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9Vi DISCRETE BOLTZMANN MODEL WITH MULTIPLE COLLISIONS

H. Cornille

Service de Physique théorique, CE Saclay, F-91191 Gif-sur-Yvette, France

Abstract

We study a hierarchy of discrete Boltzmann models (DBMs) with speeds 0, 1, v/2 when,
in addition to binary collisions, ternary and quaternary multiple collisions are included: i)
the square 9v; model, ii) an associated three dimensional 15v; model. Firstly we find, for
shock waves, that the two equilibrium states are the same for binary alone collisions or not.
We deduce, from the H-Theorem, a criterion for any multiple collision term. Secondly, from
the knowledge of only the two equilibrium states associated to “shock profiles” solutions
we can predict whether or not overshoots for the ratios P/M (P for pressure, M for
mass and P/M for internal energy) are possible. In the arbitrary parameter space of the
two equilibriumn states we are able to predict the subdomains where both overshoots can
occur or not and the strength of the effect. These subdomains are characterized by the
singularities of the propagation speed (. Comparing with the square 8v; model, without
rest particles, a great difference occurs for ( ~ 0. These predictions are independent of the
fact that multiple collisions are present or not and can be generalized to any other DBM.
Finally we construct exact similarity shock waves when ternary collisions are present,
observe thinner shock profiles and verify the previous predictions on the P/M behaviours.

I Introduction

For the DBMs("), the inclusion of multiple collisions is not new(>~"). however an
increasing number of papers appear in this field!=3=%)_ Concerning the exact solutions,
only a few models with ternary collisions(®) have been studied. Recently(®), for two models
with speeds 1, /2, the square 8v; model and an associated 14v; model, exact solutions were
constructed with ternary and quaternary collisions included. However let us consider, for
such models, collisions of the p-th order with in the loss and gain terms, respectively m, m’
particles of speed 1 and p — m, p — m’ particles of speed \/a # 1. The microscopic energy
conservation law requires m + a(p —m) = m' + a(p — m'), or m = m’. As was recently
emphasized by Ernst(”), any collision for such models conserves the number of slow and
fast particles. This spurious conservation disappears if we add a rest particle with speed
zero. Firstly, adding one rest particle to our previous two models we consider (fig.1a) both
the square(®) 9v; and the associated 15v; models for which binary or multiple collisions can
change the number of slow or fast particles. In contrast to some other models with multiple
collisions, for shock waves the equilibrium states are the same as the binary ones. Applying
the H-Theorem, we give a criterion for any multiple collision term. Secondly, for shock
waves, we seek to understand whether physical effects like overshoots can be predicted from
the knowledge of only the two equilibrium states. We want also to establish the difference



between models with or without rest particles, in particular between the 8v;, 9v; models.
Thirdly we extend the previous construction of exact solutions'®), and check whether the
predicted physical effects are observed.

The first model®=9=19=11) i5 the square d = 2 (d dimension of the space) 9v; model
with three speeds 0, 1,v/2 and we choose, for the shock solutions, the spatial x-coordinate
along one median of the square, the x-projections of the velocities being —1,0,1. There
remain six independent densities Ny, My, M3, R, M5, N;, associated to the x-projections
1,1,0,0,—1,—1 and to the velocities (zy = x, z2) in the plane:

Ny :(1,41), Ny : (=1,£1), My : (1,0), My : (—=1,0), Ms : (0,£1), R: (0,0).

Recently'?) many multispeed DBMs with binary collisions alone, have been classified
following the (l + l)— dimensional restriction of their multidimensional PDE satisfied by the
microscopic densities. Hierarchies of models, differing only by coefficients which depend
on the spatial d dimension, have been found. As with the previous 8v;, 14v; models(®), we
study such a hierarchy of models when multiple collisions are included.

The second model(’? is a d = 3,15v; model which in the (z; = z,z5,23) three
dimensional space is the superposition of two square models in both the z1,z2 and 1, x3
planes. For the ¥ = xy restriction of this model we still have the same six independent
densities associated to the following velocities in the space:

Ny :(1,£1,0),(1,0,4£1), Ny: (=1,£1,0),(-1,0,£1),
My :(1,0,0), My : (—1,0,0), Ms: (0,£1,0),(0,0,£1), R:(0,0,0).

For both models these six densities satisfy three linear relations equivalent to the mass,
momentum and energy conservation laws and three independent nonlinear equations with

(cf. figlb) binary, ternary and quaternary collisions: ( p4 := 0y + 0y, ds :=d — 1)
2d,(p+ N1+ p-Na) =Ry, p+ My + p_My + 2(Ry + diM3¢) =0

p+ My —p_My + 2d,(py N1 —p_N2) =0, pt N1 = Qni1 = Qnip + Qnie + Qnig
Ri=Qr=Qnrv+ Qrt + Qry, M3zt = Quzs = Qursp + Qurse + Qurzg (1.1)

For binary collisions (cf. fig.1b) with cross sections oj; we get:
QnN1s = ob1B1 + o3 Bs1, Qry = 2dxop3(Bs1 + Bs2), Quisy = o2 By — 0p3(Bs1 + Bsa)
By = N\My — NoMy, By = MyM, — M3, Bs; = M;Ms — RN;, i =1,2 (1.2)

The macroscopic conservative quantities: mass M, momentum .J and energy E are linear
combinations of the microscopic densities, contrary to the velocity U and the pressure P:

