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Abstract

We investigate the statistics of trees grown from some initial tree by attaching
links to preexisting vertices, with attachment probabilities depending only on
the valence of these vertices. We consider the asymptotic mass distribution
that measures the repartition of the mass of large trees between their differ-
ent subtrees. This distribution is shown to be a broad distribution and we
derive explicit expressions for scaling exponents that characterize its behavior
when one subtree is much smaller than the others. We show in particular the
existence of various regimes with different values of these mass distribution
exponents. Our results are corroborated by a number of exact solutions for
particular solvable cases, as well as by numerical simulations.
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1. Introduction

Random trees arise in many branches of science, ranging from the social sciences
through biology, physics and computer science to pure mathematics. In physics, random
trees often occur in the context of statistical mechanics or quantum field theory where
the weight or probability of a tree is given by a local function, e.g. a Boltzmann factor
with an energy which depends only on the valence of individual vertices but not on
global features of the tree. A motivation for study of such trees comes for instance
from results in the theory of random surfaces which behave like trees in some cases, see
[1]. Another motivation concerns the study of two-dimensional quantum gravity by use
of so-called causal tessellations [2], directly expressible in terms of random walks or of
trees [3].

Another large class of random trees arises in growth processes where a tree evolves in
time by adding new vertices which attach themselves by a link to one of the vertices of a
preexisting tree according to some stochastic rules, with local attachment probabilities.
A possible realization is a tree-like molecule (branched polymer) growing in a solution
with an abundance of monomers. In many important real world cases one can observe
the structure of the growing tree but only guess the rules which govern the growth
(social networks, the internet, citation networks etc.). For a review of this topic, see [4].

Most tree models in statistical mechanics with a local energy function fall into one
universality class, called generic random trees, with susceptibility exponent γ = 1/2,
intrinsic Hausdorff dimension 2 and spectral dimension 4/3 [5]. This universality class
corresponds also to the mean field theory of branched polymers. If we look at a generic
infinite tree, then with probability 1 there is a unique infinite non-backtracking path [6].
A rooted generic tree can therefore be viewed as an infinite half-line with finite trees
growing out of it and these finite outgrowths have a well-understood distribution. This
means that if we sit at a vertex of a generic random tree, almost all the vertices of the
tree are to be found in the direction of one of the links emanating from this vertex.

There do not seem to be any local growth rules for a tree which produce generic
trees. In this paper we study the structure of growing trees and focus on how they differ
from generic trees. Taking binary planar trees with a root of valence one as an example
we can ask what proportion of the vertices sits on the right hand side of the tree and
what proportion on the left. For a generic tree almost all the vertices are on one side. We
will see that with local growth rules, in the limit of infinite trees, we get a continuous
distribution for the proportion of vertices sitting on each side. We will refer to this
distribution as the mass distribution. This quantity is one of the simplest geometrical
characterizations of the geometry of the random trees and gives a first glimpse at their
fractal structure. It might also be of practical use, for instance when applied to binary
search trees, to improve algorithmic efficiency by anticipating the structure of stored
data. The aim of this paper is an investigation of this mass distribution, in particular
via the derivation of scaling exponents characterizing its behavior when one side of the
tree is much smaller than the other. Those exponents turn out to depend precisely on
the underlying growth dynamics and also on the initial condition of the growth process.

As long as we are interested only in global properties such as the mass distribution,
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the growth process reduces to a model of evolution of populations which belongs to
the class of so-called generalized Pólya urn problems [7]. These problems have been
analyzed using continuous time branching processes [8-10] and we believe that the mass
distribution exponents can in principle be deduced using those methods. However, we
find it illuminating to study the model directly using discrete time and elementary
methods.

We first consider growing binary trees which are characterized by a single parameter
x given by the ratio between the probabilities that a new vertex attaches itself to an old
vertex of valence 1 or of valence 2. For a certain value of x the model can be mapped
onto a simple model of reinforced random walk which is exactly solvable. When starting
from the tree consisting of a single link, one finds a uniform mass distribution, i.e. the
probability that a fraction u of the total mass sits on the left is independent of u. More
generally, this distribution is given by a Beta law that depends on the initial tree that
we start the growth process from. For other, arbitrary values of the parameter x, we
show how to calculate the mass distribution exponents exactly by scaling arguments.
Again, these exponents depend strongly on the initial condition.

In the second half of the paper these results are generalized to the case of growing
trees with vertices of a uniformly bounded valence. Both for binary and the more
general multinary trees numerical experiments have been carried out and are in excellent
agreement with the scaling results.

2. Growth of binary trees

2.1. Definition of the model

The model that we will study consists of growing binary trees from some finite initial
binary tree T 0 by successive addition of links. As usual, the binary trees are rooted at
some root edge and planar, which allows to distinguish left and right descendants at each
vertex. One may alternatively think of the trees as drawn on top of some underlying
infinite binary Cayley tree with a unique leaf connected to the root edge (see figure 1).
The growing of a new link takes place at uni- or bi-valent vertices of the existing tree
only, with two choices (left or right descendant) in the first case and a unique choice
(the descendant not already occupied) in the second case. At each step, the choice of
the vertex to which we attach the new link is made with a probability that depends on
its valence i (i = 1, 2) and chosen to be proportional to w1 for univalent vertices and
w2 for bivalent ones. More precisely, if we denote by ni, i = 1, 2, 3 the total number of
i-valent vertices on the growing tree at a given step, the probability to attach the new
link to a given i-valent vertex reads wi/(n1w1+n2w2) for i = 1, 2. Note that the process
depends only on the quantity w1/w2. Once the choice of attachment vertex is made,
the precise choice of link to add is then unambiguous if i = 2 and uniformly distributed
on the left and right descendants if i = 1.

