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Abstract

The aim of this paper is to describe the discretization of the Fokker-Planck-Landau
(FPL) collision term in the isotropic case which models the self collision for the electrons
when they are totally isotropized by heavy particles background such as ions. The dis-
cussion focus on schemes which could preserve positivity, mass, energy and Maxwellian
equilibrium. First, we analyze in detail the popular Chang and Cooper method for this
non-linear collision term: derivation, conservation and positivity properties. We show
that some variants of this method, based on the drift-diffusion form of the FPL opera-
tor, could not be positive or could not conserve the energy. We present a new variant
of the Chang and Cooper method derived from the Landau form that is both positive
and conservative. We also propose two new alternatives and simpler schemes for the FPL
operator which show that the Chang and Cooper method is not the only way to construct
positive, energy conservative and equilibrium state preserving schemes for this operator.

For all these schemes, we explain clearly the properties of conservation of the density
and the energy, the positivity of the solution and the conservation of the equilibrium
states, or their lack. The case of Maxwellian and Coulombian potentials are emphasized.
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1 Introduction

The Fokker-Planck-Landau equation is commonly used in plasma physics when studying
kinetic effects between charged particles under coulomb interaction.
The isotropic Fokker-Planck-Landau operator is generally used in the modelling of inertial
controlled fusion. More precisely, it is used to describe the electronic energy transport phe-
nomena in laser produced plasma. In some conditions, it is well known that the fluid theory,
for which the hydrodynamic equations are closed using the law for the thermal fluxes pro-
posed by Spitzer-Harm [29], is not valid [21, 22]. A more accurate solution is to use a model
based on the expansion of the FPL operator in spherical harmonics and to retain the two first
terms, and the isotropic FPL operator is the leading order term [21, 22, 23]. There are also
applications in the astrophysical field where the FPLE is used for star’s clusters modelling
[11, 12].
The most popular scheme for Fokker-Planck type equations is the Chang and Cooper method
[10]. This method was originally devoted to linear Fokker-Planck equations and it was shown
in [10] that in this case this method is positive and preserves the equilibrium states. On
the contrary a paper of Larsen et al. [25] shows that this method applying for nonlinear
Fokker-Planck equations could produce non positive solutions. For all that, this method is
used for the isotropic Landau equation by Langdon [24], in the SPARK code by Epperlein
[22], by Kingham and Bell [23] in the code IMPACT or by Cohn [11] in the astrophysical
context. To our knowledge, there is no rigorous proof of the positivity and the conservation
of the energy of this scheme when it is applied to isotropic Landau equation. For the isotropic
Landau equation the Chang and Cooper scheme is derived from the Rosenbluth form of the
equation which is not the most powerful form to check energy conservation and could lead to
mistake at boundary.
There exist also conservative, positive and entropy schemes for this equation [1, 4, 5, 17, 26, 27]
based on the ”Log” weak symmetric form of the Landau equation, but these methods suffer
from some limitations due to the use of Logarithm of the distribution function or, when not
using ”Log”, they can only be defined for uniform mesh in the velocity space.
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Thus it would be interesting to clarify the situation about positive, conservative and equilib-
rium states preserving velocity discretization of the isotropic Landau equation. This is the
aim of this work.
In the most important part of this paper we focus our attention on the Chang and Cooper
method. By starting from the weak symmetrized form of the isotropic Landau operator we
construct two variants of the Chang and Cooper method. A new one, called S1, and an
other one, called S2, that is described by Langdon et al. [15, 24] in the Coulombian case
but constructed directly from the Rosenbluth form of the operator. These two schemes only
differ in the boundary condition. We prove that these two variants conserve the energy but
we show that the variant which fits with the Langdon’s scheme is not positive.
Moreover we make also some remarks about simplifications of these schemes which could lead
to the loss of the positivity or the loss of the energy conservation. These remarks would be
useful for the time discretization, especially for time implicit discretization. We clarify also
the boundary conditions at the end of the domain. As we will see this leads to the conclusion
that, due to bad boundary conditions, the scheme used by Epperlein [22] or by Kingham and
Bell [23], and also obtained using the Rosenbluth form, is not conservative in energy (because
in collision operator we can’t reverse the role of test particles and target particles) but it is
positive.
In other hand we also show that the Chang and Cooper method is not the only way to obtain
positive, conservative and equilibrium preserving states even on non-uniform meshes. We
propose two new other schemes that share the same properties with the Chang and Cooper
method. One of them, called S3, is based on the work of Larsen et al. [25]. The other, called
S4, is based on the ”Log” form of the equation (it is a new version of the scheme described in
[17] applied to the isotropic FPL equation). Thus it is also an entropy decaying scheme. In
the case of uniform meshes these two schemes are nothing but the conservative positive and
entropy scheme of Berezin et al. [1] and studied in detail by one of the authors [4, 5].
This paper is organized as follow: in the first part, we recall the continuous FPL equation in
the homogeneous and isotropic case and its properties. We recall also the different forms of
the equation in the case of Maxwellian or Coulombian potentials.
In a second part we present the two Chang and Cooper type schemes and the two non Chang
and Cooper ones. We clearly show all the properties of these schemes: energy conservation,
equilibrium states and positivity. We also indicate for each of them, the simplifications in the
case of a uniform mesh, or in the maxwellian case. Some comments are also made about the
advantages or disadvantages of each of these four schemes especially for the implementation.

2 Fokker-Planck-Landau equation

We present the homogeneous non-linear Fokker-Planck-Landau equation (FPL equation) in
the isotropic case where the distribution function f(~x,~v, t) depends only on the modulus of
the velocity v =‖ ~v ‖ and on the time t, in other words f(~x,~v, t) = f(v, t). We consider f
as a function of ε = v2 where ε is the energy variable. In this case, Fokker-Planck-Landau
equation can be written:

∂f(ε, t)
∂t

= Q(f)(ε) =
1√
ε

∂

∂ε

∫ ∞

0
g(ε, ε′)

(
f(ε′)

∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

)
dε′ , (2.1)

where g(ε, ε′) is positive, symmetric and increasing (g(ε, ε′) = min(ε
3
2 , ε′

3
2 ) for Coulombian
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interactions and g(ε, ε′) = ε
3
2 ε′

3
2 for Maxwellian interactions) and Q(f) is the so-called FPL

collision operator. This operator can be written in the following weak form (let φ(ε) be any
test (smooth and decaying) time independent function)

∫ ∞

0

∂f(ε, t)
∂t

φ(ε)
√
εdε =

∫ ∞

0
φ(ε)

∂

∂ε

(∫ ∞

0
g(ε, ε′)(f(ε′)

∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

) dε′
)
dε ,

(2.2)
and by integrating (2.2) by parts

∫ ∞

0

∂f(ε, t)
∂t

φ(ε)
√
εdε = −1

2

∫ ∞

0

∫ ∞

0
(
∂φ(ε)
∂ε

−∂φ(ε′)
∂ε′

) g(ε, ε′) (f(ε′)
∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

) dε′ dε .

(2.3)
Note that the FPL equation can be equivalently written in the so-called ”Log” weak form

∫ ∞

0

∂f(ε, t)
∂t

φ(ε)
√
εdε = −1

2

∫ ∞

0

∫ ∞

0
(
∂φ(ε)
∂ε

−∂φ(ε′)
∂ε′

)g(ε, ε′)f(ε′)f(ε)(
∂ log f(ε)

∂ε
−∂ log f(ε′)

∂ε′
) dε′dε .

(2.4)

2.1 Properties

Let us recall the most important properties of the problem (2.1)

1. This operator satisfies the conservation of mass (respectively energy) by choosing φ(ε) = 1
(respectively φ(ε) = ε) in (2.3)

ρ =
∫ ∞

0
f(ε, t)

√
εdε , (2.5)

ρE =
∫ ∞

0
f(ε, t)ε

3
2dε . (2.6)

Note that the conservation properties are a consequence of the symmetry property
(between ε and ε′) of the collision operator. Let us also mention that the temperature

T of the plasma is defined as
3
2
ρT = ρE.

2. Any function of the type ψ(ε) = α exp(−βε) where α and β are arbitrary constants
(β > 0) is a stationary solution of equation (2.1). The laws of conservation select, for
this two-parameter set of functions, the unique equilibrium solution corresponding to
the initial condition f(ε, 0) = f0(ε).

3. The entropy defined by

H(f) =
∫ ∞

0
f(ε) log(f(ε))

√
ε dε , (2.7)

satisfies the classical H-Theorem. That means the entropy decays with time (by letting
φ(ε) = log(f(ε)) in the weak formulation (2.4)) and
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dH(f)
dt

= 0 ⇐⇒ f(ε) = α exp(−βε) . (2.8)

This is formally equivalent to say that f is an equilibrium function, that is Q(f) = 0.

The FPL operator can be rewritten in the following diffusive form

Q(f)(ε) =
1√
ε

∂

∂ε
(E(f) f(ε) + D(f)

∂f

∂ε
) , (2.9)

where

D(f) =
∫ ∞

0
g(ε, ε′)f(ε′)dε′ ,

and

E(f) = −
∫ ∞

0
g(ε, ε′)

∂f(ε′)
∂ε′

dε′ .

(2.10)

Remark 1. To preserve the number of particles and the energy, Bobylev and Chuyanov [2]
write the FPL operator in the form

Q(f)(ε) =
1√
ε

∂2

∂ε2
W (f, ε) ,

where

W (f, ε) =
∫ ε

0

∫ ∞

0
g(ε′, ε′′)

(
f(ε′)

∂f(ε′′)
∂ε′′

− f(ε′′)
∂f(ε′)
∂ε′

)
dε′ dε′′ , (2.11)

or, from (2.10)

W (f, ε) =
∫ ε

0

(
E(f) f(ε′) + D(f)

∂f(ε′)
∂ε′

)
dε′ . (2.12)

By symmetry (between ε′ and ε′′ in (2.11)) W (f, ε) vanishes at infinity and also at zero point,
therefore density and energy are conserved.

Remark 2. The mathematical analysis of the Landau equation is done by Desvillettes and
Villani in [19, 20]. Concerning the derivation from the Boltzmann equation in the case of
Coulombian potential there is the work of Degond and Lucquin [16]. There is also the work
of Desvillettes for the derivation from the Boltzmann equation when the collisions become
grazing [18]. For the development of the FPL operator in spherical harmonics we refer to the
work of Shkarofsky et al. [30].

2.1.1 Coulombian interactions

In the Coulombian case the collisions coefficients E(f) and D(f) describe drift and diffusion
between electrons and are given by

E(f) = −
∫ ε

0
ε
′3
2
∂f(ε′)
∂ε′

dε′ − ε
3
2

∫ ∞

ε

∂f(ε′)
∂ε′

dε′ = −
∫ ε

0
ε
′3
2
∂f(ε′)
∂ε′

dε′ + ε
3
2 f(ε) , (2.13)
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and
D(f) =

∫ ε

0
ε
′3
2 f(ε′) dε′ + ε

3
2

∫ ∞

ε
f(ε′) dε′ , (2.14)

respectively. Integrating by parts and using the fact that f vanishes at ∞ we obtain

E(f) =
3
2

∫ ε

0

√
ε′ f(ε′) dε′ , (2.15)

and

D(f) =
3
2

∫ ε

0

√
ε′
(∫ ∞

ε′
f(ε′′) dε′′

)
dε′ . (2.16)

Deriving once E(f) and twice D(f) we have

f(ε) =
2
3

1√
ε

∂E(f)
∂ε

, (2.17)

and
f(ε) = − 2

3
∂

∂ε

1√
ε

∂

∂ε
D(f) . (2.18)

Remark 3. Since f is positive, E(f) and D(f) are positive.

Remark 4. At infinity, E(f) is a density.

Remark 5. From relations (2.12), (2.15) and (2.16) we get in the Coulombian case

W (f, ε) =
∫ ε

0

(
3
2

∫ ε′

0

√
ε′′ f(ε′′)dε′′

)
f(ε′) dε′ +

∫ ε

0
D(f, ε′)

∂f(ε′)
∂ε′

dε′ .

By integrating by parts, we can write

W (f, ε) =
3
2

∫ ε

0

√
ε′f(ε′)

(∫ ∞

ε′
f(ε′′)dε′′

)
dε′ − 3

2

(∫ ε

0

√
ε′f(ε′)dε′

) (∫ ∞

ε
f(ε′) dε′

)
−
∫ ∞

0

∂D(f, ε′)
∂ε′

f(ε′)dε′ + D(f, ε)f(ε) .

As
∂D(f, ε)

∂ε
=

3
2
√
ε

∫ ∞

ε
f(ε′)dε′ the first and the third integral in the right-hand side of the

previous equation become identical, thus we obtain

W (f, ε) = − 3
2

(∫ ε

0

√
ε′ f(ε′) dε′

) (∫ ∞

ε
f(ε′) dε′

)
+ D(f, ε) f(ε) ,

in other words

W (f, ε) =
2
3

(
− E(f, ε)√

ε

∂

∂ε
D(f, ε) +

D(f, ε)√
ε

∂

∂ε
E(f, ε)

)
.
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2.1.2 Maxwellian interactions

In the Maxwellian interactions case we simply get

E(f) =
3
2
ε

3
2 ρ and D(f) = ε

3
2 ρE =

3
2
ε

3
2 ρT .

