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A Matrix Ensemble with a Preferential Basis and its Application to Disordered
Metals and Insulators

Jean-Louis Pichard(") and Boris Shapiro(!2)
(1), C.E.A., Service de Physique de I’Etat Condensé, Centre d’Etudes de Saclay,
91191 Gif-sur-Yvelte Cédex, France

(2), Department of Physics, Technion - Israel Institute of Technology,
32000 Haifa, Israel

The standard ensembles of the random matriz theory are invariant under change of basis. For
non interacting electrons in disordered systems, this invariance is broken and deviations from the
random matriz theory predictions occur, especially for strong disorder. We consider a generalization
of the standard ensembles which includes a preferential basis and which gives rise to a “screening”
of the logarithmic pairwise interaction between energy levels. In the unitary case, we recover a
mathematically tractable distribution of energy levels first introduced by Gaudin. This simplified
model provides a qualitative description of level statistics in the metal, insulator and al the mobility
edge, which only depends on the dimensionless conductance g.
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The standard Gaussian ensembles in random matrix
theory [?] can be defined as ensembles of matrices with
independent (apart from the symmetries) normally dis-
tributed elements H;;. For instance, the Gaussian or-
thogonal ensemble (G.O.E.) consists of real symmetric
N x N-matrices H with (H;;) = 0 ,(H2) = 1, (H%) =
1/2, i #j . The angular brackets denote averaging over
the ensemble. An important property of the G.O.E is its
invariance under orthogonal transformations, i.e. the ab-
sence of any preferential basis. The invariance property
makes possible a rather complete analytical treatment
of the ensemble. The statistics of the eigenvalues F,
is given by the charge distribution of a one-dimensional
Coulomb gas [?] with pairwise logarithmic interaction
In|E, — Egl|. This universal interaction, with no param-
eters at all, leads to universal level statistics. For instance
it can be shown [?,?] that the density—density correla-
tions of the energy levels depend only on this universal
pairwise interaction.

In disordered electronic systems, the invariance under
change of basis is broken. At least for non interacting
electrons, this i1s particularly clear for strong disorder
where the eigenstates become localized in space. For ex-
ample, in a tight—binding Anderson Hamiltonian, in the
limit of strong disorder, the eigenvectors become local-
ized on individual sites of the lattice, i. e. all matrices
of the ensemble become diagonal in the site representa-
tion and the eigenvalues become independent from each
other. But even for weak disorder (metal) the G.O.E. de-
scription breaks down for energy intervals larger than the
Thouless energy [?,?] E. ~ h/7, where 7 is the time re-
quired for a wave packet to get across the sample. Using
the Coulomb gas analogy one can say that the pairwise
logarithmic interaction gets screened at distances larger
than E. [?]. More generally, defining a dimensionless
conductance as ¢ = F./A, where A is the average level
spacing, and relying on the one—parameter scaling theory
of localization [?], one can assume that level statistics is
controlled by the single scaling parameter g. In the 3d-
metal, g increases linearly as a function of the system
size so that many consecutive levels follow the G.O.E.
statistics in the thermodynamic limit. But for a system
at the mobility edge, the conductance is scale invariant
g = go ~ 1 and the G.O.E. ceases to be applicable already
for the nearest neighbor levels [?,7]. In the insulator g
becomes exponentially small and energy levels become
essentially uncorrelated (Poisson Statistics).

In this letter we consider a simplified one-parameter
ensemble, with a preferential basis, which provides a
qualitative description of level statistics in the metal, in-
sulator and at the mobility edge. Let us first consider an
ensemble of real symmetric matrices with independently
and normally distributed elements, satisfying (H2) = 1
and (H%) = 1/(2(1 4 p)) for all i > j. Thus, the prob-
ability density to find a matrix in the volume element



Hf\LJ dH;j is given by:

N
P({H;;}) e exp —%Z HE — (14 p) ZH

z<]

When p is changing from 0 to oo, for any fixed N, the
ensemble changes from G.O.E. to an ensemble of diag-
onal matrices with independently distributed eigenval-
ues. In particular, the distribution P(S) of the near-
est neighbor level spacing will change from the Wigner—
Dyson distribution to the Poisson one. Such a crossover
has been demonstrated numerically by Rosenzweig and
Porter many years ago [?]. More recently Leyvraz and
Seligman [?] have computed the two—point level correla-
tion function in the limit of large p (i. e. for a Poisson
ensemble with a small G.O.E. correction).