M =M, + M; +2d,(Ms + N1+ Ny)+ R, J=M —M; +2d,(N; —N;) (1.3)
2F = My + My + 2d, M3 + 4d.(Ny + No), U =J/M, P =2E— MU? (1.4)
In section2 we seek the new collision terms (figs.1b), when higher order ternary and

quaternary collisions are included, and find two different classes. In the first class, which
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we call spectatorless collisions, the particles present in the loss term are missing in the
gain term. In the second class, for instance the pseudotriple, pseudoquadruple,.. we add
to these spectatorless binary, ternary,.. collision terms one particle, two,.. present in both
loss and gain terms... We consider only the pseudotriple collisions where in the rhs of
the binary (1.2) terms we replace op; by op; + Moy,. Historically this type of multiple
collisions was the first introduced?=3), For the spectatorless collisions (cf. Tablesl-2) we
introduce elementary collision terms Q = G — L (where both gain and loss terms are only
products of the densities) and from the microscopic conservation laws find for the ternary
collisions : T},T5;,T3;,T4;,7 = 1,2 and Tsi, k = 1,..4. and for the quaternary collisions :
Q]a] = 17254757 Qk]7k = 356787 117 .7 = 172a Q9k7k = 172537 QlOka Qlea k= 15273' These
(Q terms contain linearly one or two binary terms, with coefficients density dependent, so
that they vanish for the same values of the equilibrium states defined by the B;, Bs; terms.

We must check that the coefficients of any () term into the nonlinear (1.2) equations
are correct. So for both the 9v;,8v;, 15v;, 14v; models we give a criterion, such that

any @ term leads to a negative contribution to the H-Theorem. Let L/G = NIX.AI?)ERF...

and in the nonlinear equations: py Ny = .AQ, M3; = .uQ, Ry = .vR. Our criterion
A= p/i = v/(2d,7), has been checked for all () terms of figs.1 and TablesI-2.

In section 3 we firstly study the Rankine-Hugoniot (R-H) relations which contain both
the three conservation laws for densities functions of a similarity variable n

Ni(n), Na(n), Mi(n), Mx(n), Ms(n), R(n), n==z—(t (1.6)

with propagation speed (¢ and the relations coming from the vanishing of the collision terms
for the two equilibrium states. Assuming that these states are independent of the cross-
sections, the vanishing of three independent binary collision terms imply the vanishing of
the multiple ones, and therefore is sufficient for the determination of the asymptotic states.
We firstly study simple R-H relations where at the upstream state only one density (infinite
Mach shock) or two (semi-infinite Mach shock) are different of zero. These solutions which
depend on one scaling parameter and one (infinite shock) or two (semi-infinite) arbitrary
parameters can be written down analytically. Secondly we establish conditions for the
existence or not of overshoots for P/M (internal energy) which previously was considered
as a quantity for the temperature'® in particular for the 9v; DBM©®~19  However,
although the DBMs have not yet been derived rigorously from the continuous Boltzmann
theory, Cercignanil'*) has given arguments showing that the temperature deduced from
either P/M or the standard derivation from the entropy, could be valid only for models with
an infinite number of velocities. Nevertheless P/M has an intrinsic physical significance
for shock waves which are mainly defined by events with increase (or decrease) of both
P, M across the shock. So the increase or decrease of P/M across the shock gives further
physical information. Furthermore we have verified in many exact or numerical solutions,
for many DBMs, the existence of possible overshoots with particular conditions for the
propation speed (. Consider for instance models (like the 8v; model) with projections of
the velocities £1 along the x-axis. Then we have found, for the positive solutions with
|(] < 1, the possible overshoots for values not too far from +1, while they are monotonic
for values close to 0 (far from the singularities £1). Similarly for models('") (like the
9v; model) with three singularities along the x-axis +1,0, it was found that the P/M



overshoots occur for |(| not to far from £1,0 while they do not exist for instance for the
value ( = £1/2. The following question arises: Can we predict, from the knowledge of
the R-H relations, the existence or not of such phenomena? The answer is yes and we
predict, in the parameter space of the R-H equilibrium states, the subdomains where this
can happen or not. We emphasize that this study can be done for any DBMs.

In section 4 we counstruct, for binary p=2 and ternary p=3 collisions, a class of exact
similarity shock waves solutions which are functions of the variable n =z — (¢

N;=s;—ni/D" M; = p; —m;/D? R =roq —r/D?, D =1+ exp(yPn),q(p—1) = 1 (1.6)

where the R-H relations give the densities s;, s; —n;, pi, pi—m;, roo, roo —r of the Maxwellian
states, while the nonlinear equations will give new relations, for new parameters, 4(?) and
the cross-sections. We observe thinner shock profiles when multiple collisions are present

and verify the R-H predictions for P/M.
2 Multiple Collisions, Criterion for the elementary collision terms
2.1 Ternary collisions

For the 9v; model, we write down the elementary ternary collision terms associated
to the pictures T;,1 = 1,..5 of fig.1b. We must take into account all symmetries of the
model. For instance T, T, give respectively two different elementary terms T3y, T3, and
Ty1,Tys due to the exchange xy ¢— —zy or (Ny, My, Ms, R) <— (N3, M>, M3, R) and
(By,B3,Bs1) «— (—By, B3, Bsy). Similarly T3, Ts give four terms T3;,T5;,1 = 1,2 with

1 — —x1 and two others i = 3,4 due to the rotations of 7/2 of the axes.
Table 1: Ternary spectatorless collisions 1 =1,2,5 = 1,21 # 3