In the following, we will concentrate on global properties of the growing tree, such as
its total numbers ni of i-valent vertices. The above growing process induces a Markovian
evolution for ni(t) as functions of a discrete time t equal to the number of added links,
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w1
w2

Fig. 1: A sample binary tree (top, thick lines) grown on top of an under-
lying infinite binary Cayley tree (thin lines) by attaching a new link either
at a univalent vertex (bottom left) or at a bivalent one (bottom right).
The choice of the attachment vertex is made with probability weights wi

depending only on its valence i = 1 or 2. When i = 1, the new link is
chosen among the two possible descendants with equal probabilities.

starting from ni(0) ≡ n0
i , the numbers of i-valent vertices on T 0. We have the following

evolution rules:

with probability
n1(t)w1

n1(t)w1 + n2(t)w2
,







n1(t + 1) = n1(t)
n2(t + 1) = n2(t) + 1
n3(t + 1) = n3(t)

with probability
n2(t)w2

n1(t)w1 + n2(t)w2
,







n1(t + 1) = n1(t) + 1
n2(t + 1) = n2(t) − 1
n3(t + 1) = n3(t) + 1

(2.1)

These rules are a particular realization of so-called generalized Pólya urns with three
types of “balls” taken out of a single urn. The problem can thus be studied by continuous
time branching processes (see [8]) but we prefer to present here some heuristic but more
direct arguments. The rules (2.1)translate into a master equation for the probability
p(n1, n2, n3; t) that there be ni i-valent vertices in the growing tree at time t:

p(n1, n2, n3; t + 1) =
n1w1

n1w1 + (n2 − 1)w2
p(n1, n2 − 1, n3; t)

+
(n2 + 1)w2

(n1 − 1)w1 + (n2 + 1)w2
p(n1 − 1, n2 + 1, n3 − 1; t) .

(2.2)
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This, together with the initial conditions p(n1, n2, n3, 0) =
3
∏

i=1
δni,n

0
i
, determines

p(n1, n2, n3; t) completely.
Defining the total mass T of the evolving tree as its total number of edges (including

the root edge), we have clearly the relation T = t + T 0, where T 0 is the mass of the
initial tree T 0. Moreover, we have the standard relations for binary trees:

T = n1 + n2 + n3 = 2n1 + n2 − 1 . (2.3)

We may therefore write

p(n1, n2, n3; t) = δn2,t+T 0+1−2n1
δn3,n1−1 p(n1; t) . (2.4)

Hence, the problem reduces to finding a function of two variables only.
The proportions ni(t)/T of the total mass corresponding to edges antecedent of

i-valent vertices provide a first set of interesting quantities. As we shall see in the next
section, these proportions tend asymptotically at large t to fixed values depending on
w1/w2 only and not on the initial condition. Moreover, these values may be computed
exactly via a simple mean-field argument.

As mentioned in the introduction, another interesting quantity that characterizes
the geometry of the growing tree is given by the repartition of the total mass between
the left and the right of the root edge. Defining the left and right masses TL and TR as
the total number of edges in the left and right descending subtrees of the root edge (with
TL +TR = T −1), we shall be interested in the asymptotic proportions uL = TL/(T −1)
and uR = TR/(T − 1) at large t (with uR = 1 − uL). The corresponding limiting law
P (uL, uR) is quite subtle and cannot be obtained by mean-field arguments. As we shall
see below, the proportions uL and uR are not peaked to fixed values but are instead
characterized by a broad asymptotic probability distribution P (uL, uR) on [0, 1], which
moreover depends strongly on the initial conditions. The main subject of this paper is
an investigation of this limiting law and in particular the derivation of exponents that
characterize it.

2.2. Mean-field results

The mean-field approach consists in assuming that the proportions of mass under
study are peaked at large t around fixed values and in neglecting fluctuations around
those. As we shall see, this gives a fully consistent result in the case of the proportions
ni/T above, while it gives no information on the left and right proportions uL and uR.

Multiplying both sides of eq. (2.2) by n1, (resp. n2, n3) and summing over all n’s
at fixed t, we get

〈n1〉t+1 = 〈n1〉t + 〈 n2w2

n1w1 + n2w2
〉t

〈n2〉t+1 = 〈n2〉t + 〈n1w1 − n2w2

n1w1 + n2w2
〉t

〈n3〉t+1 = 〈n3〉t + 〈 n2w2

n1w1 + n2w2
〉t

(2.5)
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Here, the notation 〈· · ·〉t stands for the average over all possible growths of the initial tree
T 0 by adding t links. The mean-field hypothesis allows to substitute ni → αit within
averages in (2.5), with constants αi to be determined. This substitution immediately
yields

α1 = α3 =
α2w2

α1w1 + α2w2
α2 =

α1w1 − α2w2

α1w1 + α2w2
(2.6)

which fixes

α1 = α3 =
2 x

3 x +
√

x(8 + x)
α2 =

2

2 + x +
√

x(8 + x)
(2.7)

where

x ≡ 2w2

w1
. (2.8)

1 2 3 4

0.2

0.4

0.6

0.8

1

α2
α1 α3=

x

α i

Fig. 2: The limiting proportions αi ∼ ni/t at large t as functions of the
ratio x = 2w2/w1, with values (2.7) predicted by a mean field argument.

These values are plotted in fig.2. Note that we have the relations α1 + α2 + α3 =
2α1 + α2 = 1 in agreement with eq. (2.3).

To check this mean-field result, we may use the master equation (2.2) to estimate
the asymptotics of p(n1, t) in (2.4). Performing the substitution (2.4) into eq. (2.2), we
get

p(n1; t + 1) =
n1w1

n1w1 + (t + T 0 + 1 − 2n1)w2
p(n1; t)

+
(t + T 0 + 3 − 2n1)w2

(n1 − 1)w1 + (t + T 0 + 3 − 2n1)w2
p(n1 − 1; t)

(2.9)

At large t, we assume that the solution takes the asymptotic form

p(n1; t) ∼
1√
t
f

(

n1√
t
− α1

√
t

)

(2.10)
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for some function f(z) and some parameter α1 to be determined. Substituting this form
into eq. (2.9) and expanding in 1/

√
t at large t, we get at leading order the consistency

relation
w1

w2
=

(1 − α1)(1 − 2α1)

α2
1

(2.11)

from which we recover the value α1 of eq. (2.7), while the values of α2 and α3 follow
from α2 = 1 − 2α1 and α3 = α1. At sub-leading order, we get a differential equation
for f(z):

(3 − 4α1)(f + z f ′) + α1(1 − α1)(1 − 2α1)f
′′ = 0 (2.12)

from which we deduce that

f(z) ∝ e
−

3−4α1
2α1(1−α1)(1−2α1)

z2

(2.13)

As announced, the asymptotic distribution for n1/t is peaked around the mean value α1.
More precisely, it is Gaussian with a width of order 1/

√
t, hence tends to δ(n1/t − α1)

when t → ∞.
It is interesting to apply the same mean-field approach to the case of the left-right

repartition of the mass in the growing tree. The above Markov process must now be
refined so as to keep track of the left (L) and right (R) numbers of uni- and bi-valent
vertices ni,A, i = 1, 2 and A = L, R. The masses on the left and right of the root edge
are then simply expressed as TL = 2n1,L + n2,L − 1 and TR = 2n1,R + n2,R − 1. Here
and throughout the paper, we use the convention that n1,L = 0, n2,L = 1 if the left
subtree is empty, and similarly for the right subtree. If we now assume the existence of
limiting proportions ni,A/t → ηi,A at large t, we get the mean-field equations