Then, equation (2.9) is linear (in the sense that E(f) and D(f) are independent of f). We
can write

Q(f)(ε) =
3
2

ρ√
ε

∂

∂ε

(
ε

3
2 ( f(ε) + T

∂f(ε)
∂ε

)
)
.

3 Semi-discretized problem

In this section we focus on the discretization in the energy variable. For numerical simulations,
we reduce the integration domain in FPL equation to a bounded domain in the variable ε
where ε ∈ [0, E ]. Thus we consider the approximate problem of (2.3) defined by

∫ E

0

∂f(ε, t)
∂t

φ(ε)
√
εdε = −1

2

∫ E

0

∫ E

0
(
∂φ(ε)
∂ε

−∂φ(ε′)
∂ε′

) g(ε, ε′) (f(ε′)
∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

) dε′ dε .

(3.1)
Let us introduce {εi}1≤i≤N+1 an increasing sequence such that ε1 = 0, εN = E and ∆εi+ 1

2
= εi+1 − εi.

We suppose that {∆εi+ 1
2
}1≤i≤N is constant or increasing sequence. We define vi+ 1

2
as the

mean value of the velocity on [εi, εi+1] i.e.

vi+ 1
2

=
1

∆εi+ 1
2

∫ εi+1

εi

√
ε dε =

2
3∆εi+ 1

2

(ε
3
2
i+1 − ε

3
2
i ) ,

so, we get εi+ 1
2

and can define

(v2∆v)i =
1
2

∫ ε
i+1

2

ε
i− 1

2

√
εdε =

1
2
√
εi ∆εi =

1
3
(ε

3
2

i+ 1
2

− ε
3
2

i− 1
2

) . (3.2)

By convention we set ε 1
2

= 0. Any function f(ε, t) is approximated on the grid by values
{fi}1≤i≤N supposed be approximations of {f(εi)}1≤i≤N . We also introduce the notations

(∆φ)i+ 1
2

= φi+1 − φi and (Dφ)i+ 1
2

=
(∆φ)i+ 1

2

(∆ε)i+ 1
2

as an approximation of the partial derivative

∂εφ(εi+ 1
2
).

First, we consider the discretization of the expression
∫ E

0

∂f

∂t
φ(ε)

√
εdε for any function φ.

By writing ∫ E

0

∂f

∂t
φ
√
εdε '

N∑
i=1

∫ ε
i+1

2

ε
i− 1

2

∂f

∂t
φ(ε)

√
ε dε,
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and using the standard quadrature formula with respect to the measure
√
εdε, we approximate

it by
N∑

i=1

(φi
dfi

dt

∫ ε
i+1

2

ε
i− 1

2

√
ε dε)

def
=

N∑
i=1

ciφi
dfi

dt
(3.3)

Thus the weights ci are defined by c1 =
2
3
ε

3
2
3
2

, ci =
2
3
(ε

3
2

i+ 1
2

− ε
3
2

i− 1
2

) for i = 2, · · · , N .

Below, we present various strategies to construct schemes that have properties of conservation,
and if possible positivity and entropy decaying. These schemes differ intrinsically in the way
we discretize the right-hand side of (3.1):

(r.h.s.) = −1
2

N−1∑
i=1

N−1∑
j=1

(∫ εi+1

εi

∫ εj+1

εj

(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

) g(ε, ε′) (f(ε′)
∂f(ε)
∂ε

− f(ε)
∂f(ε′)
∂ε′

) dε dε′
)
.

(3.4)
We must also introduce the Maxwellian associated to a distribution function f . For a distri-
bution function f we define ρ and ρE the discretized analogous of density (2.5) and energy
(2.6) as

ρ =
N∑

i=1

ci fi , ρE =
N∑

i=1

εi ci fi .

The temperature is still defined by
3
2
ρT = ρE. For a distribution function f , we denote by

M = α exp(−βε) the Maxwellian which has the same mass and energy as f . It’s easy to check
that

T̃ =
∑N

i=1 εi ciMi∑N
i=1 ciMi

=
∑N

i=1 εi ci exp(−βεi)∑N
i=1 ci exp(−βεi)

is a strictly monotone (decreasing) function of β with

lim
β→0

T̃ = Tmax =
∑N

i=1 εi ci∑N
i=1 ci

and
lim

β→+∞
T̃ = Tmin = 0.

Thus for any distribution function f such that 0 ≤ T ≤ Tmax there is a unique β ≥ 0 such

that T̃ = T and consequently M is unique. Note that β ' 1
T

. For the rest of this work we

consider only distribution functions such that 0 ≤ T ≤ Tmax, that is, we exclude distribution
function for which M is an increasing function of ε (β ≤ 0)( that means we exclude distribu-

tion function such that Tmax ≤ T ≤ 2
3
E).

To check the positivity of the schemes we will have the need of the following well-known
result:

Lemma 1. Consider the Cauchy problem for the ordinary differential equation

df

dt
= Lf

8



f(t = 0) = f0

with f = {fi}1≤i≤N and with the square matrix L = L(f, t) such that Lij ≥ 0 for i 6= j,
Lii ≤ 0.

If there exists a constant C such that ∀ i, j |Lij(f, t)| ≤ C then, if the solution exists on a
time interval [0, T ] and if the initial data is positive i.e. f0 > 0, the solution f is positive i.e.
fi(t) > 0 for all i and for all time t ∈ [0, T ].

If there exists a constant C such that ∀ i, j |Lij(f, t)| ≤ C then, if the solution exists on a time
interval [0, T ] and if the initial data is non-negative i.e. f0 ≥ 0, the solution f is non-negative
i.e. fi(t) ≥ 0 for all i and for all time t ∈ [0, T ].

Such an assumption for the matrix L ensures the existence and the uniqueness of a global
solution in time if the matrix L is locally Lipchitz in f . If the matrix L is only continuous in
f we have also the existence of a global solution in time but not the uniqueness. One can see
[13] for these well known results. Let us also recall that the solution in these cases is C1 in
the time variable.

Proof. First we suppose that f0 > 0. Let t0 ≤ τ be the first time for which there exists an

index i0 such that fi0(t0) = 0. In [0, t0] for all i, we have
dfi

dt
≥ −Cfi and by integrating

fi(t) ≥ f0
i exp(−Ct). Thus the solution cannot vanish in finite time. The extension of this

result to the case of a non-negative initial data (f0
i ≥ 0 for all i) depends on the regularity of

the matrix L with respect to f .

If L is Lipschitz in f the solution depends continuously on the initial data, see by example
[13], and thus by taking a sequence f0

ν > 0 such that f0
ν → f0 and by using the result above

concerning strictly positive initial data, f is non-negative.

We suppose now that L is just continuous in f . First we assume that for all f and for all i,
|Lii| >

∑
j 6=i Lij that is L(f) is strictly diagonally dominant. We suppose that the solution

becomes negative for a set I of indexes up to a time t1 > 0 (I ⊂ {i such that f0
i = 0}).

Since the solution is continuous in time, mini fi is defined and continuous in time in [0, t1].
Let J ⊂ I such that fj = mini fi for all j ∈ J and for all t ∈ [0, t2], t2 ≤ t1.
We have the following lowerbound for j ∈ J :

fj(t1) =
∫ t1

0
(
∑
k 6=j

Ljk(f)fk + Ljj(f)fj)dt ≥
∫ t1

0
(
∑

k 6=j,k∈I

Ljk(f)fk + Ljj(f)fj)dt > 0

thus this is in contradiction with our assumption that in [0, t1], fj < 0. Thus the solution
verifies f ≥ 0.
Now if L(f) is not strictly diagonally dominant but verifies |Lij(f, t)| ≤ C, we can choose a
constant K such that L(f)−KId is strictly diagonally dominant. We have

df

dt
= Lf ⇐⇒ df

dt
−Kf = (L−KId)f,

9



where Id is the identity matrix. Thus if we set g = exp(−Kt)f , g verifies

df

dt
= (L(g exp(Kt))−KId)g = L(g)g,

and the matrix L(g) is strictly diagonally dominant. Using the above result for strictly
diagonally dominant matrix we have g ≥ 0 and thus f ≥ 0.
If we do not suppose that L(f) is continuous in f , but if we suppose the existence of a solution
continuous in time in a time interval [0, T ], the proof above is still valid on this time interval.
Thus the solution is non-negative on [0, T ].
This ends the proof.

3.1 Chang and Cooper type schemes

One of the most popular method used for Fokker-Planck equations is due to Chang and
Cooper [10]. Originally this method was proposed for the linear Fokker-Planck equation and
the construction is entirely devoted to the preservation of equilibrium states. The authors
also show that in the linear case (and only in this case) the method provides also non-negative
solutions. At contrary others authors, see [25], have shown that for the non-linear Fokker-
Planck equation this method can produce non-positive solutions. Let us recall the spirit of the
Chang and Cooper method on the simple Fokker-Planck equation for a distribution function
f(v, t), v ∈ R,

∂f

∂t
=
∂F

∂v
=

∂

∂v
(vf + σ

∂f

∂v
),

that can be put under the form

∂f

∂t
= σ

∂

∂v
(M

∂

∂v
(
f

M
)),

where M is a Maxwellian, and M = M(v) = exp(−|v|2/2σ). Note that M is the equilibrium,
the long time behavior of the distribution function. When f = M , F vanishes.
On a uniform grid of velocity space step ∆v and vi = i∆v, the Chang and Cooper method
consists to discretize the diffusion as usual and the drift in such a way that for f = M the
fluxes F are all equal to zero. One takes at cell interface vi+ 1

2
= (i+ 1

2)∆v

Fi+ 1
2

=
σ

∆v
(fi+1 − fi) + vi+ 1

2

(
(1− δi+ 1

2
)fi+1 + δi+ 1

2
fi

)
,

and forcing the fluxes to be zero for equilibrium leads to the following definition of δi+ 1
2

δi+ 1
2

=
σ

vi+ 1
2
∆v

− 1

exp(
vi+ 1

2
∆v

σ
)− 1

.

The scheme writes as
dfi

dt
=

1
∆v

(Fi+ 1
2
− Fi− 1

2
).

As explained in [8, 9] this scheme is in fact an entropic scheme for the above example.
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This method is also one of the most used for FPL equation. And this is a non-linear problem.
None of the main work in this area [11, 22, 23, 24] contains the proof of the positivity of
the Chang and Cooper method or the proof of the energy conservation. Moreover it is not
clear that equilibrium states are preserved by this method for the FPL equation since the
definition of the coefficients of Chang and Cooper, see [10] of these coefficients, are defined in
an implicit manner.
In this section we propose a new derivation of this method which intrinsically contains the
conservation of the energy. We recall also the scheme developed by Langdon et al. [15, 24],
but in the case where potentials are Coulombian, and extend it to the general case. We show
clearly why our new method provides non-negative solution and why equilibrium states are
still preserved. As we see later, this analysis clarifies the confusion about the boundary condi-
tion used at one end of the domain of computation, more precisely in ε = E . In particular this
analysis shows that, due to boundary condition at ε = E , we can have some doubt about the
energy conservation for the version of the scheme used by Epperlein in [22] and also used by
other people, [23] for example. The discretization is only in energy, but the analysis provides
also some results about implicit time discretization, more precisely about some simplifications
of the totally implicit time discretization which could be made: the only positive, conserva-
tive and equilibrium state preserving time implicit discretization of the Chang and Cooper
method for the FPL equation is the fully implicit one.
As example, the schemes are applied to the case where potentials are Coulombian or Maxwellian.

3.1.1 A new variant: scheme S1

Using for each integrals of (3.4) a midpoint quadrature formula, we approximate it by

(r.h.s.) = − 1
2

N−1∑
i=1

N−1∑
j=1

((Dφ)i+ 1
2
− (Dφ)j+ 1

2
) gi+ 1

2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
−fi+ 1

2
(Df)j+ 1

2
) ∆εi+ 1

2
∆εj+ 1

2
,

(3.5)
or

(r.h.s.) = −
N−1∑
i=1

(Dφ)i+ 1
2
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
) ∆εj+ 1

2
,

with gi+ 1
2
,j+ 1

2
= g(εi+ 1

2
, εj+ 1

2
). Hence, the weak formulation of the semi-discretized model

reads

N∑
i=1

ci
∂fi

∂t
φi = −

N−1∑
i=1

(Dφ)i+ 1
2
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
) ∆εj+ 1

2
.

(3.6)

To simplify we note Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
) ∆εj+ 1

2
the numer-

ical flux. By factorizing the term φi in the right-hand side of (3.6), we have
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N∑
i=1

ci
∂fi

∂t
φi =

N−1∑
j=2

(Kj+ 1
2
− Kj− 1

2
)φj + φ1K 3

2
− φN KN− 1

2
.

Finally, by identifying the terms involving φi in (3.6), we obtain the system of ordinary
differential equation

dfi

dt
= QS1

i 1 ≤ i ≤ N (3.7)

with QS1
1 = K 3

2
/c1, QS1

i = (Ki+ 1
2
−Ki− 1

2
)/ci for 2 ≤ i ≤ N − 1 and QS1

N = −KN− 1
2
/cN . We

can rewrite the numerical flux

Ki+ 1
2

= − fi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
+(Df)i+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
, 1 ≤ i ≤ N−1

(3.8)
and recognize the discretized collisions terms (2.10)

Ei+ 1
2

= −
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
and Di+ 1

2
=

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
, (3.9)

therefore

Ki+ 1
2

= Ei+ 1
2
fi+ 1

2
+ Di+ 1

2

fi+1 − fi

∆εi+ 1
2

, 1 ≤ i ≤ N − 1 (3.10)

Remark 6. By integrating by parts the drift term reads

Ei+ 1
2

=
N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
) fj − gi+ 1

2
,N− 1

2
fN .