Since H is real symmetric, we have H = R.Hz.RT
where R is a N-dimensional orthogonal transformation,
RT its transpose and Hy; = diag(E1, ..., Ex). Trans-
forming Eq. (1) to eigenvalue—eigenvector variables en-
ables us to identify the term inducing the eigenvalue—
eigenvector correlations by which the level repulsion get
suppressed. These observations, supplemented by an ex-
act solution of the N = 2 case, pave the way for a deriva-
tion of a maximum entropy ensemble with a preferential
basis. The transformation from H;; to the eigenvalues E,
and the eigenvectors Ry; (a,i = 1,..., N), as described
for instance in Ref. [?], leads to

N N N N
I 2 H 2 2 p2
W ({ Fa, Ras}) ox <1;[_1 | Bo— Epl.exp | =5 Z_I Ba=3 %(Ea ~ Fs) ;Ra,iRm

(2)

The function W describes the probability density to
ﬁnd a matrix H with eigenvalues in the volume element
H 1 dF, and eigenvectors in the volume element drg
correspondlng to the invariant measure of the orthogonal
group [?]. Ra; is the i-th component of the eigenvector
|a > in some basis |i >, e. g. in the site basis of a tight—
binding Hamiltonian. The combination Zf\; RiiR%i is
not invariant under a change of the basis and, for large
1, the eigenvectors are forced to stay close to the vectors
|i > of the preferential basis. In the large p limit, the
matrix R is close to the unit matrix 1 and can be writen
as R ~ 1+ A where the antisymmetric real N x N—
matrix A depends on the N(N — 1)/2 “angles” needed
to parametrize a rotation in a N—-dimensional space. In
this limit, one has

N
ZRZJR/%J R~ 2/4{21,;3 (3)
i=1

and one can integrate Eq. (2) over the variables A, g
from —oo to oo with the measure H dAag This in-
tegration eliminates the level repuls1on factors |Fo — Eg|



and one ends up with the uncorrelated level distribution
exp[—(Zi\;l E2)]. Tt is important to realize that this re-
sult holds strictly for g — oco. For any finite y, levels with
sufficiently close energies will eventually repel each other.
The “small angle” approximation, under which Eq. (3)
was derived, becomes invalid when |E, — FEg| is smaller
than £, = 1/,/u. The energy E), is here playing the role
of F. and the G.O.E. description is approximately valid
only for energy intervals smaller than F,. Tt is worth-
while to note that, when p is gradually increased, the
G.O.E. statistics first breaks down close to the edges of
the Wigner semicircle level density and only later in the
middle of the energy band. This is due to the low density
of levels at the edges, as compared with the density in
the middle of the band.

This qualitative discussion is supported by exact re-
sults for the N = 2 case where an orthogonal matrix can
be writen as:

R:<cos6 sin6> . (4)

—sinf cosfl
and Eq.(2) reduces to:

E? + E2

W (E1, E, 8) « |s|exp [— 5

— ps?sin? f cos? 6] ,

(5)

where s = Fy — F5. Integration over 6, with the invariant
measure dfl/(27), produces the following expression for

the level distribution:
2 2
exp (—%) g (Ius ) ,

8
(6)

F? + E2
P(Fy, Es) < |s|exp (—%) .

where ps? = (s/E,)?. The function f(x) =
exp(—x).Io(x) approaches unity for & — 0 and decreases
as ]/ﬁ for x >> 1. Thus for s << E, one has the
G.O.E. level statistics, while for s >> K, the repulsion
factor |s| is cancelled and one obtains two independent
levels.

If one integrates Eq. (5) over Fy, for a fixed value
E1 = E, one obtains the probability distribution F(F,#)
to find an eigenstate (cos #,sinf) with an energy E:

F(E,0) x exp(—EQ)% [1 + E\/%exp <f;> erf (%)] ,
(7)

where p = %—i-,u sin? f cos?#. For yu = 0 this expression is
independent of §, 1. e. | at any energy, all eigenvectors oc-
cur with equal probability. However, for finite (small) g

an approximatelly uniform distribution for # occurs only
for ¥ < E,, whereas in the opposite limit the distribu-
tion is strongly peaked at small angles, § < (E,/FE).