η1,L = w2η2,L/Σ

η2,L = (w1η1,L − w2η2,L)/Σ

η1,R = w2η2,R/Σ

η2,R = (w1η1,R − w2η2,R)/Σ

(2.14)

where Σ = ΣL + ΣR and ΣA = w1η1,A + w2η2,A. We introduce the quantities uA ≡
2η1,A + η2,A, which are nothing but the asymptotic proportions of the total mass lying
on the left and right of the root edge. From eq. (2.14), we deduce that uA = ΣA/Σ,
henceforth uL + uR = 1 as it should. Introducing αi,A = ηi,A/uA, which are the
proportions of uni-and bi-valent vertices within the left, resp. right subtree, eqs. (2.14)
decouple into two sets of equations

{

α1,L = α2,Lw2/(α1,Lw1 + α2,Lw2)
α2,L = (α1,Lw1 − α2,Lw2)/(α1,Lw1 + α2,Lw2)

{

α1,R = α2,Rw2/(α1,Rw1 + α2,Rw2)
α2,R = (α1,Rw1 − α2,Rw2)/(α1,Rw1 + α2,Rw2)

(2.15)
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which are identical to the mean field equation (2.6). We deduce that αL
i = αR

i =
αi of eq. (2.7) while uL and uR remain undetermined. In other words, the relative
proportions of uni- and bi-valent vertices within each subtree tend asymptotically to
the same mean field values as in the whole tree, but the distribution P (uL, uR) is not
peaked to particular values. We expect instead a broad distribution in the whole interval
[0, 1]. This property will be illustrated in the next section in a particular case.

2.3. A solvable case

A particularly interesting case corresponds to growing the binary trees by adding
links chosen uniformly at random among all possible available positions. This amounts
to taking w1 = 2w2 as there are twice as many available descendants at univalent
vertices as there are at bivalent ones. This corresponds to x = 1 in (2.8). For simplicity,
we take w1 = 2 and w2 = 1 so that w1n1 +w2n2 = 2n1 +n2 directly counts the number
of available positions for the addition of a link. This number is nothing but the mass
T of the tree plus 1. Therefore, the evolution process no longer depends on n1 and n2

individually, but instead depends on the total mass T only.
Turning to left and right proportions, we need only keep track of the masses TL

and TR of the right and left subtree (with TL + TR = T − 1). The induced evolution
process consists at each step in increasing the mass by one on the left with probability
(TL + 1)/(T + 1) and on the right with probability (TR + 1)/(T + 1). This process is
known as the reinforced random walk (RRW) in which a walker goes to the left (resp.
to the right) with a probability proportional to the number of times he has already
stepped in this direction. For a review on reinforced processes, see for instance [7]. We
may easily write a master equation for the probability p(TL, TR; t) to have masses TL

and TL at time t (with T = t + T 0):

p(TL, TR; t + 1) =
TL

t + T 0 + 1
p(TL − 1, TR; t) +

TR

t + T 0 + 1
p(TL, TR − 1; t) (2.16)

where T 0 = T 0
L + T 0

R + 1 and T 0
L and T 0

R are the initial left and right masses. Together
with the initial condition p(TL, TR, 0) = δTL,T 0

L
δTR,T 0

R
, this fixes the solution to be

p(TL, TR; t) =

(

TL

T 0
L

)(

TR

T 0
R

)

(

t+T 0

T 0

)
δTL+TR+1,t+T 0 (2.17)

In particular, when we start from an initial tree T 0 consisting of the root edge alone,
we have T 0 = 1, T 0

L = T 0
R = 0 and therefore p(TL, TR; t) = δTL+TR,t/(t + 1). Hence, all

the values TL = 0, 1, . . . , t are equiprobable. This is a well-known feature of the RRW.
At large t and for arbitrary initial conditions, we may extract from eq. (2.17) the

asymptotic law for the probability distribution of the left and right mass proportions
uL and uR by writing P (uL, uR) = lim

t→∞
t2 p(uL(t + T 0 − 1), uR(t + T 0 − 1); t). We get

explicitly

P (uL, uR) =
(T 0

L + T 0
R + 1)!

T 0
L! T 0

R!
u

T 0
L

L u
T 0

R

R δ(uL + uR − 1) (2.18)
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We thus get a simple Beta law with exponents T 0
L and T 0

R, the left and right masses of
the initial tree.

At this stage, a few remarks are in order. First, as announced, the distribution
P (uL, uR) is supported over the whole interval [0, 1]. Next, it explicitly depends on
the initial condition. However, we note that this dependence is only through the initial
masses and does not involve the precise shape of the initial left or right trees. In view
of this discussion, we define the left and right exponents βL and βR through

P (uL, uR) ∼ uβL

L when uL → 0

P (uL, uR) ∼ uβR

R when uR → 0
(2.19)

Here we have βL = T 0
L and βR = T 0

R, and, as the distribution is a Beta law, the left
and right exponents characterize it completely. Note that the left exponent βL depends
only on the left initial condition and not on the right one and vice-versa. As we will see
later, this property will remain true for arbitrary values of w1 and w2.

3. Mass distribution exponents

In this section, we derive the left and right exponents βL and βR defined in (2.19)
for the general case of arbitrary w1 and w2 and for arbitrary initial conditions.

3.1. Results

Before we proceed to the actual derivation of the exponents, let us display and
discuss the corresponding formula that we obtain. We have the simple expression

βL = −1 +
1

α1w1 + α2w2
min
T ⊃T 0

L

{w1n1(T ) + w2n2(T )}

βR = −1 +
1

α1w1 + α2w2
min
T ⊃T 0

R

{w1n1(T ) + w2n2(T )}
(3.1)

where α1 and α2 are the limiting proportions given by eq. (2.7) and where the minimum
is taken over all binary trees T containing the left (resp. right) initial subtree T 0

L (resp.
T 0

R), with ni(T ) being the number of i-valent vertices in T . In the above formula, we
use again the convention that whenever T is empty , we have n1(T ) = 0 and n2(T ) = 1.
The minimum may be explicitly evaluated and depends on the relative values of w1 and
w2. Indeed, any binary tree T containing, say T 0

L , may be obtained from T 0
L by the

successive addition of a number of links. At each step, the quantity n1w1 + n2w2 either
increases by w2 > 0 if the link is added at a univalent vertex, or is shifted by w1−w2 if it
is added at a bivalent vertex. If w1 > w2, the quantity n1w1 +n2w2 may therefore only
increase strictly and the minimum is attained for the initial state T = T 0

L , with value
w1n

0
1,L + w2n

0
2,L, where n0

i,L ≡ ni(T 0
L ). When w1 < w2, the minimum is obtained by

saturating each bivalent vertex of T 0
L into a trivalent vertex and a uni-valent one. The
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resulting tree T has no more bivalent vertices and a number n0
1,L+n0

2,L of univalent ones.