We assume that {gi+ 1
2
,j+ 1

2
}1≤i≤N is an increasing sequence. Then, even if the fi’s are positive,

Ei+ 1
2

can be negative if fN 6= 0. In other hand, since the fi+ 1
2
’s are positive, Di+ 1

2
remains

positive.

We turn now to the discretization of fi+ 1
2
. We suppose that fi+ 1

2
is an approximation of

f(εi+ 1
2
) given by the following definition [10]

Definition 1. The Chang and Cooper average fi+ 1
2

of quantities fi and fi+1 is defined by

fi+ 1
2

= δi+ 1
2
fi + (1 − δi+ 1

2
) fi+1 1 ≤ i ≤ N − 1 , (3.11)

with
δi+ 1

2
=

1
αi+ 1

2

− 1
exp(αi+ 1

2
)− 1

1 ≤ i ≤ N − 1 , (3.12)

and αi+ 1
2

=
Ei+ 1

2

Di+ 1
2

∆εi+ 1
2
.
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To be comfortable we denote h(α) =
1
α
− 1

(exp(α)− 1)
(thus δi+ 1

2
= h(αi+ 1

2
)). This smooth

function is decreasing and bounded such that h(−∞) = 1, h(0) = 1/2 and h(+∞) = 0.
Moreover, his derivative is negative and bounded too (h′(±∞) = 0). Note that whatever
the value of αi+ 1

2
(positive or negative) if δi+ 1

2
exists we get 0 ≤ δi+ 1

2
≤ 1. Therefore, since

the fi’s are positive the fi+ 1
2
’s remain positive. Now we clarify the expression of δi+ 1

2
. We

recall that f is the N-dimensional column vector with components {fi}1≤i≤N . First αi+ 1
2

(for
1≤ i≤N − 1) reads

αi+ 1
2

=
Ei+ 1

2

Di+ 1
2

∆εi+ 1
2

=


−

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2

∆εi+ 1
2
,

αi+ 1
2

=


−

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
((1− δj+ 1

2
)fj+1 + δj+ 1

2
fj) ∆εj+ 1

2

∆εi+ 1
2
,

and δi+ 1
2

= h(αi+ 1
2
). Thus, assuming that δ is the (N-1)-dimensional column vector with com-

ponents {δi+ 1
2
}1≤i≤N−1, we can write δi+ 1

2
as a function of f and introducing {Hi+ 1

2
}1≤i≤N−1

we get

δi+ 1
2
(f) = Hi+ 1

2
(δ 3

2
, ..., δk+ 1

2
, ..., δN− 1

2
, f1, ..., fk, ... fN ) ,

in other words, the system to be solved is

δ(f) = H(δ(f), f) , (3.13)

where f is a distribution function that has density ρ and energy ρE and H is a (N-1)-
dimensional vector valued function. Before solving this non-linear problem, we have to prove
the existence of solution. To begin with, as f is a distribution function that has density
ρ and energy ρE, {Ei+ 1

2
}1≤i≤N−1 and {Di+ 1

2
}1≤i≤N−1 are well defined and continuous in

respect to δ. Hence {αi+ 1
2
}1≤i≤N−1 exists (positive or negative) and consequently H lies in

[0, 1]N−1. Because h is continuous, H is a continuous mapping which carries [0, 1]N−1 into
itself and thanks to Brouwer’s theorem H has a fixed point (i.e. there exists an δ(f) with
H(δ(f), f) = δ(f)). Unfortunately we don’t get actually an effective proof for the uniqueness
of solution (as, for example, the Picard’s theorem). Nevertheless, we assume that we have
sufficient conditions for the uniqueness of solution of the non-linear operator and that un-
der these conditions the sequence generated by Newton’s method converges to the solution.
In each step of Newton’s process we have to solve a linear system which associated matrix
is non-sparse. That requires O(N2) operations. But we will see that for Maxwellian and
Coulombian potential this cost can be reduce to O(N) operations.
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Proposition 1. The flux Ki+ 1
2

satisfies the following relation

Ki+ 1
2

= Ai+ 1
2
fi+1 − Bi+ 1

2
fi , ∀i ; 1 ≤ i ≤ N − 1 (3.14)

where

Ai+ 1
2

= v(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

, (3.15)

and

Bi+ 1
2

= u(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

, (3.16)

with u(α) =
α

exp(α)− 1
and v(α) =

α exp(α)
exp(α)− 1

.

Proof. The proof is the same as in Chang and Cooper’s paper [10] but in the non-linear case.
By substituting the Chang and Cooper average fi+ 1

2
in the right-hand side of the relation

(3.10) we get

Ki+ 1
2

= Ei+ 1
2
((1 − δi+ 1

2
) fi+1 + δi+ 1

2
fi) + Di+ 1

2

fi+1 − fi

∆εi+ 1
2

∀i ; 1 ≤ i ≤ N − 1 .

As αi+ 1
2

=
Ei+ 1

2

Di+ 1
2

∆εi+ 1
2
, we can write Ei+ 1

2
=
αi+ 1

2
Di+ 1

2

∆εi+ 1
2

. Thus

Ki+ 1
2

= αi+ 1
2

Di+ 1
2

∆εi+ 1
2

((1− δi+ 1
2
)fi+1 + δi+ 1

2
fi) + Di+ 1

2

fi+1 − fi

∆εi+ 1
2

,

that means

Ki+ 1
2

= (αi+ 1
2
(1− δi+ 1

2
) + 1)

Di+ 1
2

∆εi+ 1
2

fi+1 + (αi+ 1
2
δi+ 1

2
− 1)

Di+ 1
2

∆εi+ 1
2

fi .

Finally, if we develop δi+ 1
2

we have

Ki+ 1
2

=
αi+ 1

2
exp(αi+ 1

2
)

exp(αi+ 1
2
)− 1

Di+ 1
2

∆εi+ 1
2

fi+1 −
αi+ 1

2

exp(αi+ 1
2
)− 1

Di+ 1
2

∆εi+ 1
2

fi .

And now, we can write Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi.

Summary To summarize we name scheme S1 the discretized system (3.7) where the numer-
ical fluxes are (for 1 ≤ i ≤ N − 1)

Ki+ 1
2

= Ei+ 1
2
fi+ 1

2
+Di+ 1

2
(fi+1 − fi)/∆εi+ 1

2
with Ei+ 1

2
= −

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
,

Di+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
and fi+ 1

2
is given by the Chang and Cooper average (3.11)-

(3.12).
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3.1.2 The scheme S2 (Langdon’s scheme in the case of a Coulombian potential)

Another option consists in integrating the right-hand side of (3.6) up to εN+1, assuming that
fN+1 = 0 and constraining the flux at the last point εN+ 1

2
to be identically equal to zero.

This strategy was carried by Langdon [24] and Decoster and Langdon [15] in the case of
Coulombian interactions. We extend their method to the general case. We obtain

(r.h.s.) = − 1
2

N∑
i=1

N∑
j=1

((Dφ)i+ 1
2
− (Dφ)j+ 1

2
) gi+ 1

2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
−fi+ 1

2
(Df)j+ 1

2
) ∆εi+ 1

2
∆εj+ 1

2
,

(3.17)
and

N∑
i=1

ci
∂fi

∂t
φi = −

N∑
i=1

(Dφ)i+ 1
2
∆εi+ 1

2

N∑
j=1

gi+ 1
2
,j+ 1

2
(fj+ 1

2
(Df)i+ 1

2
− fi+ 1

2
(Df)j+ 1

2
) ∆εj+ 1

2
.

(3.18)
Finally, we get the weak formulation of the semi-discretized model

dfi

dt
= QS2

i 1 ≤ i ≤ N (3.19)

with QS2
1 = K̃ 3

2
/c1, QS2

i = (K̃i+ 1
2
− K̃i− 1

2
)/ci for 2 ≤ i ≤ N , where

K̃i+ 1
2

= − fi+ 1
2

N∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
+(Df)i+ 1

2

N∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
, 1 ≤ i ≤ N

(3.20)
Like for the previous scheme we can write

Ẽi+ 1
2

= −
N∑

j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
and D̃i+ 1

2
=

N∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
,

thus
K̃i+ 1

2
= Ẽi+ 1

2
fi+ 1

2
+ D̃i+ 1

2

fi+1 − fi

∆εi+ 1
2

.

Now we have
K̃N+ 1

2
= ẼN+ 1

2
fN+ 1

2
+ D̃N+ 1

2

fN+1 − fN

∆εN+ 1
2

,

as fN+1 = 0 the flux at the last point reads

K̃N+ 1
2

= ẼN+ 1
2
fN+ 1

2
− D̃N+ 1

2

fN

∆εN+ 1
2

.

We enforce K̃N+ 1
2

to vanish (to impose
dfN+1

dt
= 0). Thus we get the relation

ẼN+ 1
2
fN+ 1

2
− D̃N+ 1

2

fN

∆εN+ 1
2

= 0 . (3.21)
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Thanks to (3.21) the diffusion becomes

D̃i+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
+ gi+ 1

2
,N+ 1

2

D̃N+ 1
2

ẼN+ 1
2

fN . (3.22)

Remark 7. We integrate by parts the drift term and get

Ẽi+ 1
2

=
N∑

j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
) fj ∆εj+ 1

2
.

We assume that {gi+ 1
2
,j+ 1

2
}1≤i≤N is an increasing sequence. Then, if the fi’s are positive,

Ẽi+ 1
2

is positive too. In other hand, even if the fi+ 1
2
’s are positive D̃i+ 1

2
can be negative if

fN 6= 0.

The discretization of fi+ 1
2

is still given by the Chang and Cooper average. Therefore we get

fi+ 1
2

= (1 − δ̃i+ 1
2
)fi+1 + δ̃i+ 1

2
fi , ∀ i ; 1 ≤ i ≤ N − 1 , (3.23)

where

δ̃i+ 1
2

= h(α̃i+ 1
2
) =

1
α̃i+ 1

2

− 1
(exp(α̃i+ 1

2
)− 1)

, ∀ i ; 1 ≤ i ≤ N − 1 , (3.24)

and with α̃i+ 1
2

=
Ẽi+ 1

2

D̃i+ 1
2

∆εi+ 1
2
. Thanks to the boundary condition (3.21) we can extend the

definition to N + 1
2 by setting δ̃N+ 1

2
= 1/α̃N+ 1

2
(see [15]). Now α̃i+ 1

2
reads

α̃i+ 1
2

=


−

N∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
((1− δ̃j+ 1

2
)fj+1 + δ̃j+ 1

2
fj) ∆εj+ 1

2
+ gi+ 1

2
,N+ 1

2

D̃N+ 1
2

ẼN+ 1
2

fN

∆εi+ 1
2
,

As in the previous scheme we suppose that δ̃ is the N-dimensional column vector with com-
ponents {δ̃i+ 1

2
}1≤i≤N . Thus we can write δ̃i+ 1

2
as a function of f and introduce {H̃i+ 1

2
}1≤i≤N

such that

δ̃i+ 1
2
(f) = H̃i+ 1

2
(δ̃ 3

2
, ..., δ̃k+ 1

2
, ..., δ̃N+ 1

2
, f1, ..., fk, ... fN ) ,

in other words, to compute δ̃, the system to be solved is

δ̃(f) = H̃(δ̃(f), f) , (3.25)

where f is a distribution function that has density ρ and energy ρE and H̃ is a N-dimensional
vector valued function. Here the problem rises from the fact that {D̃i+ 1

2
}1≤i≤N can be

undefined even if f is properly defined. We’ll specify this more clearly in the case where
potential are Coulombian or Maxwellian.
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Proposition 2. The flux K̃i+ 1
2

satisfies the relation

K̃i+ 1
2

= Ãi+ 1
2
fi+1 − B̃i+ 1

2
fi (3.26)

where

B̃i+ 1
2

= u(α̃i+ 1
2
)
D̃i+ 1

2

∆εi+ 1
2

, (3.27)

and

Ãi+ 1
2

= v(α̃i+ 1
2
)
D̃i+ 1

2

∆εi+ 1
2

, (3.28)

with α̃i+ 1
2

=
Ẽi+ 1

2

D̃i+ 1
2

∆εi+ 1
2
, u(α) =

α

exp(α)− 1
and v(α) =

α exp(α)
exp(α)− 1

.

The proof is checked as in Proposition 1.

Summary. To summarize we identify as scheme S2 the system (3.19) with boundary condi-
tions (3.21) where the numerical fluxes are

K̃i+ 1
2

= Ẽi+ 1
2
fi+ 1

2
+ D̃i+ 1

2
(fi+1 − fi)/∆εi+ 1

2
with Ẽi+ 1

2
= −

N∑
j=1

gi+ 1
2
,j+ 1

2
(Df)j+ 1

2
∆εj+ 1

2
and

D̃i+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
+ gi+ 1

2
,N+ 1

2
fND̃N+ 1

2
/ẼN+ 1

2
. Here fi+ 1

2
is given by the Chang

and Cooper average (3.23)-(3.24).

