as one can see section
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9.4, our practical results show convincing simulations using ideal plasticity. In addition to
that, it is known that such an approximation provides almost exact result for some specific
material, such as nylon wires or soft steel. In fact, this curve is quite similar to the curve
for nylon wire given by Shuttleworth [SVH99]; this justifies in this paper the use of perfect
plasticity.

Stress and strain are not proportional beyond the elastic limits A+ or A−, as shown in
Figure 5.

Figure 5: Strain regions that rule one-dimensional objects: linear elasticity, perfect plasticity
and break point. ∆εp corresponds to the elastic strain offset induced by a plastic strain.

In perfect plasticity, force cannot exceed the positive yield force FA+
or be less than the

negative yield stress
mathcalFA−

; more external works are entirely turned into a plastic strain offset ∆ǫp. The
elastic region is translated by ∆ǫp. When the strain is greater than the break point strain
ǫB+

or smaller than ǫB−
, the material irreversibly breaks.

Very little calculation is required to model perfect plasticity or to detect break points.
Algorithm 1 can be used separately for each strain scalar component since the strains are all
independent. We do not directly use elastic limit stress but we precompute corresponding
strains ǫA+

and ǫA−
. We also assume that plastic strain offset ∆ǫp is zero everywhere at the

start of the simulation since the material is not damaged yet. At each simulation step, we
check if stress ǫe = ǫ−ǫ0 has exceeded the elastic region. If ǫe exceeds ǫA+

+∆ǫp, irreversible
strain occurs and the elastic region is translated by their difference ǫ+. So we update ∆ǫp

by adding ǫ+.
To deal with plasticity, energy formulation 9 now yields:

U =
1

2

∫ L

0

(

ǫ− ǫ0 −∆ǫp
)t

H
(

ǫ− ǫ0 −∆ǫp
)

ds (25)
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16 Theetten & Grisoni & Andriot & Barsky

Algorithm 1 Plasticity and break point algorithm

Initialization
for all spline samples do

Compute ǫ0

∆ǫp ← 0
end for

while simulation do

for all spline samples do

ǫe ← ǫ− ǫ0

ǫe−p ← ǫe −∆ǫp

ǫ+ ← ǫe−p − ǫA+

ǫ− ← ǫe−p − ǫA−

if ǫ+ > 0 then

∆ǫp ← ∆ǫp + ǫ+
if ǫe > ǫB+

then

Simulate fracture
end if

else if ǫ− < 0 then

∆ǫp ← ∆ǫp + ǫ−
if ǫe < ǫB−

then

Simulate fracture
end if

end if

end for

end while
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ǫA+
implicitly becomes ǫA′

+
. When ǫe exceeds ǫB+

, the material breaks. The algorithm is
the same for negative algebraic values.

7 World interaction

The spline-based model is continuous, that is, mechanically defined everywhere along the
one-dimensional object. An applied force F on the point q of the spline provides generalized
forces Fi. Differentiating the power W = Fq with respect to the generalized coordinate qi,
yields the corresponding generalized force Fi

∂W

∂qi

= F
∂q

∂qi

= Fbi (26)

A force may consequently be applied everywhere, but interacting with the manipulated
object remains quite difficult. This is the reason why we use Lagrangian multipliers:they
allow us to set the position or the direction of any point of the one-dimensional object.
Introducing them into the Lagrange equations 2, we get:

∀i ∈ {1, ..., n},
{

d
dt

(

∂K
∂q̇i

)

= Fi − ∂T
∂qi

+ Lt · λ
φ (qi, q̇i) = 0

(27)

where L is a matrix defined using the different constraints φ relatively to all degrees of
freedom [LGM+04] and λ are the Lagrange multipliers which correspond to the force required
to maintain the constraints; t still denotes a transpose. The derivated linear system thus
yields:

(

M Lt

L 0

) (

A
−λ

)

=

(

F + P
E

)

(28)

where E is a vector coding the desirated behaviour of the constraint, position or orientation.
Collision is dealt with a classical penalty method.