T1 = —J\IgBl,TQ : Tgl‘ = JVZAJ?? — JV]J\JIQ = (—].)JJ\IZBl — JV]‘BQ, T3 : Tgl‘ = —JVZ‘BQ,
T3,2—|—i = —TQi, T4 : T4i = JV]‘Bgi, T5 : T5l‘ = J\/[?? — J\IZJV]R = J\IZng — AJ?,BQ, T5,2+i =
M?M; — M;RN; = M By + M;B,

In order to check the coefficients of any Q) term, into the N;, M;, R equations, we will verify
the linear relations(1.1) and in section2.3 give a criterion for the nonlinear Ny, Ms, R
equations. QOur conventions are the following: We choose for Ny, M3, N, the densities
associated to the velocities (1,1),(0,1),(—1,1) in the (21, 22) plane and (1,0, 1), (0,1,0),(-
1,0,1) for d = 3 with for Q the coefficients 1, —1 if they correspond to loss or gain terms.
We notice that My, R, M, belonging, for d = 3,to the two (z1,22) and (z1,23) squares,
it follows that for these densities the corresponding coefficients of @ are multiplied by
dy. Furthermore we take the multiplicity 1,2, 3 if the associated velocity is alone, double
and triple. As illustration we choose two examples @ = Ty,T5y and verify (1.1). We
consider both Ty as in fig.1b and =T for the associated collision z; — —zy. The Q
coefficients for Ny, No, My, My, M3, R are: 0+ 1,—-14+0,—-1—-1,14+1,1—1,0,0. For Ty,
in fig.1, Tablel and the associated collision x5 — —x5 with My, M3 being double, we get
—1 + 0, 1 —|—0,2 + 2,0 + 0,0 — 2,0 for Nl,NQ,_Z\Jl,_Z\JQ,_Z\Jg,R.

We notice that all ternary collision terms contain linearly the binary ones and so,
for shock waves vanish for the same equilibrium states. When the rest particle is not
present, these collisions are those of the 8v; model and we verify that they conserve the
number of slow and fast particles. We sketch briefly the method in order to determine all



spectatorless collisions and begin when the rest particles are present. Let us call [0],[1],[2]
the particles associated to |v?| = 0,1,2. Forgetting momentum conservation and keeping
energy conservation plus spectatorless collisions we get for the possible collisions: [0]4[1]+
(2] = [1]4+[1]+[2] and [0]4+[2] 4 [2] — [1]+[1]+[2]. With the momentum conservation and
a lot of tedious analytical calculations we get the Ty, T5 collisions of fig.1,Tablel. Similarly
for the 8v; collisions we first get [1] + [2] 4 [2] and [1] 4 [1] 4+ [2] (with conservation of slow
and fast particles) but momentum conservation excludes the first type of collisions. We
rewrite the nonlinear (1.2) equations when ternary spectatorless collisions are present:

P+ N1 = Qn1p — Bilopt + Mzop + (My + My )03 + Bsi[ows + Noow + 045 ( My + M)

+Bs[(0423 (N1 — No) + o5 (M7 — Ms)] = Qnr, R:/2d, = Qr = Qrb + Bs1
[obs + s5(Mz + Ms) + 014 N2] 4+ Bsa[ops + 05(My + Ms) + 044] + Baoys(My + My — 2Ms)
Msy = Baloba + 2(0423 + 013(N1 + N2)) + 045 (My + My 4 6Ms)] + B120423(My — M)
—Bsy[obs + Nooy + 045(3My — M3)] — Bsa[ops + N1owa + 045(3My — Ms)] = Qums (2.1)

where oy; are the cross sections for T; and o493 = 042 + 043. We recall that if pseudotriple
collisions are included then op; — op; + Moy,;.

2.2 Quaternary collisions

For the determination of the possible collisions (cf. fig.1b) we apply the same method
as for the ternary ones. We first use energy conservation plus spectatorless collisions and
later on use momentum conservation. When the rest particles are absent we obtain the
8v; collisions (with conservation of [1] and [2] particles) while when they are introduced
we find collisions with one and two rest particles.

Table2: Quaternary spectatorless collisions 1 =1,2,5 =1,2,1 # 3

Q1 = M}N} — MiN? = —(MyNy + My N2)B1,Q2 = —N1N2Bs, Q3 : Q3; = —N, M3 By,
Q4 = Mi — MM = —(Mj + MIM3)Bs, Q5 = Q1

Qs : Qi = N;To;, Qr = My My M3 — NyN,R?* = My M3 B3y + RNy B3, Qs : Qs =
M}M3 — R*N} = (MiMs + RN;)Bs; Qg : Qoi = Qsi, Qoz = Q7, Q10 : Qoi = NiT5;

Q10i+2 = NiT5i+g, Qn . Qni = NiJ\43B3i, le . QlZi = Q10i7 Q12,i+2 = J\ffNi—M?,N]zR =
N;Ts opi + (—1)”\4]231, Q13 : Q13i = N1 Ny Bs;

Here also, due to the symmetries of the model, for each drawing of fig.1, different
elementary collisions are associated. The collision terms contain linearly the binary ones
and, for shock waves, vanish for the two equilibrium binary states.

2.3 Criterion for the elementary collision Q terms, cf. AppendixA

Firstly (Lemmasl-2-3) for any elementary collision () term, L/G can be written
(cf.(A.1)) as the products (with arbitrary powers) of the L/G associated to B; and one of
the Bs;. The equilibrium states for binary or multiple collisions are the same.
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Secondly, for the H-Theorem, the expression, which must be negative, can be written as
a superposition of terms associated to each Q. We define: G = RYN" ﬂ/[f?’..., L=R"
Nlall\lfg.., Ry = ..+ vQ, ptNi = ... +2Q, Mz = ...+ pQ and prove (Theorem1) that
() gives a negative contribution if: A/(a; —a) = p/(B5 — f3) = v/2d. (7 — 7).