Remark 8. Comparing formally the drift and diffusion functional discretized respectively by
S1 and S2 we get for 1 ≤ i ≤ N − 1

Ẽi+ 1
2

= Ei+ 1
2

+ fN gi+ 1
2
,N+ 1

2
and D̃i+ 1

2
= Di+ 1

2
+ ∆εN+ 1

2
fN+ 1

2
gi+ 1

2
,N+ 1

2
. (3.29)

Remark 9. Langdon [24] has previously developed a scheme for Coulombian interactions.
This scheme is nothing else than S2 reduced to the Coulombic potentials.

3.1.3 A particular case: the Maxwellian interactions

First we focus on the expression of the collision terms in the case where potentials are
Maxwellian. The diffusion-drift ratio is constant and consequently the Chang and Cooper
relation is reduced to a non-linear scalar equation. As a result we’ll show that for the scheme
S2 the diffusion term can be undefined.

For Maxwellian interactions we have gi+ 1
2
,j+ 1

2
= ε

3
2

i+ 1
2

ε
3
2

j+ 1
2

. Then, Ei+ 1
2

can be write by fac-

torizing the term fi

Ei+ 1
2

= ε
3
2

i+ 1
2

N−1∑
j=1

(ε
3
2

j+ 1
2

− ε
3
2

j− 1
2

) fj − fN ε
3
2

N− 1
2

ε
3
2

i+ 1
2
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and we get for the diffusion term

Di+ 1
2

= ε
3
2

i+ 1
2

N−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
.

Now we turn to the scheme S2 and obtain in the Maxwellian case, assuming that f is a
distribution function that has density ρ and energy ρE and that (3.21) holds,


Ẽi+ 1

2
= ε

3
2

i+ 1
2

N∑
j=1

(ε
3
2

j+ 1
2

− ε
3
2

j− 1
2

) fj =
3
2
ε

3
2

i+ 1
2

N∑
j=1

√
εj ∆εj fj =

3
2
ε

3
2

i+ 1
2

ρ ,

D̃i+ 1
2

= ε
3
2

i+ 1
2

N∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

fj+ 1
2

= ε
3
2

i+ 1
2

N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

fj+ 1
2

+ ε
3
2

i+ 1
2

ε
3
2

N+ 1
2

fN

D̃N+ 1
2

ẼN+ 1
2

,

(3.30)
thus

Ẽi+ 1
2

= Ei+ 1
2

+ ε
3
2

i+ 1
2

ε
3
2

N+ 1
2

fN and D̃i+ 1
2

= Di+ 1
2

+ ε
3
2

i+ 1
2

ε
3
2

N+ 1
2

fN

D̃N+ 1
2

ẼN+ 1
2

, (3.31)

as expected from (3.29).

Remark 10. We have Di+ 1
2
/Ei+ 1

2
= C for i; 1 ≤ i ≤ N − 1 and D̃i+ 1

2
/Ẽi+ 1

2
= C̃ for i;

1≤ i≤N . Following (3.21) and (3.31) we can write

D̃i+ 1
2

Ẽi+ 1
2

=


Di+ 1

2

ẼN+ 1
2

D̃N+ 1
2

+ ε
3
2

i+ 1
2

ε
3
2

N+ 1
2

fN

Ei+ 1
2

+ ε
3
2

i+ 1
2

ε
3
2

N+ 1
2

fN


D̃N+ 1

2

ẼN+ 1
2

.

As (D̃i+ 1
2
/Ẽi+ 1

2
) = (D̃N+ 1

2
/ẼN+ 1

2
) we get C = C̃.

Now, we are interested by the expression of δi+ 1
2

in the case where potentials are Maxwellian.
Recall that with scheme S1 we get αi+ 1

2
= Ei+ 1

2
/Di+ 1

2
∆εi+ 1

2
and h(α) = 1/α− 1/(exp(α)− 1).

Thus, thanks to (3.30) and (3.31) we can write

αi+ 1
2

=

3
2ρ− fNε

3
2

N+ 1
2

N−1∑
j=1

ε
3
2

j+ 1
2

∆εj+ 1
2
fj+ 1

2

∆εi+ 1
2
.

We set d(f) =
N−1∑
j=1

ε
3
2

j+ 1
2

∆εj+ 1
2
fj+ 1

2
therefore as fi+ 1

2
is given by the Chang and Cooper

average
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d(f) =
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

((1− δj+ 1
2
)fj+1 + δj+ 1

2
fj) ,

and introducing h(αi+ 1
2
) we get

d(f) =
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

(h(

3
2ρ− fNε

3
2

N+ 1
2

d(f)
∆εj+ 1

2
) (fj − fj+1) + fj+1) . (3.32)

Note that d(f) doesn’t depend on (i + 1
2). Thus, the Chang and Cooper relation is reduced

to a simple scalar non-linear equation. To find δi+ 1
2

all we need to do is to solve equation
(3.32) and that can be achieved by a Newton method in only O(N) operations at each step.
Moreover if the grid is uniform all the αi+ 1

2
and δi+ 1

2
are equal and one can check directly on

(3.6) that the scheme reduces to the scheme of Berezin and Pekker [1]

N∑
i=1

ci
∂fi

∂t
φi = −

N−1∑
i=1

(Dφ)i+ 1
2
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fi+1fj − fifj+1),

which is entropic as shown in [5].

Following the same way we get for the scheme S2

α̃i+ 1
2

=
3
2ρ

N−1∑
j=1

ε
3
2

j+ 1
2

∆εj+ 1
2
fj+ 1

2
+ ε

3
2

N+ 1
2

fN+ 1
2
∆εN+ 1

2

∆εi+ 1
2
.

We denote d̃(f) =
N−1∑
j=1

ε
3
2

j+ 1
2

∆εj+ 1
2
fj+ 1

2
+ ε

3
2

N+ 1
2

fN+ 1
2
∆εN+ 1

2
where fi+ 1

2
is computed by the

Chang and Cooper average. Thus

d̃(f) =
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

((1− δ̃j+ 1
2
)fj+1 + δ̃j+ 1

2
fj) + ε

3
2

N+ 1
2

fN+ 1
2
∆εN+ 1

2
,

so that, according that (3.21) holds and introducing h(α̃i+ 1
2
), we have

d̃(f) =
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

(h(
3
2ρ

d̃(f)
∆εj+ 1

2
) (fj − fj+1) + fj+1) + ε

3
2

N+ 1
2

fN
d̃(f)
3
2ρ

. (3.33)

Hence if
3
2
ρ = ε

3
2

N+ 1
2

fN the term d̃(f) is undefined. As the fi+ 1
2
’s are positive we remark that

d̃(f) and

Y = (
3
2
ρ− ε

3
2

N+ 1
2

fN ) (3.34)

have the same sign. To find δ̃i+ 1
2

we have to solve the non-linear equation (3.33).
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3.1.4 A particular case: the Coulombian interactions

In a first part we give the expression of drift and diffusion in the case where the potentials are
Coulombian. For S2 we find Langdon’s scheme as planned. We point out that {D̃i+ 1

2
}1≤i≤N

(diffusion term computed by the scheme S2) can be undefined. After that we carry on in
offering an equivalent form of (3.13) (respectively (3.25)) to compute the interpolant of the
Chang and Cooper average as in [14]. An advantage is that this form requires less operation
to implement.

For Coulombian interactions we get gi+ 1
2
,j+ 1

2
= g(εi+ 1

2
, εj+ 1

2
) = min(ε

3
2

i+ 1
2

, ε
3
2

j+ 1
2

). This rela-

tion is inserted in (3.9) to obtain the drift term discretized by the scheme S1

Ei+ 1
2

= −
N−1∑
j=1

∆εj+ 1
2

min(ε
3
2

i+ 1
2

, ε
3
2

j+ 1
2

)
fj+1 − fj

∆εj+ 1
2

for i ; 1 ≤ i ≤ N − 1 ,

by factorizing the term fi we have

Ei+ 1
2

=
N−1∑
j=1

(min(ε
3
2

i+ 1
2

, ε
3
2

j+ 1
2

) − min(ε
3
2

i+ 1
2

, ε
3
2

j− 1
2

)) fj − fN min(ε
3
2

i+ 1
2

, ε
3
2

N− 1
2

) . (3.35)

Now {εi+ 1
2
}1≤i≤N is an increasing sequence, therefore

Ei+ 1
2

=
i∑

j=1

(ε
3
2

j+ 1
2

− ε
3
2

j− 1
2

) fj − fN min(ε
3
2

i+ 1
2

, ε
3
2

N− 1
2

) ∀ i ; 1 ≤ i ≤ N − 1 . (3.36)

In the same way, we get for the diffusion term

Di+ 1
2

=
N−1∑
j=1

∆εj+ 1
2

min(ε
3
2

i+ 1
2

, ε
3
2

j+ 1
2

) fj+ 1
2
∀ i ; 1 ≤ i ≤ N − 1 , (3.37)

or 
Di+ 1

2
=

i∑
j=1

∆εj+ 1
2
fj+ 1

2
ε

3
2

j+ 1
2

+ ε
3
2

i+ 1
2

N−1∑
j=i+1

∆εj+ 1
2
fj+ 1

2
, 1 ≤ i ≤ N − 2

DN− 1
2

=
N−1∑
j=1

∆εj+ 1
2
fj+ 1

2
ε

3
2

j+ 1
2

.

(3.38)

By construction (3.36) and (3.38) are consistent approximations of drift E(f) and diffusion
D(f) when their integration domain is reduced to a bounded domain [0, E ] in the variable ε
(see equations (2.13) and (2.14)).
Now, the collision terms computed by the scheme S2 read in the case of Coulombian interac-
tions

Ẽi+ 1
2

= −
N∑

j=1

min(ε
3
2

i+ 1
2

, ε
3
2

j+ 1
2

)(fj+1−fj) =
N∑

j=1

(min(ε
3
2

i+ 1
2

, ε
3
2

j+ 1
2

)−min(ε
3
2

i+ 1
2

, ε
3
2

j− 1
2

))fj , (3.39)
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Ẽi+ 1
2

=
i∑

j=1

(ε
3
2

j+ 1
2

− ε
3
2

j− 1
2

) fj and ẼN− 1
2

=
3
2
ρ− (ε

3
2

N+ 1
2

− ε
3
2

N− 1
2

) fN , (3.40)

and

D̃i+ 1
2

=
N−1∑
j=1

∆εj+ 1
2
min(ε

3
2

i+ 1
2

, ε
3
2

j+ 1
2

)fj+ 1
2

+ ∆εN+ 1
2
fN+ 1

2
ε

3
2

i+ 1
2

, (3.41)

or,
D̃i+ 1

2
=

i∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

i+ 1
2

N−1∑
j=i+1

fj+ 1
2
∆εj+ 1

2
+ ∆εN+ 1

2
fN+ 1

2
ε

3
2

i+ 1
2

, 1 ≤ i ≤ N − 2

D̃i+ 1
2

=
N−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ∆εN+ 1

2
fN+ 1

2
ε

3
2

i+ 1
2

, i = N − 1 or i = N .

Note that contrary to scheme S1 the drift and diffusion terms computed by scheme S2 are not
consistent approximations of E(f) and D(f) when their integration domain is reduced to a
bounded domain [0, E ] in the variable ε (see equations (2.13) and (2.14)). To compare to the
Langdon scheme, we prefer to write Ei+ 1

2
, Di+ 1

2
, Ẽi+ 1

2
and D̃i+ 1

2
with the velocity variable

when it is necessary. Thanks to (3.2) we have

Ei+ 1
2

= 3
i∑

j=1

(v2∆v)j fj − fN min(ε
3
2

i+ 1
2

, ε
3
2

N− 1
2

) . (3.42)

Seeing ε 1
2
=0 we can write ε

3
2

i+ 1
2

=
i∑

j=1

(ε
3
2

j+ 1
2

− ε
3
2

j− 1
2

) and from (3.2) we get ε
3
2

i+ 1
2

= 3
i∑

j=1

(v2∆v)j .

So


Di+ 1

2
= 3

i∑
j=1

∆εj+ 1
2
fj+ 1

2

j∑
k=1

(v2∆v)k + 3
N−1∑

j=i+1

∆εj+ 1
2
fj+ 1

2

i∑
k=1

(v2∆v)k, 1 ≤ i ≤ N − 2

DN− 1
2

= 3
N−1∑
j=1

∆εj+ 1
2
fj+ 1

2

j∑
k=1

(v2∆v)k

By factorizing the term (v2∆v)k we write

Di+ 1
2

= 3
i∑

j=1

(v2∆v)j

N−1∑
k=j

fk+ 1
2
∆εk+ 1

2
1 ≤ i ≤ N − 1 . (3.43)

For the scheme S2 we obviously find Ẽi+ 1
2

= 3
i∑

j=1

(v2∆v)j fj and D̃i+ 1
2

= 3
i∑

j=1

(v2∆v)j

N∑
k=j

fk+ 1
2
∆εk+ 1

2

as in Langdon’s scheme [24]. That is, following (3.42) and (3.43), for 1 ≤ i ≤ N − 1
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Ei+ 1
2

= Ẽi+ 1
2
− fN min(ε

3
2

i+ 1
2

, ε
3
2

N− 1
2

) and Di+ 1
2

= D̃i+ 1
2
− fN+ 1

2
ε

3
2

i+ 1
2

∆εN+ 1
2
. (3.44)

Remark 11. In the Coulombian case, thanks to (3.35), (3.39), (3.37), (3.41) and (3.21) we
can write

ẼN+ 1
2

= EN− 1
2
+ ε

3
2

N+ 1
2

fN and D̃N+ 1
2

= DN− 1
2
+ ε

3
2

N+ 1
2

∆εN+ 1
2
fN+ 1

2
= DN− 1

2
+ ε

3
2

N+ 1
2

fN

D̃N+ 1
2

ẼN+ 1
2

,

consequently

D̃N+ 1
2

ẼN+ 1
2

=
D̃N+ 1

2

ẼN+ 1
2

DN− 1
2

ẼN+ 1
2

D̃N+ 1
2

+ ε
3
2

N+ 1
2

fN

EN− 1
2

+ ε
3
2

N+ 1
2

fN

.