8 Comments about twist control

8.1 From mechanical point of view

A cross-section orientation field is not required to solve mechanics, but only to visualize
twisting and apply textures. As a matter of fact, bending and geometrical twisting only de-
pend on control point positions, whereas the roll is not directly considered in the mechanical
equations, but its derivative with respect to the spline parameter u. A major convenience
of our model is that its accuracy does not rely on frames. This allows a real continuity of
the one-dimensional object.
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18 Theetten & Grisoni & Andriot & Barsky

8.2 From visual point of view

However, we need to visualize the one-dimensional object to interact with it. A frame that
minimizes geometrical twisting has the following major advantage: the aim is to add only a
rotation about the tangent of an angle equal to the roll, in the plane of the cross-section. One
of the more intuitive frame is due to Frenet. It consists of a unit length tangent t, a principal
normal n and a binormal b. t is simply the unit length velocity vector t = r′

‖r′‖ . The Frenet

frame is convenient because it can be analytically computed at arbitrary point of the curve,
but it is undefined wherever the curvature vanishes. Bloomenthal [Blo90] proposed to define
an initial frame at the begining of the curve and to propagate it along the curve using
small, local rotations. We will use the index k to enumerate frames from the beginning.
The rotation matrix R between two frames may be given by the Olinde-Rodrigues formula.
Boyer [BP05] gives a convenient expression which does not involve a rotation angle but only
the two succeeding units tangents. However, it remains expensive. This is the reason why
we use Kenneth Sloan method described by Bloomenthal to propagate the frames:

{

bk = tk × nk−1

nk = bk × tk

(29)

where × denotes the cross product. To update the frames between two steps n and n + 1
of simulation, we use the Olinde-Rodrigues formula for its robustness, considering the unit
tangents tn0 and tn+1

0 , as described in figure 6.

Figure 6: Update of the local frames.
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9 Implementation and validations

9.1 Implementation

The overall algorithm 2 recalls the required steps to simulate a physically-based spline,
including elasticity and plasticity.

Algorithm 2 Physically-based spline algorithm

Initialization
for all spline samples do

Compute Initial strains: ǫ0

∆ǫp ← 0
Compute Inertia Matrix: J (eq. 10)
Compute Hooke Matrix: H (eq. 6)
Compute first initial frame, then propagate it along the spline (eq. 29)

end for

while simulation do

for all spline samples do

Compute Right Term:

Compute potential strain forces: Ps,Pt,Pb (sec. 5.3)
Add external forces and Lagrange multipliers: F, L (sec. 7)
Plasticity and Break Point algorithm (alg. 1)
Compute Left Term:

Compute M (sec. 5.2)
Solve matrix form of the Lagrange equations

LU decomposition and solving: get accelerations A (see [PFTV88])
Explicit or Implicit Integration: get new control points qi (see [HMC01])
Update control points qi

Update frames (eq. 29)
Display Splines (eq. 3)

end for

end while

A one-dimensional object is completely defined by a spline specified by an arbitrary
number of control points as well as by some physical parameters. These parameters comprise
cross-section diameter D and material density µ as well as two parameters of elasticity (that
is, two of the three interrelated constants of Young’s modulus, shear modulus and Poisson’s
ratio). Yield point A and break point B are optional. Strain forces are numerically evaluated,
using a classical Riemann sum method with 10 samples per spline. Every point of the spline
may be constrained in position and orientation using Lagrange multipliers. We use a red
icosahedron as an interactor with the scene. We may attach it to any object via a spring.
The spring makes the simulation more robust but introduces oscillations.
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The model described in this paper has been implemented in C++. We performed several
tests using a 3 GHz Pentium IV. The following subsections provide some accuracy measure-
ments in static state, as well as performance and realism evaluations in motion state.