The associated minimum now reads w1(n
0
1,L + n0

2,L). We finally obtain the following
explicit expression:

βL = −1 +
x +

√

x(8 + x)

8 x

(

4n0
1,L + (x + 2 − |x − 2|)n0

2,L

)

(3.2)

and a similar expression for the right exponent. As mentioned above, we use the con-
vention that n0

1,L = 0 and n0
2,L = 1 if T 0

L is empty. Note that the left exponent only

depends on the left initial subtree via its numbers n0
i,L of uni- and bi-valent vertices.

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

βL

x

Fig. 3: Left mass distribution exponent βL as a function of x = 2w2/w1

for an initial empty left subtree, with value given by (3.2) with n0
1,L = 0

and n0
2,L = 1. At x = 1, we see the value βL = 0 of section 2.3. A change

of regime takes place at x = 2, i.e. w1 = w2.

The exponent βL is displayed in fig.3 for the simple case where we start from an
empty left subtree.

A few remarks are in order. First we note that, as a first check of our formula,
we recover when x = 1 the result βL = 2n0

1,L + n0
2,L − 1 = T 0

L of section 2.3. Two
other particular values of x may be easily checked, namely x → 0 and x → ∞, as the
corresponding limiting growth processes may be easily analyzed.

When x → 0, we find that βL tends to infinity unless n0
1,L = 0, which corresponds

to an empty initial left subtree in which case βL = −1. These results may be understood
as follows. For x → 0, i.e. w1 >> w2, the trees that are built are extensions of the initial
tree by polymer-like chains (without new branching) attached to the initial leaves. If
at least one of the left or right initial subtrees is non-empty, the number of attachment
points for the chains is n0

1,L on the left and n0
1,R on the right, with n0

1,L + n0
1,R > 0,

hence at large t, we have

P (uL, uR) → δ(uL −
n0

1,L

n0
1,L + n0

1,R

) δ(uR −
n0

1,R

n0
1,L + n0

1,R

) (3.3)
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If n0
1,L = 0, we have a delta peak at uL = 0, which is consistent with the limiting value

βL = −1. If n0
1,L > 0, we have delta peak at a positive value of uL, consistent with a

limiting value βL = ∞. Finally, when both initial subtrees are empty (n0
1,L = n0

1,R = 0),
the first step consist in attaching a link to the root edge with probability 1/2 on the
left or on the right and one then grows a single chain on this side. We therefore have
P (uL, uR) =

(

δ(uL)δ(uR − 1) + δ(uL − 1)δ(uR)
)

/2, again consistent with βL = −1.

T 0 S 0

Fig. 4: A typical growth process at x = ∞ (from left to right). The
process starts by first saturation all bivalent vertices of the initial tree
T 0 (left) into trivalent ones, resulting in a tree S0 (middle) with no more
bivalent vertices. The growth then proceeds by a two-step elementary
process which consist in adding the two descendant links to a leaf (circled)
chosen uniformly among all leaves, and so on.

Another interesting case is the limit x → ∞, i.e. w2 >> w1. In this case, the
growth process consists in first saturating all initial bivalent vertices into trivalent ones,
resulting in a tree S0 without bivalent vertex and with left and right masses S0

A =
2(n0

1,A + n0
2,A) − 1, A = R, L (see fig.4). Again we use the convention that n1,A = 0,

n2,A = 1 if the tree on side A is empty. Note that if we start from a configuration T 0

reduced to the root edge, the first two steps of the growing process consist in adding to
the root edge the two links that descend from it. We define for consistency S0 as this
resulting tree, with S0

L = S0
R = 1. The growth then proceeds by a succession of two-

step elementary processes that add at some existing leaf a pair of links on its left and
right descendants. The choice of the leaf at which we attach the new pair is moreover
uniform among all leaves. Remarkably, this two-step process with initial condition
S0 is completely equivalent to the process of section 2.3 with x = 1, where we were
choosing single descendants uniformly. This is due to the existence of a bijection between
“saturated” binary trees without bivalent vertices and ordinary binary trees illustrated
in fig.5, obtained by erasing the root edge and squeezing all pairs of descendants into
single links. The left mass of the image of S0 under the above bijection reads (S0

L −
1)/2 = n0

1,L +n0
2,L −1. From the results of section 2.3, we thus get for the left exponent

the value βL = n0
1,L + n0

2,L − 1, in agreement with (3.2) at x → ∞.
Beyond the three solvable cases x = 0, 1 and ∞ above, we can deduce a number

of qualitative results from our general formula (3.2). First, the distribution is not in
general a Beta law. Indeed, this would require that the exponents for different initial
conditions differ by integers, which is not the case for generic x. Second, if we start from
the tree consisting of a single edge, the distribution can be maximal at uL = uR = 1/2

11



Fig. 5: The bijection between “saturated” binary trees (top left) without
bivalent vertices and ordinary binary trees (top right), obtained by erasing
the root edge and squeezing all pairs of descendants into single links. The
x = ∞ growth process consisting in adding both descendants of a leaf
chosen uniformly at random (bottom left) is bijectively mapped onto the
x = 1 growth process where single links are added uniformly at random
(bottom right).

for x > 1, or conversely, it can be maximal at uL = 0 or uR = 0 for x < 1. Third,
we see a change of behavior of the model at x = 2 with a change of determination for
the exponents which suggests the existence of a competition between different effective
growth mechanisms. Finally, the fact that the exponent βL increases with the size of
the initial tree is a general feature of reinforced processes. Indeed, starting from a large
tree amounts to impose a preferential value of the mass ratio, leading to a narrower
distribution.