This leads to the relation
D̃N+ 1

2

ẼN+ 1
2

=
DN− 1

2

EN− 1
2

.

Using (3.21) and (3.44) again, we write

ẼN− 1
2

= EN− 1
2

+ ε
3
2

N− 1
2

fN and D̃N− 1
2

= DN− 1
2

+ ε
3
2

N− 1
2

fN

D̃N+ 1
2

ẼN+ 1
2

,

hence

D̃N+ 1
2

ẼN+ 1
2

=
D̃N− 1

2

ẼN− 1
2

. (3.45)

Decoster [14] shows that the relation (3.45) is sufficient to conserve energy and imposes it as
boundary condition. Finally this is not necessary in view that (3.45) is held in the discretiza-
tion.

Here the diffusion term discretized by S2 reads, thanks to (3.21) and (3.45)

D̃i+ 1
2

=
N−1∑
j=1

∆εj+ 1
2
min(ε

3
2

i+ 1
2

, ε
3
2

j+ 1
2

)fj+ 1
2

+ ε
3
2

i+ 1
2

fN

D̃N− 1
2

ẼN− 1
2

, (3.46)

therefore

D̃N− 1
2

=
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

fj+ 1
2

+ ε
3
2

N− 1
2

fN

D̃N− 1
2

ẼN− 1
2

. (3.47)

22



Now if fNε
3
2

N− 1
2

= ẼN− 1
2

the term D̃N− 1
2

is undefined. As the fi+ 1
2
’s are positive the expres-

sion
N−1∑
j=1

∆εj+ 1
2
ε

3
2

j+ 1
2

fj+ 1
2

remains positive and thus D̃N− 1
2

and

Y = (ẼN− 1
2
− fNε

3
2

N− 1
2

) =
3
2
ρ− fNε

3
2

N+ 1
2

(3.48)

have the same sign. Because the Ẽi+ 1
2

’s are positive from (3.45) we get that D̃N− 1
2

and

D̃N+ 1
2

have the same sign. Consequently, thanks to (3.41) and (3.21), if D̃N− 1
2

is positive

all the D̃i+ 1
2
’s are positive. The positivity condition fNε

3
2

N− 1
2

< ẼN− 1
2

is the same condition

given by Decoster to avoid what he calls ”abnormal discretization” [14]. Note that if D̃N− 1
2

is undefined the system (3.25) doesn’t have any solution.

In this particular ”Coulombian” case an other way to compute the Chang and Cooper average
interpolant δi+ 1

2
is to consider equation (2.18) as in [14] in place of system (3.13). Thus, we

have to solve an elliptic equation, namely

− 2
3
∂

∂ε

1√
ε

∂

∂ε
(D(f, ε)) = f(ε) in R+ ,

with boundary condition D(f, 0) = 0. The solution is D(f) =
∫ ε

0
ε
′3
2 f(ε′)dε′ +

∫ ∞

ε
f(ε′)dε′.

The non-linear system (3.13) which solution is δ(f) is then replaced by a non-linear system
on D(f).

Proposition 3. The diffusion term discretized by S1 is solution of the following system

MD = f δ (3.49)

where D (respectively f δ) is the (N−1)-dimensional column vector with components {Di+ 1
2
}1≤i≤N−1

(respectively {∆εi+ 1
2
fi+ 1

2
}1≤i≤N−1) and M is the (N − 1)×(N − 1) tridiagonal matrix with

components

M1,2 = −(ε
3
2
5
2

− ε
3
2
3
2

)−1 , M1,1 = −M1,2 + (ε
3
2
3
2

)−1

Mi,i−1 = −(ε
3
2

i+ 3
2

− ε
3
2

i+ 1
2

)−1 , Mi,i+1 = −(ε
3
2

i+ 1
2

− ε
3
2

i− 1
2

)−1 , Mi,i = − (Mi,i−1 + Mi,i+1) ,

MN− 1
2
,N− 3

2
= − (ε

3
2

N− 1
2

− ε
3
2

N− 3
2

)−1 , MN− 1
2
,N− 1

2
= −MN− 1

2
,N− 3

2
,

Proof. From (3.38) we get for i; 1 ≤ i ≤ N − 2

Di+ 1
2

=
i∑

j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

i+ 1
2

N−1∑
j=i+1

fj+ 1
2
∆εj+ 1

2
,

and for i; 2 ≤ i ≤ N − 1
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Di− 1
2

=
i−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

i− 1
2

N−1∑
j=i

fj+ 1
2
∆εj+ 1

2
.

By subtracting the second equation from the first one we get

Di+ 1
2
− Di− 1

2
= ε

3
2

i+ 1
2

fi+ 1
2
∆εi+ 1

2
+ (ε

3
2

i+ 1
2

− ε
3
2

i− 1
2

)
N−1∑

j=i+1

fj+ 1
2
∆εj+ 1

2
− ε

3
2

i− 1
2

fi+ 1
2
∆εi+ 1

2
.

Thus

Di+ 1
2
− Di− 1

2

ε
3
2

i+ 1
2

− ε
3
2

i− 1
2

= fi+ 1
2
∆εi+ 1

2
+

N−1∑
j=i+1

fj+ 1
2
∆εj+ 1

2
.

In the same way we have the relation

Di+ 3
2
− Di+ 1

2

ε
3
2

i+ 3
2

− ε
3
2

i+ 1
2

= fi+ 3
2
∆εi+ 3

2
+

N−1∑
j=i+2

fj+ 1
2
∆εj+ 1

2
,

hence

Di+ 3
2
− Di+ 1

2

ε
3
2

i+ 3
2

− ε
3
2

i+ 1
2

−
Di+ 1

2
− Di− 1

2

ε
3
2

i+ 1
2

− ε
3
2

i− 1
2

= − fi+ 1
2
∆εi+ 1

2
, ∀i ; 2 ≤ i ≤ N − 2 . (3.50)

Now we have to produce the relationship associated to i = N−1 and i = 2. First, from (3.37)
we get relations

DN− 1
2

=
N−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
and DN− 3

2
=

N−2∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

N− 3
2

fN− 1
2
∆εN− 1

2
,

and so on

DN− 1
2
− DN− 3

2

ε
3
2

N− 1
2

− ε
3
2

N− 3
2

= fN− 1
2
∆εN− 1

2
. (3.51)

Furthermore

D 3
2

= ε
3
2
3
2

f 3
2
∆ε 3

2
+ ε

3
2
3
2

N−1∑
j=2

fj+ 1
2
∆εj+ 1

2
.

We sum the (N − 3) relations (3.50) from i = 2 to i = N − 2 and (3.51). Therefore

D 3
2

= ε
3
2
3
2

f 3
2
∆ε 3

2
+ ε

3
2
3
2

D 5
2
− D 3

2

ε
3
2
5
2

− ε
3
2
3
2

.

This completes the proof.

24



Remark 12. The system (3.49) can be solved by a Newton method in only O(N) operations
at each step.

We can make also the following remark

Remark 13. M is a M-matrix. Actually, according that {εi+ 1
2
}1≤i≤N−1 is an increasing

sequence Mi,i−1 and Mi,i+1 are negative. Furthermore Mi,i = −(Mi,i−1 +Mi,i+1) then
Mi,i > 0. As M is non-singular M is a M-matrix (that means (M−1v, v) > 0; ∀v > 0).
So, if {fi+ 1

2
}1≤i≤N−1 is positive the Di+ 1

2
’s remain positive. This confirms Remark 6. We’ll

see latter that this property is unavoidable to guarantee the positivity of the scheme S1.

We turn now to the scheme S2 (always in the particular case where potential are Coulombian)
and produce the following proposition.

Proposition 4. Let f a distribution function that has density ρ and energy ρE. We assume

that fNε
3
2

N− 1
2

/ẼN− 1
2
6= 1. The diffusion term discretized by S2 is solution of the following

system

M̃ D̃ = f
eδ

where D̃ (respectively feδ) is the (N−1)-dimensional column vector with components {D̃i+ 1
2
}1≤i≤N−1

(respectively {∆εi+ 1
2
fi+ 1

2
}1≤i≤N−1) and M̃ is the (N − 1)×(N − 1) tridiagonal matrix with

components

M̃1,2 = −(ε
3
2
5
2

− ε
3
2
3
2

)−1 , M̃1,1 = −M̃1,2 + (ε
3
2
3
2

)−1

M̃i,i−1 = −(ε
3
2

i+ 3
2

− ε
3
2

i+ 1
2

)−1 , M̃i,i+1 = −(ε
3
2

i+ 1
2

− ε
3
2

i− 1
2

)−1 , M̃i,i = − (M̃i,i−1 + M̃i,i+1) ,

M̃N− 1
2
,N− 3

2
= − (ε

3
2

N− 1
2

− ε
3
2

N− 3
2

)−1 , M̃N− 1
2
,N− 1

2
= −M̃N− 1

2
,N− 3

2
− fN

ẼN− 1
2

.

Proof. As in the previous proof we easily check that

D̃i+ 3
2
− D̃i+ 1

2

ε
3
2

i+ 3
2

− ε
3
2

i+ 1
2

−
D̃i+ 1

2
− D̃i− 1

2

ε
3
2

i+ 1
2

− ε
3
2

i− 1
2

= − fi+ 1
2
∆εi+ 1

2
, 2 ≤ i ≤ N − 2 . (3.52)

We look what’s happening at i = N − 1. From the discretization of the diffusion term we get

D̃N− 1
2

=
N−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

N− 1
2

fN+ 1
2
∆εN+ 1

2
,

and

D̃N− 3
2

=
N−2∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
+ ε

3
2

N− 3
2

fN− 1
2
∆εN− 1

2
+ ε

3
2

N− 3
2

fN+ 1
2
∆εN+ 1

2
.

Therefore
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D̃N− 1
2
− D̃N− 3

2

ε
3
2

N− 1
2

− ε
3
2

N− 3
2

= fN− 1
2
∆εN− 1

2
+ fN+ 1

2
∆εN+ 1

2
.

But following (3.21) and (3.45) we can write fN+ 1
2
∆εN+ 1

2
= fN D̃N− 1

2
/ẼN− 1

2
, thus

D̃N− 1
2
(

1

ε
3
2

N− 1
2

− ε
3
2

N− 3
2

− fN

ẼN− 1
2

) −
D̃N− 3

2

ε
3
2

N− 1
2

− ε
3
2

N− 3
2

= fN− 1
2
∆εN− 1

2
. (3.53)

By summing the (N − 3) relations (3.52) together with (3.53) we easily get the equation at
i = 1. This ends the proof.

Note that M̃ is a M-matrix if and only if fN < ẼN− 1
2
(ε

3
2

N− 1
2

− ε
3
2

N− 3
2

)−1 and fNε
3
2

N− 1
2

/ẼN− 1
2
6= 1.

3.1.5 Mass and energy conservations

Proposition 5. The schemes S1 and S2 are conservative in density and energy.

These conservation properties can be easily checked by taking {φi}1≤i≤N = {(1, εi)t}1≤i≤N in
(3.5) and (3.17) respectively.

3.1.6 Equilibrium solution

Recall that M = exp(−βε) is the Maxwellian equilibrium solution of the equation (2.1) that
has the same density and energy as f(ε, 0) = f0(ε). We note {Mi}1≤i≤N = {exp(−βεi)}1≤i≤N

the approximation of {M(εi)}1≤i≤N on the energy grid. In this section, we focus on the ther-
modynamical equilibrium state. We show in particular that the schemes S1 and S2 preserve
the equilibrium state when is reached; it means that the numerical fluxes are equal to zero
when the distribution f is equal to the equilibrium solution. First we consider the scheme S1.

Proposition 6. We assume that Mi+ 1
2

is computed by Chang and Cooper average formula
(3.11) where

δi+ 1
2

=
1

β∆εi+ 1
2

− 1
exp(β∆εi+ 1

2
)− 1

∀i ; 1 ≤ i ≤ N − 1 . (3.54)

Thus we have Mi+ 1
2

= −Mi+1 −Mi

β∆εi+ 1
2

and
Ei+ 1

2

Di+ 1
2

= β for all i such that 1 ≤ i ≤ N − 1 where

Ei+ 1
2

and Di+ 1
2

are computed by the scheme S1 (see (3.9)).