In the general N x N case there are N(N — 1)/2 inde-
pendent angles; on which the eigenvectors in Eq. (2) de-
pend, and the integration over these angles does not seem
to be possible. To circumvent this difficulty we propose
a simplified ensemble in which the angles are replaced
by angle-like variables A,4. These variables form a real
antisymmetric N x N-matrix and, in contrast with the
true angles, are allowed to vary from —oo to +o0o. The
introduction of such variables is motivated by the follow-
ing observation. Let us look again at Eq. (5) and at the
function f(z) = exp(—x).lo(x) which appears after inte-
gration over . To understand better the behavior of this
function, let us note that, for s >> F,, the expression
sin?fcos?f in Eq. (5) can be replaced by 6 and the
integration over # can be done from —oco to +o0o (rather
than from 0 to 27). This leads to the 1/1/z behavior
of the function f(z), for large z. In the opposite case
(s << E,), the term ps?sin?@cos? @ in Eq. (7) can be
omitted and integration over 6 gives a constant. Thus the
behavior for both large and small values of ps? can be
qualitatively reproduced by introducing, instead of the
true angle 6, our angle-like variable —oco < A < 400 and
by replacing the factor ps?sin?# cosf by a simpler ex-
pression A% 4 us?A?. Integration over A then becomes
trivial and gives (1 4 2)~'/2. This function replaces the
more complicated function f(z) and it smoothly interpo-
lates between small us2 (s << E,, G.O. E.) and large
ps® (s >> E,, independent levels).

These considerations lead us to the formulation of
a simplified maximum entropy ensemble. A maximum
entropy ensemble corresponds to the “most random”
ensemble which fulfills some expectation values (con-
straints), and is rigorously defined [?] from a maximiza-
tion of the information entropy associated to the prob-
ability density P({Fa, Aag}), given these constraints.
Our ensemble results from three constraints: (trH?) =

Cr(Snep A%g) = Co, and (L0 5(Fa — Fp)?A%,) =
Cs. The first constraint is the standard one employed
in the studies of the gaussian ensembles. The second
constraint introduces a preferential basis with respect to
which the “angles” A,p are defined. The real antisym-
metric matrix A replaces the orthogonal matrix R of the
more “microscopic” ensemble defined by Eq. (2). For
small A, the two matrices are related by R. = 1+ A. For
large A, the relation with the matrix R becomes vague,
i. e. : we are no longer able to describe the eigenvectors
of H. But, as has been already mentioned, occurence of
large angles with a significant probability means that lev-
els statistics is close to G.O.E. and the integration over
the angles amounts to a constant. Finally, the third con-
straint describes coupling between the eigenvalues and
the angle-like variables Ayg. The specific choice of the
coupling, namely Za<ﬁ(Ea — Eﬁ)zAZﬁ) is motivated by
the considerations presented above.

The three constraints lead to a maximum entropy en-



semble [?] with three Lagrange multipliers. Two of the
multipliers fix the scale of energy and of the angle-like
variables A,g, so that the final expression for the prob-
ability density P({F,, A,3}) contains one parameter p
and has the form:

N N N
1
P({Eq, Aag})  [] |Fa — Egl.exp -5 Y EL->A
a<lpB a=1 a<lf

(8)
The factors |E, — Fjg| come from the volume element
in the energy—angle space. Let us also mention that the
unitary case, 1. e. an ensemble of hermitian matrices, can
be treated in complete analogy with the orthogonal case
considered above. The real antisymmetric matrix A is
then replaced by an anti-hermitian matrix. Integrating
out the angle-like variable, and setting £, = \/1/u, we
obtain the following expression for P(FEy, ..., Ex), which
encompases both the orthogonal (F = 1) and the unitary

(8 = 2) case:

N
> B

a=1

P(Fy,...,EN) x exp [—

N | —

(9)

Tt is interesting that the same expression (but with-
out the exponential factor) was obtained by Yukawa [?]
who used a rather different approach. Yukawa considered
the “dynamics” of eigenvalues F,(A) under a change of
some parameter A in the hamiltonian. In his formulation
A plays the role of time and E,’s are canonical coordi-
nates. Some additional auxiliary canonical variables are
introduced and a Hamilton function, describing the level
dynamics, is derived. The main assumption is that, in
the A — oo limit, the system equilibrates to a Gibbs
distribution with two parameters which are the analogs
of energy and angular momentum. Integration over the
auxiliary variables yields Eq. (9) for P(F4,..., En). An-
other earlier piece of work that should be mentioned in
this context is the work of Gaudin [?] who introduced
the function given by Eq. (9) (but without the expo-
nential factor), for @ = 2, as a possible generalization of
the Dyson Coulomb gas [?]. This model was introduced
mostly for its mathematical tractability rather than from
“microscopic” consideration. Gaudin, and subsequently
Forrester [?], gave a rather complete analytical treatment
of the model (n-point correlation functions, nearest level
spacing distribution...).