3.2. Large time behavior

In order to estimate the, say left mass distribution exponent βL, we are led to
consider growth processes in which the left subtree remains finite at large time t. In
other words, we wish to estimate the large t asymptotics of the probability p(T 0, T ∗

L ; t)
to grow a tree in t steps from some initial tree T 0 (with left subtree T 0

L ) to a final state
made of a fixed final left subtree T ∗

L of finite mass T ∗
L and an arbitrary right subtree,

necessarily with a large mass of order t. This probability clearly decays at large t and
we expect a power law behavior of the form

p(T 0, T ∗
L ; t) ∼ t−γ(T 0,T ∗

L ) (3.4)

12



The computation of the exponent γ(T 0, T ∗
L ) will be a prerequisite for that of the mass

distribution exponent βL.
The probability p(T 0, T ∗

L ; t) is the sum of the probabilities of all possible tree-
growths of total size t leading from T 0 to a tree with left subtree T ∗

L . It will prove
convenient to divide any such process into a first initial sub-process evolving up to some
fixed time t0 and a later process from t0 to t. The value of t0 is kept finite but is chosen
to be large enough so that the mean-field approximation can be applied to the (large
enough) right subtree at each step of its evolution between t0 and t. We may classify

all processes according to the intermediate configuration T 0′ attained at time t0. Note
that T 0′ necessarily has a left subtree T 0

L

′
intermediate between T 0

L and T ∗
L . This allows

us to rewrite

p(T 0, T ∗
L ; t) =

∑

T 0′

T 0
L

⊂T 0
L

′
⊂T ∗

L

π(T 0, T 0′; t0)p(T 0′, T ∗
L ; t − t0) (3.5)

with some probabilities π(T 0, T 0′; t0) that correspond to the initial sub-process. These
probabilities are a finite set of fixed positive numbers independent of t.

In turn, the second part of the process may be sorted according to the induced
left-subtree growth process. The latter corresponds to the successive addition of links
to the left subtree T 0

L

′
until we reach T ∗

L . We will denote by GL such a left-subtree

growth process, characterized by the sequence of trees leading from T 0
L

′
to T ∗

L . Beside
the precise sequence of links added, we also need to specify the time tj at which the

j-th link is added, with j running from 1 to J = T ∗
L − T 0

L

′
(where T 0

L

′
is the mass of

T 0
L

′
) and with t0 < t1 < t2 < · · · < tJ ≤ t. Between any two consecutive such times,

the growth process only affects the right subtree. This allows us to rewrite

p(T 0′, T ∗
L ; t − t0) =

∑

GL;t1,t2,...,tJ

p(GL; t1, t2, . . . , tJ) (3.6)

where the sum extends over all left-subtree growth processes GL with fixed initial and
final conditions as above, supplemented by the sequence of times tj . The probability
p(GL; t1, . . . , tJ) of any given such process depends only on the sequence of the numbers
nj

i ≡ ni,L(tj) of uni- and bi-valent vertices in the left subtree at time tj (i.e., for j ≥ 1,
just after the addition of the j-th link). As before, we adopt the convention that n0

1 = 0,

n0
2 = 1 when T 0

L

′
is empty. The probability p(GL; t1, . . . , tJ) can be estimated as follows:

from time tj to time tj+1−1 (with the convention that tJ+1 = t), the process only takes
place on the right, hence has a probability

tj+1−1
∏

τ=tj

n1,R(τ)w1 + n2,R(τ)w2

(nj
1 + n1,R(τ))w1 + (nj

2 + n2,R(τ))w2

∼
tj+1−1
∏

τ=tj

(

1 +
nj

1w1 + nj
2w2

α1w1 + α2w2

1

τ

)−1

(3.7)

where we have used the mean-field estimate ni,R(τ) ∼ αiτ with αi as in (2.7). At time
τ = tj+1 (0 ≤ j ≤ J − 1), the process takes places on the left, hence has a probability

13



∼ (nj
1w1 + nj

2w2)/((α1w1 + α2w2)tj+1). This results in

p(GL; t1, . . . , tJ) ∼
t1−1
∏

τ=t0

(

1 +
q0

τ

)−1

×q0

t1
×

t2−1
∏

τ=t1

(

1 +
q1

τ

)−1

×q1

t2
×· · ·×qJ−1

tJ
×

t−1
∏

τ=tJ

(

1 +
qJ

τ

)−1

(3.8)
where we have used the notation

qj ≡ nj
1w1 + nj

2w2

α1w1 + α2w2
(3.9)

We may now fix the left-subtree growth process GL, i.e. keep the same sequence of link
additions, but sum over the times tj , resulting in a probability p(GL) such that

p(T 0′, T ∗
L ; t − t0) =

∑

GL

p(GL) (3.10)

The corresponding nested sums over intermediate times are further approximated by
nested integrals, with the result

p(GL) ∼
∫

t0<t1<...<tJ <t





J
∏

j=1

dtj
tj

qj−1

(

tj−1

tj

)qj−1





(

tJ
t

)qJ

=
J
∑

j=0

qj

qJ

(

t0
t

)qj J
∏

i=0
i 6=j

qi

qi − qj

(3.11)
Again the precision of this latest approximation is governed by the choice of t0, and
can be arbitrarily accurate by picking a large enough t0. The large t behavior of p(GL)
therefore reads

p(GL) ∼ t−γ where γ = − min
j∈{0,1,...,J}

qj . (3.12)

Introducing the notation

q(T ) ≡ n1(T )w1 + n2(T )w2

α1w1 + α2w2
(3.13)

for any tree T with ni(T ) i-valent vertices, the minimum in (3.12) is equivalently ob-
tained as the minimum of q(T ) when T runs over all the intermediate trees of the growth
process GL, namely

p(GL) ∼ t
− min

T ∈GL

q(T )

. (3.14)

Returning to p(T 0′, T ∗
L ; t − t0), we read from the summation in eq. (3.10) that

p(T 0′, T ∗
L , t − t0) ∼ t

− min
T 0

L

′
⊂T ⊂T ∗

L

q(T )

(3.15)

with the minimum now taken over all trees intermediate between T 0
L

′
and T ∗

L . Finally,

from eq. (3.5), we have to sum over all possible trees T 0′ at time t0, extending the range

14



of trees in the minimum to all trees intermediate between T 0
L and T ∗

L . This results in a

behavior p(T 0, T ∗
L ; t) ∼ t−γ(T 0,T ∗

L ) with

γ(T 0, T ∗
L ) = min

T 0
L
⊂T ⊂T ∗

L

q(T ) (3.16)

In practice, the exponent γ(T 0, T ∗
L ) depends only weakly on T ∗

L . It proves useful to
define a generic exponent

γ(T 0) ≡ min
T 0

L
⊂T

q(T ) (3.17)

with no upper bound on T . In view of the discussion of section 3.1, the minimum is
reached for some finite tree Tmin (with Tmin = T 0

L if w1 > w2 while, when w2 > w1,
Tmin = S0

L, the tree obtained by saturating each bivalent vertex of T 0
L into a trivalent

vertex). We immediately deduce that γ(T 0, T ∗
L ) takes the generic value γ(T 0) as soon

as T ∗
L contains Tmin. Moreover, if this is not the case, we necessarily have γ(T 0, T ∗

L ) ≥
γ(T 0).