With this criteron verified, cf.(A.5), we can check the nonlinear Ny, M5, R equations.

3: R-H relations, possible P/M overshoots
3.1 Determination of the two equilibrium states (AppendixB)

The main result is that the equilibrium states are the same whether the binary colli-
sions are alone or multiple collisions are included, leading to the same solutions for the R-H
relations. We assume that the densities are functions of a similarity variable n = » — (¢

and define for (N;,i = 1,2, M;,7 = 1,2,3, R) two Maxwellian states when |n| = oo:
(2) : (noieey Moieey 7o), (10) : (SieeyDiveyTo0), Si = Noi + N4y Pi = Moi + My, roo =10 + 1 (3.1)
The three linear conservation laws (1.1) give three relations for the n;, m;,r parame-

ters, while the vanishing of the four binary collision terms B;, Bs; for the (i) and (ii) states
give only six independent relations:

(/2d, = (14 (ne — (1 — O)n1, 2¢(r +demsz) = (1 = Omq — (1 + ()mo
(1 —C)(ma +2dyny) + (14 C)(m2 + 2dsn2) = 0, no1mo2 = noamo1, Mo1Mmo2 = M,
no1To = Mo1Mo3, $1P2 = S2P1, P1P2 = D3, S1700 = P1P3 (3.2)

For the determination of the two Maxwellian states (3.1) we have thirteen parame-
ters: (,noi, moi, ni, mi, ro,r and nine relations (3.2). We choose ng; = 1 as the scaling
parameter so that the general solutions depend on three arbitrary parameters which need
the resolution of two coupled cubic equations. We want to obtain analytical solutions and
choose simpler solutions. At the downstream states the densities are zero except py # 0
and s, is either 0 (infinite Mach shock) or # 0 ( semi-infinite shock). We report briefly the
results of the study done in AppendicesB1-2-3. For the semi-infinite shock, the solutions
depend on two arbitrary parameters: mgy > 0, 0 < ¢ < (oup = 2/\/4 + m, (mo1/ds + 1).
For the infinite shock, due to the relation ¢ = (sup, it remains one parameter.

In AppendixB3 we recall the results for the 8v;, 14v; models without rest particle R.
For the semi-infinite shock we have the same two parameters with a similar condition
0 < ¢ < Coups Coup = 1/\/1 + (2/mo1 + 1/ds)? while for the infinite case it remains only
one parameter with ( = Ceup.

3.2 Predictions for the possible P/M overshoots

To the two equilibrium states (i), (ii) we associated macroscopic quantities: (mg, moo
= mg + m) for the mass, (jo, joo = jo+7) for the momentum and (eg, ego = €o + €) for the
energy which are written down in AppendixB4 as linear combinations of the asymptotic
densities. We assume that to these macroscopic densities there exist associated “shock
profiles” n-dependent functions:

M = mqgo — mD_l(77>a J=joo—jD™', E =ego — €D, mog = mog + m,eqn = €g + €,



Joo = jo + 7, D(n) monotonic n-dependent function, n € [—oo0, 00|, D(n) € [1, o0] (3.3)

where the D(n), different for binary collisions or binary plus ternary collisions..., are always

satisfying (3.3). We easily find for the derivative of P/M:
[M?0,(P/M)]/20,D~" = A+ Q/D(n)

A = mgo(mego — mooe) — joo(mjoo — mooj), 2 = m(moge — meqo) + j(mjoo — jmoo) (3.4)
with A, Q determined from the two equilibrium (i),(ii) states.
Theorem 2:P/M is monotonic or nonmonotonic depending whether A(A4+Q) > 0 or < 0.

For the “shock profiles 7 solutions, even without an explicit knowledge of D(n), we can
predict, from the two equilibrium states, the existence or not of P/M overshoots. The ratios
P/M are 2eq/mo— (jo/m0)2 at the (i) state and 2eqg/rmgo — (joo/m00)2 at the (ii) state.
Let us normalize the macroscopic quantities at the downstream state, here for the infinite
and semi-infinite cases: (mo, jo, €0, 2€0/mo — (jo/mo)?) associated to (M,.J, E, P/M). The
extremum of P/M is given by the n value for which A 4+ Q/D(n) = 0 and for this value we
can predict the strength STr[P/M] = [sup(P/M)]/[P/M]aown of the P/M bump:

sup(P/M) = 2(ego + eA/Q)(moo + mA/Q)™" — [joo + FA/Q)/ (Mmoo + mA/Q)]? (3.5)

Theorem 3: For any DBM for which “shock profiles” solutions exist, the existence or
not of an P/M overshoot as well as its strength are only functions of the two equilibrium
states. Furthermore these results are independent of the fact that only binary collisions
occur or multiple collisions are included.

Finally let us require, for the infinite shock solutions, that the mass ratio across the
shock satisfies mo/moo = d + 1 for the d = 2,3 models (AppendixB5). For the 9v; model
we find ( = 1/2,mo; = 2 and we predict a monotonic P/M curve. For the 15v; model
the result is numerical: ¢ = 0.637,mo; = 1.76,5Tr = 1.013 and predict a negligible P/M
overshoot. For the 8v;,14v; models we find respectively mq/mgo > 5.08,5.83 > d + 1.