Proof. First we remark that Mi+1 = exp(−β∆εi+ 1
2
)Mi thus we have

Mi+1 − Mi = −Mi+1 (exp(−β∆εi+ 1
2
) − 1) ,
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Now from (3.11) and (3.54) we get

Mi+ 1
2

=

(
1

β∆εi+ 1
2

− 1
exp(−β∆εi+ 1

2
)− 1

)
(Mi − Mi+1) + Mi+1 .

Therefore
Mi+ 1

2
= (

1
β∆εi+ 1

2

+
Mi+1

Mi+1 −Mi
) (Mi − Mi+1) + Mi+1 ,

and
Mi+ 1

2
= −Mi+1 − Mi

β∆εi+ 1
2

. (3.55)

Thanks to (3.55) the drift term reads at equilibrium

Ei+ 1
2

= −
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Mj+1 −Mj) =

N−1∑
j=1

gi+ 1
2
,j+ 1

2
Mj+ 1

2
β∆εj+ 1

2
= βDi+ 1

2
.

That completes the proof.

Note that the Proposition 6 amounts to say that problem (3.13) has a solution at equilibrium
given by relation (3.54). We are now going to show that at equilibrium this solution is
unique. By the Brouwer fixed point theorem we saw that H has a fixed point in [0, 1]N−1.
To prove the uniqueness of solution we just have to show that the mapping H is contracting,
i.e.,‖ H(x)−H(y) ‖≤ L′ ‖ x− y ‖ for some norm, Lipschitz constant L′ < 1, and all x, y in
[0, 1]N−1. Indeed, if H has two fixed points δ and δ′ we get ‖ H(δ)−H(δ′) ‖<‖ δ − δ′ ‖ and

that is conflicting. We introduce the matrix a(δ) = (ai,j) = (
∂Hi+ 1

2
(δ)

∂δj+ 1
2

) and the matrix norm

induced by the maximum norm ‖ a ‖= maxi
∑N−1

j=1 | ai,j |. At equilibrium we have

ai,j = −h′(αi+ 1
2
)
Ei+ 1

2

D2
i+ 1

2

∆εi+ 1
2
gi+ 1

2
,j+ 1

2
(Mj −Mj+1)∆εj+ 1

2
.

Note that as M is a Maxwellian, M is monotone thus Mj−Mj+1 ≥ 0 and Ei+ 1
2
≥ 0. Therefore

N−1∑
j=1

| ai,j |=| h′(αi+ 1
2
) |

Ei+ 1
2

D2
i+ 1

2

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Mj −Mj+1)∆εj+ 1

2
.

We denote ∆ε = maxi(∆εi+ 1
2
) and we get

N−1∑
j=1

| ai,j | ≤ | h′(αi+ 1
2
) | α2

i+ 1
2

∆ε
∆εi+ 1

2

.

Now let g(x) = h′(x)x2. By calculating g′ it’s easy to see that the function g is decaying over
[0,+∞[ and g(0) = 0, g(+∞) = −1. Therefore, since x is bounded we have | g(x) |< 1. By
definition αi+ 1

2
reads

αi+ 1
2

=

∑N−1
j=1 gi+ 1

2
,j+ 1

2
Mj+1(exp(β∆εj+ 1

2
)− 1)∑N−1

j=1 gi+ 1
2
,j+ 1

2
((1− δj+ 1

2
)Mj+1 + δj+ 1

2
Mj)

∆εi+ 1
2
.
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Because Ei+ 1
2

and Di+ 1
2

are positive, δi+ 1
2

lies in [0, 1/2]. Hence

αi+ 1
2
≤ 2

∑N−1
j=1 gi+ 1

2
,j+ 1

2
Mj+1(exp(β∆εj+ 1

2
)− 1)∑N−1

j=1 gi+ 1
2
,j+ 1

2
Mj+1∆εj+ 1

2

∆εi+ 1
2
.

But (exp(x)− 1)/x is an increasing function, consequently we have

αi+ 1
2
≤ 2

exp(β∆ε)− 1
∆ε

∆εi+ 1
2
,

and | g(αi+ 1
2
) |< 1. It is clear that if {∆εi+ 1

2
}1≤i≤N is a uniform sequence then∑N−1

j=1 | ai,j |< 1 and H is contracting. Now if we admit that β is sufficiently small and
∆ε/∆εi+ 1

2
close to the unity such that | g(αi+ 1

2
)∆ε/∆εi+ 1

2
|< 1 then H is still contracting.

We turn now to scheme the S2.

Proposition 7. We assume that Mi+ 1
2

is computed by the Chang and Cooper average formula
(3.23) where

δ̃i+ 1
2

=
1

β∆εi+ 1
2

− 1
exp(β∆εi+ 1

2
)− 1

∀i ; 1 ≤ i ≤ N − 1 .

Thus we have
Ẽi+ 1

2

D̃i+ 1
2

= β for all i such that 1 ≤ i ≤ N where Ẽi+ 1
2

and D̃i+ 1
2

are calculated

with the scheme S2.

Proof. According to (3.29) and thanks to (3.21) we can write

D̃N+ 1
2

ẼN+ 1
2

=
D̃N+ 1

2

ẼN+ 1
2

DN+ 1
2

ẼN+ 1
2

D̃N+ 1
2

+ gN+ 1
2
,N+ 1

2
fN

EN+ 1
2

+ gN+ 1
2
,N+ 1

2
fN

.

Therefore
D̃N+ 1

2

ẼN+ 1
2

=
DN+ 1

2

EN+ 1
2

=
1
β
. (3.56)

Once again we get

D̃i+ 1
2

Ẽi+ 1
2

=
D̃N+ 1

2

ẼN+ 1
2

Di+ 1
2

ẼN+ 1
2

D̃N+ 1
2

+ gi+ 1
2
,N+ 1

2
fN

Ei+ 1
2

+ gi+ 1
2
,N+ 1

2
fN

,

and consequently
D̃i+ 1

2

Ẽi+ 1
2

=
Di+ 1

2

Ei+ 1
2

=
1
β

. This ends the proof.
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3.1.7 Positivity

If equation (2.1) is linear (in the sense that E(f) and D(f) are independent of f), Chang
and Cooper [10] have shown that their scheme is positive; in other words, if initial value f0(ε)
is non-negative then the value of f(ε, t) at each successive time step remains non-negative.
Afterwards, Larsen et al. [25] have pointed out that if (2.1) is non-linear (in particular if there
exists non-linearity in energy variable) the Chang and Cooper method generally loses the
property that numerical solutions are guaranteed to be positive. We are interested in the case
where E(f) and D(f) depend on the distribution function. We show that S1 is a positive
scheme while S2 can produce negative solution. Now we focus on the scheme S1.

Proposition 8. We assume that for all distribution function f = {fi}1≤i≤N there exists
δ(f) = {δi+ 1

2
(f)}1≤i≤N−1 that is C1 and given by (3.12). Then (3.7) has a solution. Fur-

thermore, if fi(t = 0) is non-negative, then fi(t) is non-negative for t > 0.

Proof. In the first place as δ(f) is C1 we are able to use Cauchy-Lipschitz’s theorem. So that
(3.7) has a unique solution. From the Proposition 1 we get Ki+ 1

2
= Ai+ 1

2
fi+1 −Bi+ 1

2
fi, with

Ai+ 1
2

= v(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

and Bi+ 1
2

= u(αi+ 1
2
)
Di+ 1

2

∆εi+ 1
2

and where
u(α) =

α

exp(α)− 1
and v(α) =

α exp(α)
exp(α)− 1

.

The function u(x) is positive, decreasing from −∞ to 0, while v(x) is positive too, increasing
from 0 to +∞. To prove the positivity we use Lemma 1. Thus all we need to do is showing
that the Ai+ 1

2
’s and Bi+ 1

2
’s are positive and bounded. As a result (see Remark 6) we have

Di+ 1
2
≥ 0. Moreover u and v are positive functions therefore Ai+ 1

2
and Bi+ 1

2
are positive too.

Now we have to show that Ai+ 1
2

and Bi+ 1
2

are bounded. At first we assume that f is a distribu-

tion function that has density ρ and energy ρE thus we get fj ≤
ρ

maxi ci
, ∀j; 1 ≤ j ≤ N − 1.

So that we can bound the drift term as following

| Ei+ 1
2
|=|

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj − fj+1) |≤

ρ

maxi ci
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
≤ ρ

maxi ci
2(N − 1)gN− 1

2
,N− 1

2
.

Consequently, there exists C > 0 such that | Ei+ 1
2
|< C. In the same way we get an

upperbound for the diffusion coefficients

Di+ 1
2
≤ ρ

maxi ci
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
∆εj+ 1

2
.

To continue we distinguish two cases. First we suppose that | αi+ 1
2
|≥ 1. Then we get

Ai+ 1
2

=
exp(αi+ 1

2
)

exp(αi+ 1
2
)− 1

Ei+ 1
2

and Bi+ 1
2

=
1

exp(αi+ 1
2
)− 1

Ei+ 1
2
.

And even if | αi+ 1
2
|→ ∞, Ai+ 1

2
and Bi+ 1

2
remain bounded. Now we assume that | αi+ 1

2
|≤ 1

then u(αi+ 1
2
) and v(αi+ 1

2
) are bounded and Ai+ 1

2
and Bi+ 1

2
too since Di+ 1

2
is also bounded.

Thus, thanks to Lemma 1 this ends the proof.
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Concerning the scheme S2 we have shown that the discretized diffusion term can become
negative. This loss of positivity prevent us to provide an efficient result for the positivity
of the scheme considering that our proof is based on the D̃i+ 1

2
’s positivity. All we can do

is supplying an example of contrary in the case where potentials are Maxwellian. Let f a
distribution function that as density ρ =

∑N
i=1 cifi and energy ρE =

∑N
i=1 ciεifi. We assume

that f = aδε1 + bδεN where a and b are constants to define and the δεi ’s are Dirac functions.

We assure also that the integration domain is sufficient to check that (
3
2
T =

ρE
ρ

< εN = E).

Now we have ρ = c1a + cNb and ρE = cNεNb (because ε1 = 0). Thus b = ρE/(cNεN ) and
a = (ρ− ρE/εN )/c1. Note that a and b are non-negative. From (3.19) we have

cN−1
dfN−1

dt
= K̃N− 1

2
− K̃N− 3

2
= ÃN− 1

2
fN − B̃N− 1

2
fN−1 − (ÃN− 3

2
fN−1 − B̃N− 3

2
fN−2) ,

therefore
dfN−1

dt
= ÃN− 1

2
b/cN−1. Now thanks to (3.28), ÃN− 1

2
and D̃N− 1

2
have the same sign.

Taking again what we saw previously (equation (3.33)) we write

D̃N− 1
2

ε
3
2

N− 1
2

(1 − ε
3
2

N+ 1
2

fN
3
2ρ

) =
N−1∑
j=1

ε
3
2

j+ 1
2

fj+ 1
2
∆εj+ 1

2
.

Subsequently 1− ε
3
2

N+ 1
2

fN
3
2ρ

= 1− ρE
3
2ρ

ε
3
2

N+ 1
2

cNεN
= 1−T

ε
3
2

N+ 1
2

εN

1
√
εN∆εN

. If ∆εN −→ 0 it is clear

that D̃N− 1
2

becomes negative. Therefore
dfN−1

dt
< 0 and consequently fN−1 gets negative too.

For the Coulombian case we can take the same example of contrary to show the non-positivity
of the scheme S2.

We can be more precise with S2 in the case where potentials are Maxwellian. Let us recall that

we denoted Y =
3
2
ρ− ε

3
2

N+ 1
2

fN (see formula (3.34)). As usual, f is a non-negative distribution

that has non-zero density ρ and energy ρE such that T = 2/3ρE
ρ < Tmax. These functions

generate a compact subset of RN : D = {f ∈ RN ; ∀i, fi ≥ 0,
∑

i cifi = ρ and
∑

i ciεifi =
ρE}. Now we show that D̃i+ 1

2
behaves like 1/Y . First, we saw that the drift coefficients

are always positive and the diffusion coefficients (namely D̃i+ 1
2

= ε
3
2

i+ 1
2

d(f)) have all the same

sign. Consequently the Chang and Cooper coefficients always verify: 0 ≤ δi+ 1
2
≤ 1

2 if Y > 0

and 1
2 ≤ δi+ 1

2
≤ 1 if Y < 0. To begin, we assume that Y > 0. Thus, thanks to (3.33) we get

the inequality

Y D̃N− 1
2
/(

3
2
ρ) = ε

3
2

N− 1
2

d̃(f)(1−
ε

3
2

N+ 1
2

fN

3
2ρ

) =
N−1∑
j=1

gN− 1
2
,j+ 1

2
fj+ 1

2
∆εj+ 1

2
≥

N−1∑
j=1

gN− 1
2
,j+ 1

2
fj+1∆εj+ 1

2
.

The functional
∑N−1

j=1 gN− 1
2
,j+ 1

2
fj+1∆εj+ 1

2
is linear continuous on D thus achieves its mini-

mum on this compact subset. This minimum is strictly positive because if it is equal to zero,
that implies that all the mass will be concentrated at ε1, consequently the energy would be
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zero and we have supposed that the energy is strictly positive.
On the other hand, if Y < 0, (3.33) gives

Y D̃N− 1
2
/(

3
2
ρ) ≥

N−1∑
j=1

gN− 1
2
,j+ 1

2
fj∆εj+ 1

2
,

and the right-hand side admits a strictly positive minimum (if not, all the mass will be
concentrated at εN and we have supposed that we only consider distribution function such
that 0 ≤ T ≤ Tmax).
This shows that for the diffusion coefficient D̃N− 1

2
we ge lim

Y→±0
D̃N− 1

2
→ ±∞. Since all the dif-

fusion coefficient are proportionals and have the same sign, one has for all i: lim
Y→±0

D̃i+ 1
2
→ ±∞.