3.3. Scaling argument

The left exponent βL can be obtained from the exponent γ(T 0) via a simple scaling
argument. Indeed the distribution P (uL, uR) for the left/right distribution of the mass
is obtained as

P (uL, uR) = lim
t→∞

t2 p(uL(t + T 0 − 1), uR(t + T 0 − 1); t) (3.18)

where p(TL, TR; t) is the probability to have reached after t steps left and right masses
TL and TR respectively. This probability implicitly depends on the initial condition T 0

(of total mass T 0). We have of course TL + TR = t + T 0 − 1 hence we may write

p(TL, TR; t) = p(TL; t) δTL+TR,t+T 0−1 (3.19)

as well as
P (uL, uR) = P (uL) δ(uR + uR − 1) (3.20)

where the two reduced functions are now related through

P (uL) = lim
t→∞

t p(uL(t + T 0 − 1); t) (3.21)

The exponent βL characterizes the behavior of P (uL) at small uL via

P (uL) ∼ uβL

L when uL → 0 (3.22)

At large t and for large but finite TL, we may according to (3.21) and (3.22) estimate
p(TL; t) via

p(TL; t) ∼ 1

t
P

(

TL

t

)

∼ 1

t

(

TL

t

)βL

(3.23)
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hence p(TL; t) has a power law decay t−(βL+1). The above estimate holds in the range
1 << TL << t. The probability p(TL; t) is the sum of the probabilities p(T 0, T ∗

L ; t)
over all final left subtree T ∗

L of mass TL. From the results of previous section, each

p(T 0, T ∗
L ; t) decays as t−γ((T 0,T ∗

L ) and, as TL is large enough, some of the T ∗
L ’s will

reach the (dominant) generic value γ(T 0). We deduce that

βL + 1 = γ(T 0) (3.24)

with γ(T 0) given by (3.17). Hence, the announced result (3.1).

3.4. Numerical checks

To corroborate the above results, we have made a number of numerical checks.
Those are based on random generation of large time Markov processes according to
(2.1)or its left/right refinement. All simulations are made of growth processes with
t = 4000 steps. The number N of runs ranges from 2 × 105 to 108 according to the
desired precision and various values of x = 2w2/w1 are explored.
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Fig. 6: The measured distribution (see text) for n1/t (red) and n2/t (blue)
and the corresponding mean-field predictions from (2.7).
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The first test concerns the distribution of the ratios ni/t (i = 1, 2), to be compared
with the results of section 2.2. Figure 6 displays the measured distribution obtained
from N = 2×105 runs with an initial tree reduced to the root edge, and for x = 1/2, 1, 2
and 4. As expected, we observe distributions peaked around precise values α1 and α2

corroborating the mean field predictions (2.7). The distributions and their widths agree
perfectly with the Gaussian shape (2.13) and its α2 counterpart.
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Fig. 7: Measured distribution P (uL) for the initial tree T 0 drawn on
the left. For x = 1, we have also indicated the exact distribution.

Next, we have explored the left/right mass distribution for various initial conditions
and various of x. Again the statistics is over N = 2 × 105 runs and we have chosen the
values x = 1/2, 1, 2 and 4. Figures 7-10 show the measured distribution P (uL) of the
proportion uL of the total mass lying on the left side. Each point corresponds to an
average over 10 consecutive values of the left mass, with t/10 = 400 such points. The
initial configurations are (i) the tree reduced to the root edge (figure 7), (ii) the tree
reduced to root edge and its left descendant (figure 8), (iii) the tree reduced to root
edge and its two descendants (figure 9) and (iv) the tree reduced to root edge and a
chain of length 2 on the left (figure 10). For x = 1, we have also indicated the exact
limiting distribution as obtained by integrating (2.18) over uR.

The very same data give access to the integrated distribution

D(uL) ≡
∫ uL

0

P (u) du (3.25)
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Fig. 8: Measured distribution P (uL) for the initial tree T 0 drawn on
the left.

by a simple cumulative sum. This wipes out the fluctuations of P (u), leading to
smoother curves displayed in figure 11. In this representation, the measured x = 1
curves are indistinguishable from their exact values deduced from (2.18).

We now come to a check of the prediction (3.16) for the exponent γ(T 0, T ∗
L ) gov-

erning the t decay of the probability p(T 0, T ∗
L ; t) to go in t steps from an initial tree

T 0 to a large final tree with left part T ∗
L . The predicted exponents (3.16) are plotted

against their measured values, i.e. the limiting slopes of a log-log plot of the probability
p(T 0, T ∗

L ; t) versus t. The plots 12 and 13 have been obtained from a statistics over
N = 108 runs for x = 1/2 and x = 4 and starting with the initial tree T 0 indicated.
The various curves correspond to various final left configurations T ∗

L as indicated in
medallions. For x = 1/2, all curves display the same exponent compatible with the pre-
dicted value (3.17) for the generic exponent γ(T 0). Indeed, in this case, the minimum
in (3.16) is always attained for the initial tree T 0 irrespectively of T ∗

L . This is generic of
all values x < 2. For x = 4, we see two distinct slopes according to whether T ∗

L contains
or not the left subtree S0

L obtained by saturating the initial left subtree T 0
L (see section

3.2). If it does, we observe the generic value γ(T 0) (3.17) and if not, we observe the
larger value γ(T 0, T 0

L ) (3.16).

Finally, we have made a direct measurement of the left exponent βL from the small
uL behavior (3.22) of P (uL). The statistics is over N = 107 runs for an initial tree
T 0 made of the root edge and its two descendants. The results are gathered in fig.14
in a log-log plot of P (uL) versus uL for the values x = 1/2, 1, 2, 4 and 12. Each point
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Fig. 9: Measured distribution P (uL) for the initial tree T 0 drawn on
the left.

corresponds to a left mass ranging from 1 to 100 over a total mass of 4000, hence uL

ranges from 0 to .025. The predicted slopes βL are indicated by straight lines, with a
perfect agreement in the range of large enough masses (here larger than 30), as expected
from the scaling argument of section 3.3. For large x, we observe a parity effect due
to the fact that the large x preferred value n2,L = 0 (saturated tree) can be attained
only for odd left masses. For x = 12, we have also represented the average between
two consecutive left masses so as to wipe out this parity effect (empty green diamonds).
This seems to extend the range of validity of the scaling argument to lower uL’s.