9.2 Classical static states

To validate our strain formulation, we have performed two classical experiments. The first
one is the catenary whose shape is that formed by a perfectly flexible chain suspended by its
ends and acted on by gravity. Its equation was obtained by Leibniz, Huygens and Johann
Bernoulli in 1691:

y =
h(Fs)

Sµ
(ch(

Sµx

h(Fs)
)− 1) (30)

where h(Fs) is the horizontal component of the normal effort Fs, µ the density and S the
area of the cross-section. The shape only relies on stretching and not on bending neither
twisting. h(Fs) can only be numericaly computed with the formulation of the length of the
catenary l:

l =
2h(Fs)

Sµ
sh(

SµL

2h(Fs)
) (31)

L is the distance between the wire ends.
Several configurations have been tested, corresponding to theoretical curves.
The second experiment is the classical problem of deflection of a cantilever beam of linear

elastic material, under the action of an external vertical concentrated load at the free end. It
was analysed by Beléndez [BNB02]. The beam curvature and deflection only involve bending
energy.

The total length L of the beam corresponds to the unknown slope φ0 at the free end of
the beam:

L =

√

EI∆

2F

∫ φ0

0

dφ√
sin φ0 − sinφ

(32)

This equation allows to obtain the slope φ0 at the free end of the beam as a function of the
external load F . The horizontal and vertical deflection at any point of the neutral axis of
the cantilever beam are found as follows:

x =

√

EI∆

2F
(
√

sin φ0 −
√

sin φ0 − sinφ) (33)

y =

√

EI∆

2F

∫ φ

0

sin φ dφ√
sinφ0 − sin φ

(34)

The solutions to this problem are elliptic equations, which have no closed form solutions,
they have to be numerically solved. Experiments illustrate in figure 11 the fact that theo-
retical and simulation curves we have computed are close to each other. The solutions to
this problem are elliptic equations, which require a numerical solution. Experimental re-
sults demonstrate that the simulation curves we have computed are close to the theoretical
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curves, depending on the number of control points per length unit. Convergence of the de-
flection towards theory relies here on geometrical considerations, not on material ones. The
assumption of small strains/large transformations is consequently validated a posteriori.

9.3 Dynamic simulation

There are a number of situations that cannot be handled by static simulation.
The motion pendulum is a simple animation that much depends on physical parameters.

Moreover, its behaviour corresponds to its material properties, see figures 7 and 2.

Figure 7: Cantilever beams with several parameters; from top to bottom: (E = 5e6Pa,
D = 0.04m), (E = 1e6Pa, D = 0.04m), (E = 1e8Pa, D = 0.01m). Varying diameter and
Young Modulus induces different behaviours.

The modelization of a spring using an helical version of our model validates bending and
twisting initial states as well as energies. It is an interesting example of what can be done
with initial states. Springs are treated as purely elastic: they always return to their initial
state after being relaxed.

Figure 8: Elongation of spring with 16 control points, E = 1.5e7Pa, D = 1cm.

RR n 0123456789



22 Theetten & Grisoni & Andriot & Barsky

9.4 Plastic strains and fracture detection

Plastic deformations can spoil electrical or pneumatic performance in cable laying, whereas
in surgery, they enforce suturing quality and are thus welcomed by surgeons. We are able to
handle these deformations and determine their magnitude in real-time. When the fracture
occurs, its location is indicated by the display of a sphere; here we do not simulate rupture
as the object manipulation has failed, but it could be easily done with B-Splines [LGMC05]
We illustrate perfect plasticity and fracture in figure 9.

Figure 9: Successive steps from elasticity to plasticity from the companion video. Pink
indicates plastic strain intensity and the green sphere tags a break.

9.5 A practical example of GEDS use in constrained CAD appli-

cation

We illustrate the potential benefit of our model on an application of virtual cable positioning
on the inner structure of a car door. A result is shown in figure 1. The purpose is to test
compatibility between planned fixing clip positions, and mechanical cable properties. Car
engineers still need to build prototypes, since existing solutions are not accurate enough. Our
model can prevent them from undergoing this fastidious and inevitable step. The simulation
has to address the following properties: elastoplastic stretching, bending, twisting. In this
application, fixing clips are mechanically modeled as a set of lagrangian constraints. In
our application, we consider simple fixed point constraints; if larger clips would be needed,
combination of fixed points, and fixed first derivative constraints would provide satisfactory
results. During the interactive manipulation, the cable meets a fixing clip, we create a point
constraint. Solving these constraints gives the required forces or multipliers λ to maintain
the global equilibrium of the cable. If a resulting force overwhelms the fixing clip strength
in a determinated direction, the clip fails to keep the cable : the corresponding constraint
is deleted. This behavior only requires a simple test to be determinated, which consists in
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the following statement: if the scalar product of the force λ with the normal component
N of the fixing clip frame is greater than the orientated fixing clip strength, the position
constraint is deleted. This test is illustrated in figure 10.