In other words D̃i+ 1
2

behaves like
1
Y

. This result says also that the scheme S2 is not consistent

with the truncated FPL equation defined by (3.1) but only with (2.3).
In the Coulombian case, the situation is more complicated. But we are able to construct a
sequence of positive distribution functions fν , with constant mass and energy, which have f0

as limit as ν → ±0 and such that:

• f0 verifies Y = 0, where Y is given by (3.48),

• there exist an index i0 and a constant a such that min(fi0 , fi0+1) ≥ a > 0,

• f0
N−1 ≥ bf0

N , with b > 2.

We begin by the construction of f0. First we assume that f0 lies in D and we set

1
b
f0

N−1 = f0
N = ε

3
2

N+ 1
2

/
3
2
ρ.

The mass and the energy due to these two points are equal respectively to

∆ρ = ε
3
2

N+ 1
2

(bcN−1 + cN )/
3
2
ρ and ∆ρE = ε

3
2

N+ 1
2

(bεN−1cN−1 + εNcN )/
3
2
ρ.

Since ci ' ∆εi
√
εi, for ∆εN and ∆εN−1 sufficiently small we have ρ−∆ρ > 0 and ρE−∆ρE >

0. Then we choose on the N − 2 first points a positive distribution with mass ρ − ∆ρ and
with energy ρE − ∆ρE, by example a Maxwellian having this mass and this energy. The
resulting distribution f0 verifies all the three points above.

The functional Y = 3
2ρ− ε

3
2

N+ 1
2

fN is continuous on the compact set D and {0}∈
o

Im(Y (D)),

since for the maxwellian that has density ρ and energy ρE, Y > 0 and for the example
of contrary above Y < 0. Thus there exist sequences fν ∈ D such that limν→0 f

ν = f0

with Y ν ≥ 0 or Y ν ≤ 0 and with Y ν → 0. For ν sufficiently small we have, by example,
min(fν

i0
, fν

i0+1) ≥ a/2 and f0
N−1 > b/2bf0

N . For this sequence Y ν > 0 we use the definition of
the diffusion coefficients

Y νD̃ν
N− 1

2

≥ a

2

∑
j

gN− 1
2
,j+ 1

2
∆εj+ 1

2

3
2
ρ.
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Thus if Y ν ≥ 0 , limν→0 D̃
ν
N− 1

2

= +∞ or if Y ν ≤ 0 , limν→0 D̃
ν
N− 1

2

= −∞.

Since the definition of Y is the same in the Coulombian and in the Maxwellian cases, the
above example works also in the Maxwellian case. We have seen that in the domain Y > 0
the diffusion coefficients are positive. And naturally the question that arise is: is this domain
stable by (3.19)? it seems that this is not true: for the sequence fν constructed above one

can verify easily using (3.26) that
dfν

N

dt
tends to +∞ as Y ν tends to +0 that is

dY ν

dt
tends to

−∞ as Y ν tends to +0. This suggests that one can attain the boundary Y = 0 in finite time.
And for Y = 0, as we have seen, the scheme S2 is not defined.

Despite its deficiencies for the positivity one could use the scheme S2: a solution to avoid the
lack of positivity would be to take the domain of computation sufficiently large in order to
have the tail of the distribution function sufficiently small and thus Y ' 3

2ρ.

3.1.8 Discussion: some remarks and about Epperlein’s version of the Chang and
Cooper method.

We begin by given some remarks about the above analysis.

Remark 14. It is easy to check that the above results about positivity, energy conservation
and equilibrium states for S1 and S2 don’t depend on the definition of the coefficients ci, see
(3.3), or on our choice for the value of ε1.

Remark 15. For S1 (and S2 if the scheme is positive) if one takes the Chang and Cooper
coefficients δi+ 1

2
at equilibrium, that is given by (3.54), or freeze the value given by the initial

data, it is not difficult to see that if it is done in the expression of the fluxes given by (3.10)
the scheme is still positive but no more conservative in energy and if it is done in (3.14) the
scheme is still conservative in energy but no more positive. The algebra that permits to pass
from the form (3.10) to the form (3.14) is valid if and only if the coefficients verify at all
times the relation (3.13). This remark is still valid if one does not calculate exactly the Chang
and Cooper coefficients by an iterative method.

Remark 16. The scheme S2 is in fact not consistent with the truncated FPL equation (3.1),
but only with (2.1).

Remark 17. We don’t have any H-theorem for S1 (and S2) except for S1 in the case where
potentials are maxwellian and the energy grid is uniform, since in this case the scheme reduces
to the entropic scheme of Berezin-Pekker.

Remark 18. The scheme S2 is not positive but it would not be a surprise if implicit time
discretization leads to positive solutions. Actually it is well known that implicit time dis-
cretization adds some kind of numerical ”viscosity” which ”stabilizes” algorithms.

We are also interesting in the Epperlein velocity space discretization for solving the FPLE
for Coulombian collisions [22] since it is based on the method of Chang and Cooper. This
method is used in the code SPARK developed by Epperlein [21] or by Kingham and Bell in
the recent code IMPACT [23]. As in the present paper the collisions coefficients are defined
by Langdon. To difference the equation in velocity space, the author applies the Chang and
Cooper approach. In his paper Epperlein develops a fully implicit finite-difference method
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for solving FPL equation and claims that his approach conserves both energy and number
density exactly. Without talking about time discretization we just focus on his velocity space
discretization and properties. In particular the Epperlein scheme differs on our scheme only
by boundary conditions at ε = E . Actually, the author assumes that the diffusion term and
the distribution function vanish at εN+ 1

2
and that the distribution function vanishes at εN+1.

Thus the numerical flux is zero and consequently the density is conserved. In fact the Epper-
lein velocity discretization is nothing else than a miscellany of what we called scheme S1 and
scheme S2: the drift term is the one discretized by scheme S2, formula (3.39), and the diffusion
term the one computed by S1, formula (3.37). Now, we can prove that the Epperlein velocity
space discretization produces non-negative solution in consideration that the diffusion term
is non-negative. Whereas we raise a doubt concerning the energy conservation. Effectively,
assuming that diffusion vanishes at boundary while drift not, breaks the symmetry in the
right-hand side of the semi-discretized equation. And the energy conservation proof leans on
the symmetry between ε and ε′ (or v and v′). At last (3.56) fails and this relation is indis-
pensable to check that the Chang and Cooper type scheme preserves the equilibrium state
when is reached. As for S2 this scheme is not consistent with the truncated FPL equation
(3.1), but only with (2.1).

Remark 19. We can remark that these three Chang and Cooper type schemes are equivalent
when the integrating domain is not bounded. The only difference between these schemes lies
in the manner to treat boundary conditions when the integrating domain is reduced to [0, E ].

3.2 Alternative schemes

The Chang and Cooper method is not the only way to provide positive, conservative and
equilibrium states preserving schemes for the FPL equation. As we have seen above it is
a very complicated scheme for this equation, not always positive or conservative in energy,
depending on the boundary condition taken at the end of the domain of computation. The
schemes we’ll propose in the next sections share also these properties and are simpler.

3.2.1 Equilibrium scheme (scheme S3)

The first scheme is based on the work of Larsen et al. [25]. Their work is for linear and non-
linear (in the sense that collisions terms are non-linear in energy variables) Fokker-Planck
equations. But they do not consider non-linearity as in the Landau equation, that is drift
and diffusion coefficients are functionnals of the distribution functions. One of the two main
ideas exposed in their paper to preserve Maxwellian states is to remark that ε-derivative that
appears in the flux can be rewritten as

∂

∂ε
= −βy ∂

∂y

where y = exp(−βε). Thus it becomes easy to preserve Maxwellians in the weak form of the
Fokker-Planck equation. Following these authors, in the case of the FPL equation, we set

∆εi+ 1
2

= −
(∆M)i+ 1

2

βMi+1
=

exp(β∆εi+ 1
2
)− 1

β
' ∆εi+ 1

2
(3.57)

Thus we consider the following approximation of the weak symmetrized form of the problem
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N∑
i=1

ci
∂fi

∂t
φi = −1

2

N−1∑
i=1

N−1∑
j=1

(
∆φi+ 1

2

∆εi+ 1
2

−
∆φj+ 1

2

∆εj+ 1
2

)
gi+ 1

2
,j+ 1

2

(
fj+ 1

2

∆fi+ 1
2

∆εi+ 1
2

− fi+ 1
2

∆fj+ 1
2

∆εj+ 1
2

)
∆εj+ 1

2
∆εi+ 1

2
,

(3.58)
with the approximations fi+ 1

2
taken decentered and defined by fi+ 1

2
= fi+1.

As in the previous section we obtain the system of ordinary equation for the approximation
of the FPL equation

dfi

dt
= QS3

i 1 ≤ i ≤ N (3.59)

where QS3
1 = K 3

2
/c1, QS3

i = (Ki+ 1
2
−Ki− 1

2
)/ci for 2 ≤ i ≤ N−1 and QS3

N = −KN− 1
2
/cN with

the numerical flux

Ki+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fj+1

∆fi+ 1
2

∆εi+ 1
2

− fi+1

∆fj+ 1
2

∆εj+ 1
2

)∆εj+ 1
2

for i; 1 ≤ i ≤ N − 1

.
By factorizing the terms fi in the last sum, the numerical flux reads

Ki+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

(
∆fi+ 1

2

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+ fi+1

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj

− fi+1fNgi+ 1
2
,N− 1

2
).

If we bring together the terms fi+1 we get

Ki+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

((
1

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj − fNgi+ 1

2
,N− 1

2
)fi+1

−
N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2

fi

∆εi+ 1
2

).

We denote

Ai+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

 1
∆εi+ 1

2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj − fNgi+ 1

2
,N− 1

2

 ,

(3.60)
and

Bi+ 1
2

=
1

∆εi+ 1
2

N−1∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
, (3.61)

thus we have Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi.

We can summarize the properties of this scheme in the following proposition

Proposition 9. If gi+ 1
2
,j+ 1

2
is an increasing sequence and ∆εi+ 1

2
≤ ∆εN− 1

2
the scheme S3 is

conservative in mass and energy. Moreover it is positive and preserves the equilibrium state
when is reached.
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Proof. Mass and energy conservation are easily checked by setting φ = 1 and φ = ε in the
weak symmetrized form of the discrete FPL equation (3.58).
Using the definition (3.57) of ∆εi+ 1

2
and the definition of the fi+ 1

2
’s it’s easy to see that for

f = M we have

fj+ 1
2

∆fi+ 1
2

∆εi+ 1
2

− fi+ 1
2

∆fj+ 1
2

∆εj+ 1
2

= β(Mj+1Mi+1 −Mi+1Mj+1) = 0

thus the scheme preserves the Maxwellians states.
Let us now check the positivity. Let us recall the numerical flux associated to (3.59)

Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi,

where Ai+ 1
2

and Bi+ 1
2

are given respectively by (3.60) and (3.61). Now, to use Lemma 1 we
have to check that Ai+ 1

2
and Bi+ 1

2
are positive and bounded. As gi+ 1

2
,j+ 1

2
is positive, Bi+ 1

2

is obviously positive. We can write

Ai+ 1
2

=
∆εi+ 1

2

∆εi+ 1
2

(
1

∆εi+ 1
2

N−2∑
j=1

gi+ 1
2
,j+ 1

2
fj+1∆εj+ 1

2
+

N−1∑
j=1

(gi+ 1
2
,j+ 1

2
− gi+ 1

2
,j− 1

2
)fj

+ fNgi+ 1
2
,N− 1

2
(
∆εN− 1

2

∆εi+ 1
2

− 1)).

Assuming that gi+ 1
2
,j+ 1

2
is an increasing sequence and that ∆εi+ 1

2
≤ ∆εN− 1

2
leads to the

positivity of Ai+ 1
2
. Now, ∆εi+ 1

2
/∆εi+ 1

2
∈ [0, 1] therefore Ai+ 1

2
, Bi+ 1

2
are bounded since, due

to mass conservation, we have fi ≤
ρ

minj cj
. According to Lemma 1, fi cannot vanish in finite

time. That completes the proof.

Remark 20. One could replace the exact equilibrium Mi in the definition of the scheme by
an approximate equilibrium state M̃i with same mass and energy and the resulting scheme is
still conservative, positive but the equilibrium state is now M̃i. This could be useful since this
scheme requires the knowledge of the equilibrium state and normally this can be done only by
solving a non-linear equation with an iterative method.

Remark 21. If we stand fi+ 1
2

= fi instead of fi+ 1
2

= fi+1 in the numerical flux and if we take

∆εi+ 1
2

=
(∆M)i+ 1

2

βMi
, the Maxwellians are also preserved but we can show that S3 is positive if

and only if the energy grid is uniform.

Remark 22. On a uniform grid all the terms ∆εi+ 1
2

are equal and up to a multiplicative
constant the flux reduces to

Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fi+1fj − fifj+1).