The very same data are used in fig.15 to construct the log-log plot of the integrated
distribution D(uL) (3.25) versus uL by simple cumulative sums. This wipes out the
statistical fluctuations of the previous plot and the results corroborate unambiguously
our predictions for βL.

4. Growth of multinary trees

4.1. Definition of the model

In this section, we generalize our results to trees with vertex valences up to k+1 for
some fixed integer k ≥ 2. As before, the trees are planar and rooted and may be thought
of as drawn on top of an underlying (k+1)-valent Cayley tree with a unique leaf attached
to the root edge. We start from some initial finite tree T 0 containing the root edge and
add iteratively links at vertices with valence i less or equal to k, with probability weights
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Fig. 10: Measured distribution P (uL) for the initial tree T 0 drawn on
the left.

wi, i = 1, . . . , k. More precisely, if the tree has nj j-valent vertices (j = 1, . . . k + 1), a

given vertex of valence i is chosen with probability wi/(
k
∑

j=1

njwj). Once the vertex is

chosen, the choice of link to add is uniformly distributed on all the (k + 1− i) available
descendant edges. Again, this growing process induces a Markovian evolution for the
numbers ni(t) of i-valent vertices at time step t starting from ni(0) ≡ n0

i , the numbers
of i-valent vertices on T 0. We have the evolution rules

with probability
n1(t)w1

k
∑

j=1

nj(t)wj

,







n1(t + 1) = n1(t)
n2(t + 1) = n2(t) + 1
nℓ(t + 1) = nℓ(t), ℓ ≥ 3

with probability
ni(t)wi

k
∑

j=1

nj(t)wj

,











n1(t + 1) = n1(t) + 1
ni(t + 1) = ni(t) − 1

ni+1(t + 1) = ni+1(t) + 1
nℓ(t + 1) = nℓ(t), ℓ 6= 1, i, i + 1

(4.1)

for i = 2, . . . k.
As before, we shall be interested in the repartition of the total mass T (number

of edges) of the growing tree between the k descending subtrees of the root edge. If
we denote by Tm the mass of the m-th descendant subtree from the left (with T =
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Fig. 11: Measured integrated distributions D(u) for x = 1/2 (red), x = 1
(blue), x = 2 (cyan) and x = 4 (green) and for the four initial conditions
indicated.

1+
∑

m Tm), and um ≡ Tm/(T−1), we expect a broad limiting distribution P (u1, . . . , uk)
at large T characterized by mass distribution exponents βm such that

P (u1, . . . , uk) ∼ uβm
m when um → 0 (4.2)

4.2. Mean field

As for binary trees, the expression for the mass distribution exponents βm involves
the limiting proportions αi of i-valent vertices in trees grown for a long time t. Those
are again exactly given by a set of mean field equations

α1 = 1 − α1w1

Σ

αi =
αi−1wi−1 − αiwi

Σ
, i = 2, . . . , k

(4.3)

where we have defined Σ =
k
∑

i=1

αiwi. These equations are easily solved into

αi =
Σ

wi

i
∏

j=1

wj

Σ + wj

(4.4)
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Fig. 12: Measured exponents γ(T 0, T ∗
L ) at x = 1/2 from (minus) the slope

of p(T 0, T ∗
L ; t) vs t in a log-log plot, for an initial tree T 0 as indicated and

for various final left subtrees as shown in medallions. The black segment
corresponds to the predicted exponent, here independent on T ∗

L .

where Σ is determined by the consistency equation Σ =
k
∑

i=1

αiwi, namely

f(Σ) ≡
k
∑

i=1

i
∏

j=1

wj

Σ + wj

= 1 (4.5)

Note that the function f(Σ) is strictly decreasing from f(0) = k to f(∞) = 0, therefore
eq. (4.5) has a unique real positive solution and the equation for the proportions (4.4)
follow.

4.3. A solvable case

Here again, a particularly simple case corresponds to growing the trees by adding
links chosen uniformly at random among all possible available positions. This amounts
to taking wi = (k + 1 − i) in which case

∑

wini = (k − 1)T + 1 directly counts the
number of available positions for the addition of a link. In this case, we find Σ = k − 1
and the limiting proportions αi =

(

2k−i−1
k−2

)

/
(

2k−1
k

)

. Moreover, we can write a master
equation for the probability p(T1, . . . , Tk; t) to have mass Tm for the m-th descendant
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Fig. 13: Measured exponents γ(T 0, T ∗
L ) at x = 4 from (minus) the slope

of p(T 0, T ∗
L ; t) vs t in a log-log plot, for an initial tree T 0 as indicated and

for various final left subtrees as shown in medallions. The black segment
corresponds to the two predicted exponents, depending on T ∗

L (see text).

subtree from the left after t steps:

p(T1, . . . , Tk; t + 1) =

k
∑

m=1

(k − 1)(Tm − 1) + 1

(k − 1)(t + T 0) + 1
p(T1, . . . , Tm−1, Tm − 1, Tm+1, . . . , Tk; t)

(4.6)

with initial condition p(T1, . . . , Tk; 0) =
∏k

m=1 δTm,T 0
m

. Note that this equation may
alternatively be interpreted in terms of a generalized RRW in which a walker steps in
one of k given directions labelled m = 1, 2, . . . k with a probability proportional to a
function fm(Nm) of the number of times Nm = Tm − T 0

m he already stepped in that
direction. Here the functions read fm(N) = N + T 0

m + 1/(k − 1). In this language,
p(T1, . . . , Tk; t) is the probability to have stepped Tm − T 0

m times in the m-th direction
after t steps (note that in this language Tm and T 0

m need not be integers but Nm are).
Eq.(4.6) is easily solved into

p(T1, . . . , Tk; t) =
t! Γ

(

T 0 + 1
k−1

)

Γ
(

T 0 + t + 1
k−1

)

k
∏

m=1

Γ
(

Tm + 1
k−1

)

(Tm − T 0
m)! Γ

(

T 0
m + 1

k−1

) δ1+
∑

m

Tm,t+T 0

(4.7)
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Fig. 14: Measured exponent βL from the slope of P (uL) vs uL in a log-log
plot, for an initial tree T 0 as indicated and for various values of x. The
straight lines correspond to the predicted exponents.

which yields the limiting distribution P (u1, . . . , uk) ≡ lim
t→∞

tkp({um(t + T 0 − 1)}; t):