3.3 Applications to the 9v;, 15v;,8v; models

In figs.2a-b-c-d for the v;, 15v;, 8v;, 14v; models, we present the (,moy (or moq /(1 +
mo1)) domains for which the R-H solutions (semi-infinite and infinite shocks) are positive
and the contour-maps for P/M. The domains are limited (partly in figs.2c-d) by the
border-line S, which corresponds to the infinite shock. For P/M the strength is 1 in
the domain I which means a monotonic behaviour while 1 < STr < 1.04 in the domain
IT, 1.04 < STr < 1.25 in IIT and as illustration we present also the line STr = 1.6.The
main result is that nonmonotonic P/M behaviours are possible for ( values around 1 while
around 0 this is possible only for the models 9v;,15v; with rest particles. The ( values
0 and 1 correspond to mathematical singularities for which the formalism can blow up
(cf. (1.1),(2.1)). So, for physical considerations, we must not look to values very closed
to these singularities. We must also consider domains for which the possible overshoots
are significant, let us say: STr > 1.04. We observe, with some universality in these
models, that for 0.8 < ¢ < 0.9 we can expect such physically reasonable P/M effects. The
singularitiy ( = 0 comes from two terms: both the rest particle (dR/dn and (dM;/dn.
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Contrary to the singularity associated to R, the M3 one comes from a velocity projection
on the x-axis and does not exist in the d = 2,3 dimensional spaces. For the 8uv;, 14v;
models, only the Mj term is present and monotonic P/M are predicted. On the contrary
for the models with rest particles, cf. figs2a-b, for ( ~ 0, domains with STr > 1 exist, but
they are very close to 0 and so appear more as mathematical effects than physical ones.
Notice that for the 9v; model with ( = 1/2, at the middle of the two singularities 0,1 we
find P/M monotonic in agreement with the calculation of AppendixB where we show that
at the boundary mg; = 2, then A4+Q = 0. In the next section we construct exact solutions
which will confirm these predictions, deduced only from the equilibrium states.

4 Similarity Shock Waves solutions
4.1 Application of the section3 R-H relations
Substituting the similarity densities (1.6) into (1.1-2), (2.1) we obtain both the R-H

relations for the (1),(ii) states which were constructed in section3 and new relations, from
the nonlinear equations, which contain the cross sections and v(#) as new parameters. For
the semi-infinite solutions with py # 0,s2 # 0, we rewrite both the densities, the binary
terms and the linear terms of the nonlinear (2.1) equations:

D_q = N1 = R/TQ = _Z\Jg/m()g, N2 = S9 — TLQ.D_q,.Z\JQ = P2 — ng_q
D=1 + exp(y(p)n), Bl/am == BQ/GQQ == 332/a03 == Dq = D_q(]_ — D_q),Bgl =0
binary ¢ = 1,p = 2, binary plus ternary ¢ = 1/2,p = 3, ag1 = p2 — Samo1, ag3 =

moe3do1, o2 = To1pP2
p+Ni/a(1 =)y = Ri/qCry = M3, /qCmyy = D=0+ — D=4 (4.1)
4.2 Relations coming from the nonlinear (2.1) equations: AppendixC

The linear terms of (2.1) contain terms proportional to D™% and D™9~! with opposite
coefficients (cf.(4.1)). We study the structure of the nonlinear terms Qn1, Qr, @ms. They
contain linearly the binary terms (proportional to Dq) multiplied by factors which reduce
to constants if only binary collisions occur. In contrast, if ternary collisions are present,
these factors contain linealy D™9. Consequently if only binary collisions are present the
nonlinear terms contain D~9, D729 ¢ = 1 with opposite constants and finally the three
(2.1) equations will give only three new relations. On the contrary for the ¢ = 1/2 ternary
case the rhs of the (2.1) equations contain terms, like the lhs, proportional to D—3/2 p—1/2
with opposite coefficients, but in addition terms D~! not present in the lhs. In this case
we obtain six relations (C.1-2-3-4-5-6).

In AppendixC2 we study the case of binary collisions alone. From (C.1-3-5) we find
(cf. (C.7)) for the semi-infinite solutions: ’7(2) > 0, op; > 0. In AppendixC3 we study the
case of binary and pseudotriple collisions. From the six first (C.i) relations we deduce the
parameters op;, which are the same as in the binary case, and ~v(3), opi which are positive
if m+mog = 2mgg — mo < 0. For the infinite shock solutions this condition is satisfied but
not always for the larger semi-infinite class. In Appendix C4 we study the case of binary
and ternary spectatorless solutions. Choosing o371 = 1 and o33, 045 arbitrary, from the six
first (C.1) relations, we get ~3), oij, J = 1,2,3,4 and op3. The positivity for the cross
sections is verified numerically. In AppendixC5 we give the results for the 8v;, 14v; models
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with pseudotriple collisions included. In AppendixC6 we write down the shock thickness
w'P) associated to quadratic p =2, ¢ = 1 and cubic p = 3, ¢ = 1/2 collision terms.