Figure 10: A cable constrained by a fixing clip. Its normal component N and the force λ
are illustrated by an arrow. The green sphere and its blue arrow correspond to the external
force applied to the cable.

Physical parameters and time necessary to compute one step of simulation of 1ms in
these experiments is provided in table 2. All of these correspond to interactive time and
prove the model efficiency.

10 Conclusion and future work

Using a background in mechanics consisting of elasticity and plasticity theories, we have pro-
posed a deformable model for one-dimensional objects. Our approach addresses reversible
and irreversible deformations, like stretching, twisting and bending, and can even detect
fracture. This model provides both accurate mechanical simulation as well as quick cal-
culation. Moreover, we can impose position and orientation everywhere along the object.
We can also simulate a wide range of materials in straight or distorted rest states; this is
generally at interactive rates, except for very hard stiffness for which the integration method
requires excessive computation time for stability. The next step would be to provide a more
efficient integration method for our model. Dynamic adaptive repartition of control points
would also reduce computation and therefore lower necessary computation time. Finally,
adding the capability to handle contact and friction with the environment would improve
realism and simulation possibilities.
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Experiment n ℓ D µ E ν PDE comput.
(m) (cm) (g/cm3) (MPa) solver cost(ms)

Catenary 16 4.06 2 6 5 0.33 IE 0.60
Cantilever 7 1.60 4 2 35 0.33 IE 0.57
Cantilever 7 1.60 4 2 70 0.33 IE 0.64
Cantilever 7 1.60 4 2 700 0.33 IE 0.84
Cantilever 7 1.60 4 2 7000 0.33 IE 4.7
Pendulum 7 1.14 4 4 7 0.33 RK4 0.39
Pendulum 7 1.14 4 4 35 0.33 RK4 0.41
Pendulum 7 1.14 4 4 700 0.33 RK4 0.42
Pendulum 7 1.14 1 4 700 0.33 IE 0.94
Buckling 8 3.25 4 2.4 56 0.45 RK4 1.54
Buckling 8 2.00 4 2.4 56 0.45 RK4 1.06
Buckling 8 1.25 4 2.4 56 0.45 RK4 0.84
Buckling 8 1.125 4 2.4 56 0.45 RK4 0.77
Buckling 8 0.63 4 2.4 56 0.45 RK4 0.59
Car door 18 2.00 1.08 5 5000 0.33 IE 1.30

Table 2: Average calculation time for various material parameters (simulation timestep
1ms).

A Strain force calculation

A.1 Stretching force

The stretching force depends on the square of the stretching strain defined by ǫs = 1−‖r′‖,
that is,

(

ǫs − ǫ0s
)2

= (‖r′0‖ − ‖r′‖)2.
The stretching force term P i

s yields:

P i
s(r) = −∂Us

∂ri

= −πED2

8

∫ L

0

∂
(

ǫs − ǫ0s
)2

∂ri

ds (35)

Differentiating
(

ǫs − ǫ0s
)2

with respect to ri yields:

∂
(

ǫs − ǫ0s
)2

∂ri
= −2 (‖r′0‖ − ‖r′‖)

∂‖r′‖
∂ri

(36)

As the derivation of ‖r′‖ with respect to ri is defined by

∂‖r′‖
∂ri

=
r′ ∂r′

∂ri

‖r′‖ (37)
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(c) 48 control point spline

Figure 11: Bending validation of our model with deflection of a four meter long cantilever
beam, loaded by a force at its end. Dots correspond to simulation results whereas lines are
theoritical deflection computed with elliptic equations.

the differentiation results in:

∂
(

ǫs − ǫ0s
)2

∂ri

= 2

(

1− ‖r
′
0‖
‖r′‖

)

r′b′i (38)