Since one is mainly interested in the local level statis-
tics, 1. e. energy scales within which the average density
of levels does not change, the factor in Eq. (9) coming
from the constraint C is not essential. The point we wish
to make is that Eq. (9) provides a simplified description
of the level statistics for any degree of disorder, which al-
lows us to incorporate the scaling picture of localization

i[5
AL BT (Fa-Toy



in a random matrix description. Many qualitative prop-
erties of the level statistics are recovered in the metal,
in the insulator and at the mobility edge, and the sys-
tem size dependence can enter through a single scaling
parameter. As discussed above, E, should be identified
with F., which in turn is related to the dimensionless
conductance g = F./A. Then, one can write Eq. (9) as

_QZm(H(GQ%M)Q)],

alal

P(e1, ..., en) x exp

where ¢, = Eo/A.

P(ey,...,en) corresponds now to the distribution of
classical charges interacting via a “screened” pairwise po-
tential at a temperature A7, Only for |e, — o] << g,
we recover the standard logarithmic interaction. For
lew — €at| >> g, the pairwise interaction decays as
leo — €ar|~2. The weakness of this model is that it does
not contain the space dimension d (in a d-dimensional
metal the long range part of the pairwise interaction de-
creases [?] with a d—dependent exponent and this re-
mains true at the mobility edge [?]). This weakness can
be traced to the fact that all off-diagonal matrix ele-
ments in Eq. (1) (or all the angle-like variables in the
maximum entropy ensemble (8)) are treated on the same
footing which corresponds to long range hopping in a
tight—binding hamiltonian. The nature of the localiza-
tion of the eigenstates in those models is also somewhat
particular. In the microscopic hamiltonian (1), for large
1, the main part of the wave function amplitude is con-
centrated at some given site, while the remaining part
is scatterered in a totally random way over the other
sites. This differs from an exponentially Anderson local-
ized state, characterized by a localization length £. How-
ever our model leads us to a mathematically tractable
level distribution which improves the standard statistics
of the orthogonal and unitary ensembles, and contains
many qualitative features derived in microscopic models.

The free parameter g of the model can vary with N
in a prescribed way. Metallic behavior corresponds to g
increasing with N. G.O.E. (G.U.E.) then holds for larger
and larger consecutive sequences of levels. Insulating be-
havior corresponds to g decreasing with N. In the large
N-limit the function P(E4,..., Ey) reduces essentially
to a constant: only for very close levels g? in Eq. (10)
should be kept and the level repulsion can be felt.

The most interesting case is when g = go & 1 is scale
invariant . This corresponds to the mobility edge situ-
ation. We only discuss the distribution P(s) for near-
est neighbor spacings, at the mobility edge. This func-
tion has been studied numerically by Shklovskii et al [?].
They suggest that P(s), for the orthogonal case, is a uni-
versal function which is linear for small s and decreases
exponentially for large s ( for the unitary case the small



s behavior should be s?, instead of s). Tt is interest-
ing to compare the results of Ref. 9, for the Anderson
model, with the analytical results based on Eq. (11), for
g = go &~ 1. Such results are available, due to the work
of Gaudin and Forrester. Tt turns out [?] that, for 8 = 2,
P(s) is indeed proportional to s?, for small s. For large
s, it decreases as s® exp(—vs) where v and § are numbers
of order one.

In conclusion, the description of level statistics in dis-
ordered systems, for arbitrary degree of disorder, requires
departure from the standard Gaussian ensembles and in-
troduction of more general matrix ensembles, with a pref-
erential basis. One such possibility is explored in this pa-
per. Using microscopic considerations, as well as a max-
imal entropy principle, we have derived a one—parameter
ensemble (in agreement with the scaling theory of local-
ization) with a preferential basis. We have shown that it
gives a qualitative description of the level statistics in the
metal, the insulator and at the mobility edge. This de-
scription can be summarized by a very simple Coulomb
gas analogy, as pointed out in Refs 16-17. The energy
level statistics becomes formally identical to the Gibbs
distribution of classical charges interacting via an infinite
range logarithmic pairwise potential. The temperature
takes the usual values (# = 1,2), depending on the sys-
tem symmetries. The charges are free to move on a line
parallel to a metal wall - a mathematically tractable dis-
tribution in the unitary case, first introduced by Gaudin.
The metallic wall induces mirror charges which “screen”
the pairwise interaction of the levels. This distribution
contains a single parameter, the distance between the
line and the wall, which we identify as the dimensionless
conductance (g/2).
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