4.3 Numerical Calculations for Compressive shocks

In figs.3a-b-c, fig3d for the 9uv;, 15v; models we present M, P/M curves for infinite
Mach shock solutions and in fig.3e for the 8v; model, a semi-infinite shock solution. The
shocks are compressive and, using the weak shock polynomials associated to the equilibrium
states('")| we have verified (results not reported) the subsonic and supersonic inequalities.
We do not discuss the Whitham stability conditions of the equilibrium states. We plot
the curves for binary alone collisions (called b), plus pseudotriple collisions (b + p) and
spectatorless ternary collisions (b+t). Our goal is to verify whether or not the predictions
given in sectiond are satisfied. We give the arbitrary (, mg; values, choose op; = 1, report
the other cross sections values and the ratios of the two thickness w(®) /w(?), We recall
that for b and b + p the o}; are the same.

figs. ¢ moy coll. Op2 ops  coll Tp1 Tp2 Tp3 w(3)/w(2)
3a 9 073 b 3.5 297 b+p 0.35 1.21 1.03  0.55
3 5 2 b 2 1 b+p 3/16 3/8  3/16 3v/3/16 =3
3¢ .046 12. b 1.17 29 b+p 21073 2.107% 7.107% 0.45
3d 946 0.6 b 3.83 2.64
3e .046 12. b 41073 0

figs. coll. oy op3 o 02 O¢3 O 5 w(3)/w(2)
3a b+t 44. 137. 310 0.005 104. 137. 10=7 .015
3d b+t 86. 28 165. 0.035 32.8 28. 107° .061

Firstly, in agreement with section3 theoretical results, the existence or nonexistence of P/M
overshoots 1s independent of the inclusion of multiple collisions. We only observe thinner
shock profiles for multiple collisions. Secondly the theoretical predictions of overshoots for
¢ not too far from the singularities 1 in figs.3a-d and 0 in fig.3c¢ 1s verified. The nonexistence
of overshoots for ( far from these singularities is also verified in fig.3b with ( = 1/2. The
difference between the 9v; and the 8v; models is the overshoot in fig.3c which does not
exist in fig.3e for the 8v; model (without rest particles), for the same (, mg; values.

5: Discussions

The first motivation of this paper was to include all possible ternary and quaternary
collisions to the 9v; model which, in contrast to some other models, is physical (without
spurious conservation laws) at the binary level. It is not surprising that all multiple collision
terms contain linearly the binary ones. Consequently, if we except thinner shock profiles,
the behaviours of the macroscopic quantities seem very similar.

The second motivation was to try to understand more deeply the existence of physical
P/M (internal energy) overshoots for the “thermal”(™) 9v; model® and compare with
the “athermal”(") 8v; model('>). It is interesting that the signature of the effects can
be detected at the R-H relations level with the sole knowledge of the equilibrium states.
For the “thermal” model, the existence of the rest particle modifies completely the P/M
contour-maps for ¢ ~ 0. We observe that the influence of the nonzero speed particles
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(here £1), on these contour maps, is deeper than the influence of the rest particle. The
reader can easily check for ( = 1/2, 9v; that the effect does not always exist. For the
¢ values there exist two types of singularities, either “real” for velocities present on the
x-axis £1 and 0 if rest particles are present, or “artificial”, ( = 0, coming from projections
of velocities. For “real” singularities, we have found domains with STr > 1 while for the
“artificial” ( = 0 singularity we have observed, up to now, monotonic P/M. Are these
results particular to these models or more general?. We report preliminary results for
other models: (i) Infinite shock for the square 4v; model and the 6v; Broadwell model with
for ¢ > 0 a “real” singularity at ( = 1 and an “artificial” one at 0. For these d = 2,3
models we observe STr > 1 for respectively ¢ > 1/2, ¢ > 1/3 with mq/mgo > 3, > 4 and
monotonic behaviour for ¢ < 1/2,1/3. (ii) For the square 8v;, 9v; models with the x-axis
along the diagonal and ( ~ 0, we still observe P/M overshoots only if the rest particle
is present. (iii) Generalizations of the 8v;,9v; DBMs exist('?) in higher R? spaces. In R?
there exist the 18v;,19v; DBMs(®) for which P/M effects were observed(!?) but it remains
to study ¢ ~ 0. (iv) Adding an internal energy to the rest particle!8) there exist other
“thermal” and “athermal” DBMs.
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AppendixA: Criterion for the elementary collision terms: 9v;, 8v;, 15v;, 14v;

For any elementary collision term @ = G — L, with G, L products of the densities, we

associate L/G. For By, By, Bs; we get L/G = NoMy /Ny My, M2 /M; My, RN; /MsM,;.

Lemmal: L/G for Bs; can be obtained from L/G of By, Bsj,i # j. For Bs; we get
RN;/MsM; = (RN;/M;M;)(M;N;/N;M;). Consequently the equilibrium states for bi-

nary collisions can be determined from By, B and one Bs;.

Lemma2: For any @ term of Tables1-2, L/G is the product of L/G for B; and one Bj;.
The result is obvious for the ) which are binary terms multiplied by a density depen-
dent factor. It remains Th;: (N;M;/N;M;) (M; M;/M2), Tsi: (N;R/M;Ms) (M;M;/Ms),
T5’2+Z‘I (RN]/_Z\/I]_Z\/I?,) (.Z\/I??/_Z\JZJ\J]), Q7Z (RNl/J\Jg_Z\/Il) (RNQ/J\J?,_Z\/IQ), Q12,2+i :
(R]Vj/l\fgl\fj) (M,;Nj/MjN,;) (l\lg/ﬂfiﬂfj).

Consequently, due to R*N3 /My M3 = (RNy /My Mz)*(M3 /My M,) we get:

Lemma3: Let a,b, ¢ be real numbers, then for any @Q of Tables1-2, L/G is of the type:

L/G = (N1 My /NoMy)* (M2 /My My)*? (R2NZ /My M3)°/* = NeMERe/?... (A.1)
and is characterized by the powers a,b,c/2 of Ny, M3, R.