Thus, substituting equation 38 in equation 35 results in the following expression for the
stretching force:

P i
s(r) = −πED2

4

∫ L

0

(

1− ‖r
′
0‖
‖r′‖

)

r′b′ids (39)
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A.2 Twisting force

The twisting comprises two scalar parts: geometrical or Frenet twisting τ and roll θ. Ge-
ometrical twisting is due to the bending of the neutral fiber and is reponsible for bending-
twisting coupling, whereas roll corresponds to the rotation of material around the neutral
fiber. The twisting results in the following expression:

ǫt =
dθ

ds
+ τ

{

dθ
ds

= θ′

‖r′‖

τ = r′×r′′·r′′′

‖r′×r′′‖2 = C·r′′′

‖C‖2

(40)

Frenet twisting is not defined for a straight line, but we assume it is zero in this case.
The geometrical twisting force term P i

t (r) yields:

P i
t (r) = −∂Ut

∂ri

= −πGD4

64

∫ L

0

∂
(

ǫt − ǫ0t
)2

∂ri

ds (41)

Differentiating
(

ǫt − ǫ0t
)2

with respect to ri yields:

∂
(

ǫt − ǫ0t
)2

∂ri

= 2
(

ǫt − ǫ0t
) ∂ǫt − ǫ0t

∂ri

(42)

and thus after some calculation:

∂
(

ǫt − ǫ0t
)2

∂ri

= 2
(

ǫt − ǫ0t
)

( T
‖C‖2 −

θ′b′ir
′

‖r′‖3
)

(43)

Substituting equation 43 in equation 41, results in the following expression for the geo-
metrical twisting force term:

P i
t (r) = −πGD4

32

∫ L

0

(

ǫt − ǫ0t
)

( T
‖C‖2 −

θ′b′ir
′

‖r′‖3
)

ds (44)

The roll contribution P i
t (θ) yields:

P i
t (θ) = −∂Ut

∂θi

= −πGD4

64

∫ L

0

∂
(

ǫt − ǫ0t
)2

∂θi

ds (45)

Differentiating
(

ǫt − ǫ0t
)2

with respect to θi yields:

∂
(

ǫt − ǫ0t
)2

∂θ
= 2

(

ǫt − ǫ0t
) bi

′

‖r′‖ (46)

Substituting equation 46 in equation 45, results in the following expression for the roll
force term:

P i
t (θ) = −πGD4

32

∫ L

0

(

ǫt − ǫ0t
) bi

′

‖r′‖ds (47)
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A.3 Bending force

The bending force is a function of the scalar Frenet curvature k which is equal to bending
strain ǫb:

ǫb = k =
‖r′ × r′′‖
‖r′‖3 (48)

The bending force term P i
b yields:

P i
b (r) = −∂Ub

∂ri

= −πED4

128

∫ L

0

∂
(

ǫb − ǫ0b
)2

∂ri

ds (49)

Differentiating
(

ǫb − ǫ0b
)2

with respect to ri yields:

∂
(

ǫb − ǫ0b
)2

∂ri

= 2
ǫb − ǫ0b
‖r′‖2

( C × P
‖C‖‖r′‖ − 3kb′ir

′

)

(50)

Substituting equation 50 in equation 49, results in the following expression for the bend-
ing force term:

P i
b (r) = −πED4

64

∫ L

0

ǫb − ǫ0b
‖r′‖2

( C × P
‖C‖‖r′‖ − 3kb′ir

′

)

ds (51)

This expression is nevertheless undefined for ‖C‖ = 0 (i.e. r′′ = 0 and k = 0), correspond-
ing to a straight line, but considering a neighborhood of 0 yields a value of the bending force
term for the rectilinear state. The magnitude of the tangent vector of the neutral axis must
be nonzero; however, C is zero when the curvature is zero. We may assume that C

‖C‖
∼
0 1.

Consequently, the bending force term for the rectilinear state yields:

P i
b (r)

∼
0 −

πED4

64
ǫ0b

∫ L

0

P × 1

‖r′‖3 ds (52)
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