The scheme is then nothing else than the scheme provided by Berezin and Pekker [1] which is
also an entropic scheme as shown in [5].
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Remark 23. For Maxwellian (g(ε, ε′) = ε
3
2 ε′

3
2 ) or Coulombian (g(ε, ε′) = min(ε

3
2 , ε′

3
2 ))

potentials the evaluation of all the coefficients Ai+ 1
2

and Bi+ 1
2

can be achieved in only O(N)
operations, as explained in [4, 5].

Remark 24. The second idea of Larsen et al. in [25] to preserve Maxwellians and applied

here to the isotropic FPL equation is to write
∂f

∂ε
= M

∂

∂ε
(
f

M
)− βf . The isotropic FPL

equation reads∫ ∞

0

∂f(ε)
∂t

φ(ε)
√
εdε =

− 1
2

∫ ∞

0

∫ ∞

0
(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)
(
f(ε′)M(ε)

∂

∂ε
(
f(ε)
M(ε)

)− f(ε)M(ε′)
∂

∂ε′
(
f(ε′)
M(ε′)

)
)
dε′dε.

Proceeding as above leads to a scheme which is indeed conservative in mass and energy and
preserves the Maxwellians. But at this time, we cannot show the positivity. Nevertheless it
could be possible to derive a positive scheme since there are sufficiently degrees of freedom in
the discretization, namely the factor fi+ 1

2
and Mi+ 1

2
.

3.2.2 Entropy decaying scheme (scheme S4)

The present approach consists in deriving a discretization from the ”Log” form (2.4) because
this helps to check easily the main properties of the operator, conservation and H-theorem
which are given without proof. This approach was initiated by Degond and Lucquin in [17]
for the 3-D Landau equation (for the implementation see [7, 26]), used for the 2-D axisymetric
Landau equation [26], and applied in the isotropic case in [3, 5]. We present a new version of
the algorithm based on the ”Log” form.

From the previous section we retain the approximation of
∫ ε0

0

∂f

∂t
φ
√
εdε as

N∑
i=1

ci
dfi

dt
φi. We

now turn to the discretization of the right-hand side of (2.4)

(r.h.s.) = −1
2

N−1∑
i=1

N−1∑
j=1

(∫ εi+1

εi

∫ εj+1

εj

(
∂φ(ε)
∂ε

− ∂φ(ε′)
∂ε′

)g(ε, ε′)f(ε′)f(ε)(
∂ log f(ε)

∂ε
− ∂ log f(ε′)

∂ε′
)dεdε′

)
.

(3.62)
For each integrals of (3.62) we use again a midpoint quadrature formula, the ε-derivative are
approximated by centered finite difference operator, thus

(r.h.s.) =− 1
2

N−1∑
i=1

N−1∑
j=1

(
∆φi+ 1

2

∆εi+ 1
2

−
∆φj+ 1

2

∆εj+ 1
2

)
gi+ 1

2
,j+ 1

2
ki+ 1

2
,j+ 1

2(
(∆ log f)i+ 1

2

∆εi+ 1
2

−
(∆ log f)j+ 1

2

∆εj+ 1
2

)
∆εi+ 1

2
∆εj+ 1

2
,

(3.63)

with gi+ 1
2
,j+ 1

2
= g(εi+ 1

2
, εj+ 1

2
) and the terms ki+ 1

2
,j+ 1

2
stand for a second-order approximation

of fi+ 1
2
fj+ 1

2
at the center of the interval [εi, εi+1]× [εj , εj+1]. In the paper of Berezin et al.

[1], the terms ki+ 1
2
,j+ 1

2
are of the form ki+ 1

2
,j+ 1

2
= ki+ 1

2
kj+ 1

2
where the ki+ 1

2
are taken as
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an arithmetic mean of fi and fi+1. This yields a discrete model for which it cannot be
proved the f remains positive as it must be. More recently, Cordier and Buet [4] have chosen
a second-order approximation as the harmonic average; that is (2fifi+1)/(fi + fi+1). They
proved the existence of a unique, positive and entropy solution for the semi-discretized FPL
equation. Unfortunately, it turns out if initial data is not strictly positive. Furthermore, if the
distribution function is zero at a point all numerical fluxes vanish. In the case of a uniform
grid, in [5], and from an idea of [6], the authors have considered the formula

ki+ 1
2
,j+ 1

2
=

fi(∆f)j+ 1
2
− fj(∆f)i+ 1

2

(∆ log f)j+ 1
2
− (∆ log f)i+ 1

2

if (∆ log f)i+ 1
2
6= (∆ log f)j+ 1

2
,

and ki+ 1
2
,j+ 1

2
= fifj when (∆ log f)i+ 1

2
= (∆ log f)j+ 1

2
.

For a uniform grid and only in this case the above expression can be simplified into

ki+ 1
2
,j+ 1

2
=

fifj+1 − fjfi+1

log(fj+1fi)− log(fi+1fj)
,

with such assumption they recover the scheme proposed in [1]. Following this approach we
take

ki+ 1
2
,j+ 1

2
= li+ 1

2
lj+ 1

2

 f
a

i+1
2

i+1 f
a

j+1
2

j − f
a

i+1
2

i f
a

j+1
2

j+1

log(f
a

i+1
2

i+1 f
a

j+1
2

j )− log(f
a

i+1
2

i f
a

j+1
2

j+1 )

 ,

with ai+ 1
2

=
∆ε

∆εi+ 1
2

, where ∆ε = max
j

∆εj+ 1
2

and for consistency we take li+ 1
2

= (
fi + fi+1

2
)
1−a

i+1
2 .

By the relation (x− y)(log x− log y) ≥ 0 we assure that ki+ 1
2
,j+ 1

2
remains positive. Thus we

obtain the following weak formulation for the semi-discretized model

N∑
i=1

ci
dfi

dt
φi = −

N−1∑
i=1

(φi+1 − φi)
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(
fi+1 + fi

2
)
1−a

i+1
2 (
fj+1 + fj

2
)
1−a

j+1
2

(
f

a
i+1

2
i+1 f

a
j+1

2
j − f

a
i+1

2
i f

a
j+1

2
j+1

) ∆εj+ 1
2

∆ε
.

As in the previous sections the system of ordinary equation reads

dfi

dt
= QS4

i , 1 ≤ i ≤ N (3.64)

where QS4
1 = K 3

2
/c1, QS4

i = (Ki+ 1
2
−Ki− 1

2
)/ci for 2 ≤ i ≤ N−1 and QS4

N = −KN− 1
2
/cN with

the numerical flux

Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(
fi+1 + fi

2
)
1−a

i+1
2 (
fj+1 + fj

2
)
1−a

j+1
2

(
f

a
i+1

2
i+1 f

a
j+1

2
j − f

a
i+1

2
i f

a
j+1

2
j+1

) ∆εj+ 1
2

∆ε
.

To simplify we denote Θr
i+ 1

2

= (2fi+1/(fi + fi+1))
a

i+1
2
−1

and Θl
i+ 1

2

= (2fi/(fi + fi+1))
a

i+1
2
−1

this provides

Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(Θr

i+ 1
2

fi+1Θl
j+ 1

2

fj −Θl
i+ 1

2

fiΘr
j+ 1

2

fj+1)
∆εj+ 1

2

∆ε
.
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We write

Ai+ 1
2

= Θr
i+ 1

2

(
N−1∑
j=1

gi+ 1
2
,j+ 1

2

∆εj+ 1
2

∆ε
Θl

j+ 1
2

fj), (3.65)

and

Bi+ 1
2

= Θl
i+ 1

2

(
N−1∑
j=1

gi+ 1
2
,j+ 1

2

∆εj+ 1
2

∆ε
Θr

j+ 1
2

fj+1), (3.66)

thus
Ki+ 1

2
= Ai+ 1

2
fi+1 −Bi+ 1

2
fi.

Proposition 10. The scheme S4 is conservative in mass and energy and preserves the posi-
tivity and the Maxwellian equilibrium when it is reached. Moreover it is an entropic scheme.

Proof. The conservation of mass and energy are directly checked on (3.63) by taking φ = 1
or φ = ε. Let M the Maxwellian equilibrium solution. The proof is straightforward by
substituting the distribution function M also in (3.63). If we define the entropy by

H(f) =
N∑

i=1

cifi log fi,

thus using (3.63) with φ = log f , one has

dH(f)
dt

=
N∑

i=1

ci
dfi

dt
log fi ≤ 0,

and the equality occurs when f = exp(−βε), that is when f is a Maxwellian. In other terms
we have a H-theorem for this scheme. The numerical flux associated to scheme S4 is

Ki+ 1
2

= Ai+ 1
2
fi+1 −Bi+ 1

2
fi,

where Ai+ 1
2

and Bi+ 1
2

are respectively given by (3.65) and (3.66). If {fi}1≤i≤N is positive it’s
straightforward to show that

0 ≤ Θl
i+ 1

2

= (2fi/(fi+1 + fi))
a

i+1
2
−1 ≤ 1 and 0 ≤ Θr

i+ 1
2

= (2fi+1/(fi+1 + fi))
a

i+1
2
−1 ≤ 1

thus Ai+ 1
2

and Bi+ 1
2

are positive and upper bounded since, due to mass conservation, we

have fi ≤
ρ

minj cj
. Thus according to Lemma 1 the solution cannot vanish in finite time and

consequently it is positive. That ends the proof.

Remark 25. On a uniform grid the flux reduces to

Ki+ 1
2

=
N−1∑
j=1

gi+ 1
2
,j+ 1

2
(fi+1fj − fifj+1),

thus the scheme reduces to the scheme of Berezin and Pekker [1] which is also an entropic
scheme as shown in [5].
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Remark 26. For Maxwellian (g(ε, ε′) = ε
3
2 ε′

3
2 ) or Coulombian (g(ε, ε′) = min(ε

3
2 , ε′

3
2 ))

potentials the evaluation of all the coefficients Ai+ 1
2

and Bi+ 1
2

can be achieved in only O(N)
operations as explained in [4, 5].

Remark 27. For consistency the coefficients ai+ 1
2

must remain bounded as ∆ε→ 0.

Remark 28. One could choose the coefficients gi+ 1
2

as (
fi + fi+1 + µ

2
)
1−a

i+1
2 where µ << 1

is a threshold to avoid undefined coefficients Θr
i+ 1

2

Θl
i+ 1

2

if fi = fi+1 = 0 and that does not
change anything in the properties of the scheme.

Remark 29. In a view of a time discretization it is easy to see that one can freeze the
coefficients Θr

i+ 1
2

Θl
i+ 1

2

, for example by taking their values at time zero, and the resulting
scheme preserves mass, energy, positivity and Maxwellian state but is no more entropic.

4 Conclusions

In this work, we have analyzed the discretization of the isotropic FPL equation in order to
obtain positive, conservative and Maxwellian state preserving schemes.
Despite the lack of existence and uniqueness results for the schemes presented here, we have
clarified the derivation as well as the properties of the Chang and Cooper method in this non-
linear case. We have clearly explained how bad boundary conditions could lead to negative
or non conservative schemes. As we have seen, the Chang and Cooper method is a quite
complicated scheme for a non linear equation such as the FPL equation. We have also
shown that the Epperlein scheme could not guarantee energy conservation and Maxwellian
preserving, and the scheme S2 (developed by Langdon in the case of Coulombian potentials
[15, 24]), is not a positive scheme. Only S1, the new scheme we developed, fulfills all the
requirements. Let us recall that on infinite grids these three schemes are identical. The
differences stem from the truncation of the domain of computation and the choice of the
boundary conditions. In conclusion a direct discretization of the special form (2.15) and
(2.16) of the drift and diffusion coefficients is not a guarantee to ensure energy conservation
as claimed by Kingham and Bell in [23].
We have also presented and analyzed in detail two simpler schemes, namely S3 and S4 which
are not based on the Chang and Cooper method. However, they are as efficient as S1. The
scheme S4 based on the ”Log” form of the operator is also an entropic scheme. Let us also
mention that the Logarithm of the distribution function would not be a problem for an implicit
time discretization since the solution of the FPL equation would be positive for all time t > 0
as soon as the initial data is non-negative.
We can summarize the properties of the above schemes as follow:

• Chang and Cooper S1: positive, conserves the energy and the Maxwellians.

• Chang and Cooper S2: non-positive, conserves the energy and the Maxwellians.

• Chang and Cooper by Epperlein: positive, does not conserve the energy and
the Maxwellians.

• S3: positive, conserves the energy and the Maxwellians.
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• S4: positive, conserves the energy and the Maxwellians and is entropic.

We hope that some of the remarks would help people to design an implicit time discretization
both positive and conservative.
Concerning the implementation of implicit time discretization, our conviction is that a fixed
point method based on the form of the fluxes Ki+ 1

2
= Ai+ 1

2
fi+1 + Bi+ 1

2
fi by taking the

coefficients Ai+ 1
2
, Bi+ 1

2
at the previous iteration is sufficient. At each iteration there is no

energy conservation (see also [22]) but the iteration is positive, and by making the fixed point
converge to zero machine size to enforce energy conservation would be efficient enough. This
is the method chosen in [8] in the context of granular media for the same type of equation
and by Kingham and Bell in the code IMPACT for the isotropic FPL equation [23]. But
people could also follow the alternative ideas developped by Lemou and Mieussens in [28] for
implicit time discretization of the 3-D or isotropic Landau equation.
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