From the H-functional H = E?zl(Qd*NilogNi—I—I\L-logMi) +2d, MslogMs +RlogR we get:
OH + 8.(...) = 37, (2duQn.logN; + Qs logM;) + 2d.Q s, logMs + QrlogR (A.2)
Taking into account the linear (1.1) relations we rewrite the rsh:

2d.Qn1log(N1 My /No My ) + duQarslog(MZ /My M) + Qr/2log(R* N3 /My M3) (A.3)
which is a sum of terms corresponding to all possible elementary ) terms. For the binary
collisions Qn1p, @ a3, @ Ry glve a negative contribution and a condition for the H-Theorem
is that all @ multiple collision terms give also negative values.

Theorem 1: We define for Q = G — L: G = RV[[, N M%, L = R7[[, N® M’
Ri=..4+vQ, p+ Ny = ...+ AQ, M3, = ... + u@Q. The contribution of @ to (A.3) being @
log[(Nﬂ\lg/Ngl\L))‘ (Ms [/ My My)* (RNZ/J\JS\/]\L)”/M*] is,from (A.1), negative if

M@ —a) = p/(Bs = Bs) = v/2ds(T = 7) (4.4)
Due to d =2 — 3, v — d,v, A\, pp unchanged, we check (A.4) for d = 2.

Lemmad4: In Tables1-2 all @ collision terms, give a negative contribution to (A.3).

(i) The @ terms,proportional to a binary one must have positive factors. Ty, Qq, Q3; in
Q) N1 are proportional to — By with factors Mz, Mo N1 +M Ny, N;Ms. —T3;, —Q2, —Q4, in
Q3 are proportional to By with factors N;, Ny Ny, M2 + M M?3. For B3y present in Qny,
Bs; in Qr and —Bjs; in Qurs, the @ terms: Ty for Ny and Tyy, Qg;, Q13; for M3, R have

positive factors. (ii) The @ terms with two binary collision terms must satisfy (A.4).

@ AN o@m—a p By—Ps v/2 79
Tii=12 (1) (-1 -2 -2 0 0
Tsii=1,2 -1 -1 -3 -3 11
Ts944,0=1,2 1—-1 1 —1 1 1 1 1 (A'5)
Q7 1 1 -2 =2 2 2
Q12,24 (=1 (=1 1 1 1 1

For the 8v;, 14v; models we study Ty, T3, T3, @1, ..Qs and the two first (A.1-4)terms.
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AppendixB: R-H solutions and Predictions for the P/M overshoots
B.1: Semi-infinite Mach shock R-H relations for the 9v;, 15v; models
We solve the (3.2) relations with the conditions:sy = p1 = pg = rgo = 0, p2 # 0,52 # 0.

Firstly the (i) densities states are deduced from the ng2,mg1 parameters:

Mo2 = Mo1Mo2, Mos = Mo1\/No2, To = Ma1\/102 (B.1)
Secondly from two linear (1,1) relations for r = —rg = 2d.((1 + {()n2 + (1 — ())/¢ and
—m3 =mo3 = [(1 —()(mo1/ds +3) +(1 4+ ()nz]/( and (B.1) we get both ngs, ns, ss:
Vo2 = 2(1=()/Cmor, na(14¢) = ((—=1)(1+mo1/ds), (1+()s2 = (1= ()[4(¢? —1)/m,
Thirdly, from the last linear (1.1) relation we get mgy and ps:

ma(14+¢) = (1= ()(8mo1 +4dy), p2(1+¢) = (1= ¢) [4(¢™2 = 1) /o1 + 3oy +4d,] (B.3)

Lemma5: Positive (i) and (ii) states can be determined from the two parameters oy, ¢
satisfying the constraints:

mo1 >0, 0<C<C3up:2/\/4‘|’m(2)](m01/d*‘|‘1) (34)

From (B.2-1) both ng2 > 0 and all densities of the (i) state are positive. From (B.2-3-4)
n2 < 0 but s3 > 0,m2 > 0,p2 > 0. All densities of the (ii) states are nonnegative.

B2: Infinite shock for the 9v;, 15v; models

Lemma6: Positive (i) and (ii) states are determined from the arbitrary 0 < ¢ < 1 and
mo1 > 0 solution of the cubic equation (s3 = 0 or ( = (sup in (B.4)):

m3, Jde +md; +4(1 —(72) =0, = p2(1 + {)ds = (1 — {)(mor +2ds)* >0 (B.5)
In particular for the 9v; model with ( = 1/2: mgj; = 2, ng; =1, ro =4, p, = 16/3.
B3: Semi-infinite and Infinite shock for the 8v;, 14v; models

For the semi-infinite shock R-H relations we put ro = r = rgp = 0 and get successively
with the same mgq,  arbitrary parameters and in particular the same —ms = mg3 relation:

na(14+¢)=¢—1, oz = (1= 0)(2/mor + d; ), my =(1—-C) (mo1 +4ds) /(1+() >
0, pp >0, s =(1—-0[C?—=1) (1/de +2/mo1)* —=1]/(1 +¢) > 0if 0 < < Coup
=1/y/1+ (2/mo1 + 1/d,)~2 (B.6)
For the infinite shock, with only one parameter p, # 0, we have: ( = (5up with 1/4/1 4 d?
<(<1l,noe=(1—-¢)/(14+), mor =21 =C/[( —/1—(?/d.] (B.7)

B4: Macroscopic values for the equilibrium states

We write the M, J, E (i) and (ii) values for the semi-infinite solutions:

(¢) 1 mo = Z?Zl(moi, + 2dynoi) 4+ 2d,mo3 4 10, 2¢0 = Z?zl(mm + 4dynoi) + 2d,mo3

Jo = mo1 — mo2 + 2dy(no1 — noz2), (12) : mog = p2 + 2dysa = —Joo, 2€00 = p2 + 4dys2 (B.8)
In the infinite case we put s = 0. For the 9v; model with { = 1/2,mg; = 2 we get:
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mo = 16,7”00 = 16/3, jo = O,joo = —16/3,60 = 8,600 = 8/3, A=-Q= 163/9, A—}- Q= 0
and deduce for the shock profiles (3.4) that P/M =1 —[D — 1)/(D + 2)]? is monotonic.
Finally we notice that the “shock profiles” solutions M = mgg — mD~'(n) are equivalent

to M = mg + mA_l(n) with the change DA = D 4 A.
B.5: Mass Ratio across the shock for the Infinite shock

For the 9v;, 15v; models, requiring mo/moo = d + 1 we find in addition to (B.5), mg1 =
2d,[-1+1 /d((1 — (] giving an exact value ( = 1/2,mgy = 2 for the d=2 model. For the
8v;, 14v; models we find from (B.7): mq/mgo =1+1/¢(1—¢) > 3+ 2y/2 > 3 for the d=2
model and > (9 + 5\/5)/4 > 4 for the d=3 model.

AppendixC: Similarity Solutions for the 9v;, 15v; models
C1: General Relations coming from (2.1)

To (2.1) we add the pseudotriple collisions o3; — op; +0pi(rmog —mD™?) and get relations
from the coefficients of D=7=1, D=2¢ which are different only for ¢ = 1/2.

P+N1=Qn1 = q¢=1/2,1: ¢y(1 = () — ao1(op1 + mooop1) = os23(a01p2 + Go252) (C.1)

q=1/2: ap1[sp1 + (Moo + m)op1 + msop1| + o423[ao1 (M1 +ma + p2) + agz(s2 +n2 —nq )] +
agaois(ms —mq) =0 (C.2)

Ri=Qr —q= 1/2, 1: —quv/Qd* = ap20t3p2 + a03(0b3 + m000p3) (C 3)
q=1/2: 644 = op3 + (Mmoo + m)op3 + oy5[my + ms + ap2(p2 + my + ma — 2m3)/ap3] (C.4)
Msiy = Qums — q = 1/2,1: mgq(y+aoz[ob2+0p2moo+2(0i23+043)S2 +045p2]+2a01p20423 =

ao3(ob3 + Moo0p3) (C.5)
q=1/2, agz[op2 + op2(mao + m) +2(ot23 + 043 ) (s2 + 11 +n2) + o5 (p2 + mq +ma + 6ms)] +
2a010423(ma —mq) = aops[obs + (oo + m)ops — o + 045(3my — mg)] (C.6)

We notice that ag1 = p2 —s2mg1 = ma —moing > 0 (Theorem 2) and also agj > 0,7 = 2,3.
C.2: Binary collisions alone ¢ =1,p = 2

Lemma7: For binary collisions we choose g1 = 1 and get ap; > 0,7(2) > 0.

We have three relations (C.1-3-5), four parameters, get v(2) = ag; /(1 — ¢) > 0 and

or2 = ao1([ro/2ds + moz]/ao2(1 — () > 0, op3 = ro(/2d.(1 — ()moz >0 (C.7)
C.3: Binary and Pseudotriple collisions ¢ =1/2,p =3

In the six first (C.1) relations we put o4; = 0 and it remains seven parameters.

Lemma8: All the oy;, 0}, parameters are determined from o4y = 1 and they are positive
if mgg + m < 0. We successively get:

opi as in (C.7), 0pi = —opi /(Mmoo + m), ~3) = V(Z)Zm/(moo +m) (C.8)

For the infinite shock solutions we get both m(1+(¢) = —2(mg1+2d.)( < 0 and mgop+m =
(mo1 +2d,)[mor /de +2—2(14+¢2)/¢]/(14¢) < 0 and in particular for ¢ = 1/2: 4(2) = 32/3,
’7(3) = 47(2), opi = 05i3/16.
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C.4: Binary and Spectatorless Ternary collisions ¢ =1/2,p =3
In the six first (C.i) relations we put o,; = 0 and it remains nine parameters.

Lemma9: With 041 = 1 and o33, 045 arbitrary we determine all parameters. From (C.4-
3-1-2) we successively get o4, 7(3), o123, oy and finally 42, 043 from (C.5-6).

C.5: Binary and Pseudotriple collisions for the 8v;,14v; models

We put R = o043 = 0p3 = agz3 = 0, 031 = 1 and obtain from the (C.i) relations the same
~(2) ~A(3), op;i as in C.2-3 with the only change:op, = mozapi1(/ ao2(1l — (). We still have
opi > 0,72 > 0 and still 6; > 0,i = 1,2 if mgg +m < 0.

C.6: Mass M and shock thickness w?)

For DBMs with quadratic ¢ = 1,p = 2 or cubic ¢ = 1/2,p = 3 nonlinearities, we write
down both the mass M = mgo — mD™, D = 1 + exp(yP)y) and

dM/dn| = (14 ¢~ )T /[P, w® = 4/|yP], w® = 3v3/]5] (C.9)
For instance for the pseudotriple collisions we get: w(®) /w?) = 3v/3[(mgo + m)/2m]/4.

wP) = |m|/ma;v
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