P (u1, . . . , uk) =
Γ
(

T 0 + 1
k−1

)

k
∏

m=1
Γ
(

T 0
m + 1

k−1

)

k
∏

m=1

u
T 0

m− k−2
k−1

m δ(
k
∑

m=1

um − 1) (4.8)

We can therefore read off the mass distribution exponents for this particular case:

βm = T 0
m − k − 2

k − 1
(4.9)

4.4. Mass distribution exponents

In the case of arbitrary weights wj , the mass distribution exponents may be eval-
uated along the same lines as in Section 3, with the result

βm = −1 +
1

Σ
min

T ⊃T 0
m

{
k
∑

j=1

wjnj(T )} (4.10)

with Σ the solution of eq. (4.5) and where the minimum is taken over all trees T
containing the m-th initial subtree T 0

m. Again we use the convention that whenever T
is empty, we set n1(T ) = · · · = nk−1(T ) = 0 and nk(T ) = 1.
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Fig. 15: Log-log plot of the integrated distribution D(uL) vs uL from the
same data as fig.14. The slope are now identified with 1+βL, with a much
better accuracy.

Note that, in the solvable case of previous section, the quantity to be minimized is
simply (k − 1)T + 1 where T is the mass of T hence the minimum is reached for T 0

m,
leading to the result −1 + ((k− 1)T 0

m + 1)/Σ, in agreement with eq. (4.9) as Σ = k − 1.
For illustration, let us discuss the case k = 3 in detail. It is convenient to view

the trees T as grown out of T 0
m and to follow the evolution of the quantity r(T ) ≡

∑3
j=1 wjnj(T ) that we wish to minimize. According to the evolution rules (4.1) applied

to up to three consecutive steps, r(T ) has increments

w2 when attaching one link to a univalent vertex

w3 + w1 when attaching two links to a univalent vertex

2w1 when attaching three links to a univalent vertex

w3 + w1 − w2 when attaching one link to a bivalent vertex

2w1 − w2 when attaching two links to a bivalent vertex

w1 − w3 when attaching one link to a trivalent vertex

(4.11)

In particular, the increment is always positive whenever we attach new links to an
existing univalent vertex. Let us introduce the ratios

y ≡ w2

w1
, z ≡ w3

w1
(4.12)
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Fig. 16: The four regimes (i-iv) for the determination of the mass distri-
bution exponent βm in the (y = w2/w1, z = w3/w1) plane. The exponent
βm is plotted here for the particular choice of T 0

m indicated in the upper
right corner. We may always write βm = −1 + (n1w1 + n2w2 + n3w3)/Σ
provided we choose for ni the number of i-valent vertices of the appropri-
ate tree, namely: (i) the initial tree T 0

m, or (ii) a tree obtained from T 0
m by

changing its bivalent vertices into trivalent ones, or (iii) the tree obtained
from T 0

m by changing its trivalent vertices into tetravalent ones, or (iv) the
tree obtained form T 0

m by changing both its bi- and trivalent vertices into
tetravalent ones. These trees are displayed on the right.

For z < 1 and y < z + 1 (regime (i)), all increments above are positive. The minimum
is therefore attained for the initial configuration T = T 0

m, with ni(T ) = nm
i the initial

numbers of i-valent vertices in T 0
m. For z < 1 and y > z + 1 (regime (ii)), the quantity

r(T ) is minimized by adding exactly one link to all bivalent vertices of T 0
m, thus changing

them into trivalent ones. The resulting tree T now has n1(T ) = nm
1 + nm

2 , n2(T ) = 0
and n3(T ) = nm

2 + nm
3 . For z > 1, it becomes favorable to add one link to all trivalent
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vertices, thus changing them all into tetravalent vertices. As for bivalent vertices, either
y < 2 (and in particular y < z +1) and we leave these vertices unchanged (regime (iii)),
resulting in a tree with n1(T ) = nm

1 + nm
3 , n2(T ) = nm

2 and n3(T ) = 0, or y > 2 and
we must change these bivalent vertices into tetravalent ones (regime (iv)), resulting in
a tree with n1(T ) = nm

1 + 2nm
2 + nm

3 , n2(T ) = n3(T ) = 0. This allows us to write

(i) βm =
nm

1 w1 + nm
2 w2 + nm

3 w3

Σ
− 1 for z < 1, y < z + 1

(ii) βm =
(nm

1 + nm
2 )w1 + (nm

2 + nm
3 )w3

Σ
− 1 for z < 1, y > z + 1

(iii) βm =
(nm

1 + nm
3 )w1 + nm

2 w2

Σ
− 1 for z > 1, y < 2

(iv) βm =
(nm

1 + 2nm
2 + nm

3 )w1

Σ
− 1 for z > 1, y > 2

(4.13)

These formulae also hold whenever T 0
m is empty by setting nm

1 = nm
2 = 0 and nm

3 = 1.
These results are summarized in figure 16 where the different regimes are displayed.
We have also performed a number of numerical checks identical to those presented in
section 3 and which fully corroborate the above results.

5. Conclusion

In this paper, we have derived the exact expression of exponents characterizing the
mass distribution of trees growing locally by addition of links. As opposed to generic
random trees whose statistics is governed by local Boltzmann weights, the mass of large
growing trees is not in general concentrated in a single side of the root but can be
distributed in all subtrees. The mass can be preferentially concentrated in one subtree
(negative mass distribution exponent), it can be preferentially equally distributed over
all subtrees (positive exponent) or it can be characterized by a uniform distribution
(vanishing exponent). In practice, the precise value of the mass distribution exponent
depends both on the growth process parameters wi and on the initial condition T 0. In
particular, in the case of binary trees grown from a single edge, the exponent βL increases
with x up to the transition point x = 2 and then decreases down to 0 at x → ∞. This
shows that a monotonous variation of the relative strength that we attach to the two
types of vertices (univalent or bivalent) does not induce a monotonous variation of the
characteristics of the tree.

We have observed that, except for special values of x where the model is exactly
solvable, the mass distribution is not in general a Beta law and we may wonder whether
an explicit analytic expression could be found. In this respect, a promising direction of
investigation is provided by the approach of the problem via continuous time branching
processes [8-10]. Indeed, within this framework, it is possible to relate the mass distri-
bution to other asymptotic large time distributions which are themeselves determined
by coupled integral equations. Solving these equations analytically would be a major
advance in this field.

27



For more general tree valences, an interesting outcome of our study is the exis-
tence of different regimes for the value of the mass distribution exponents. This seems
to indicate the existence of a competition between various coexisting effective growth
mechanisms. Whether the transitions between these regimes are characterized or not
by the emergence of some order parameter remains to be understood.
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