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Abstract

We are concerned with an integral method applied to the solution of the Helmholtz equation
where the linear system is solved using an iterative method. We need to perform matrix-vector
products whose time and memory requirements are increasing as a function of the wave number k.
A lot of methods have been developed in order to speed up the matrix-vector product calculation
or to reduce the size of the system. Microlocal discretization methods enable one to consider new
systems with reduced size. Another method, the fast multipole method, is one of the most efficient
and robust methods used to speed up the calculation of matrix-vector products. In this paper, a
coupling of these two recent methods is presented. It enables one to reduce the CPU time very
efficiently for large wave numbers. Satisfactory numerical tests are also presented to confirm the
theoretical study within a new integral formulation. Results are obtained for a sphere with a size
of 26\ by a resolution based on a mesh with an average edge length about 2\ where )\ is the
wavelength.
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1 Introduction

A numerical solution of the boundary integral equation for the exterior Helmholtz problem in three
dimensions, leads to the solution of a dense linear system. In order to have a well conditioned system,
we consider new integral equations writen by B. Després. B. Després ([16], [31], see also [5] and [30])
wrote new integral equations with good properties that enable one to use an iterative solution based on
the conjugate gradient. In order to accelerate the iterative solution of the system, we have considered a
coupling of two methods, the microlocal discretization method and the fast multipole method (FMM).

With particular conditions, the microlocal discretization method, according to T. Abboud, J.-C.
Nédélec and B. Zhou, consists in approximating the phase of the unknown using the geometrical
optics method. Consequently, the oscillation of the new unknown is reduced. We can then consider a
numerical approximation with a number of degrees of freedom Ny clearly less according to the wave
number k. Indeed, in the classical case we have Ny ~ k2, while Ny ~ k2/3 after approximation of
the phase. Nevertheless, the discretization of the geometry implies to consider O(N) elements, with
N ~ k2, on the surface of the obstacle. Then, the calculation of the matrix of the system also needs
O(N?) operations with N ~ k2, as in the classical case. Thus, the authors of the method suggested the
use of the theory of the stationary phase in order to accelerate the calculation of the matrix (|2]-[19]).
However, this theory does not enable one to have a good estimate of the CPU time needed for a good



accuracy, and the extension to the 3-D case implies difficulties not yet solved. A. de la Bourdonnaye
has also given another version of the microlocal discretization method ([15], [14]), making also use of
the stationary phase theory.

The FMM is based on another idea. The issue is to factorize the product A.Y and to cluster
advisedly the terms in order to reduce both resolution time and memory requirement. From the
geometrical point of view, the calculus of far interactions is well speeded up by clustering the elements
of the mesh properly. The one-level FMM (respectively multilevel FMM) results in an algorithm of
complexity O(N3/2) (respectively O(N In? N')) where N ~ 2. This method introduced for the Laplace
equation by L. Greengard and V. Rokhlin ([17], [18]) was extended for the Helmholtz and Maxwell
equations by V. Rokhlin ([25], [26]), W.C. Chew and co-authors ([33], [27], [7], [29], [28], [20]), E.
Darve ([11], [12], [13]), and other authors ([8], [24]).

The object of this paper is to give a coupling of the microlocal discretization method according to
T. Abboud, J.-C. Nédélec and B. Zhou, and the one-level FMM. The ideas of this work have briefly
been presented for conferences ([9], [10]). Using the approximation of the phase of the unknown, the
microlocal discretization method enables one to consider a numerical approximation with a number of
degrees of freedom of order x%/3 instead of k2 in the classical case. The size of the system is then of
order k%/3 x k2/3. Nevertheless, due to geometrical approximations, the matrix calculation still requires
O(k? x k%) operations. In this paper we suggest using the one-level FMM in order to speed up the
matrix calculation instead of the theory of the stationary phase. This is a different use of the FMM
since in our method the matrix of the system is calculated once and stored, and the FMM is used
to accelerate its calculation. Thus, the matrix calculation is performed due to an algorithm with the
complexity x> instead of xk*. We also did a theoretical study of the use of a multilevel FMM. This
should enable one to obtain a matrix calculation with the complexity x8/3. This idea will be the topic
of a next paper.

First of all we give a presentation of the new integral equations and the classical solution of this
system. Next, we present the microlocal discretization method and the FMM in order to give a com-
prehensive theoretical study of our coupling of both methods. Finally, numerical tests are considered
to confirm the theoretical study. The scattering of the unit sphere is studied for large frequencies (up
to a size of 26 and an area of 2100\? for the sphere, with a coarse mesh whose average edge length
is 2\ where X is the wavelength).

General notations:

1 V-1

A wavelength

K wave number k = 27/

Jm  spherical Bessel function

Ym  spherical Neumann function

h%) spherical Hankel function of the first kind h%) = Jm + Wm
P, Legendre polynomial

S?  unit sphere 2 = {5 € R3/|3| = 1}



2 New Integral Equations for the 3-D Helmholtz Problem

2.1 Formulation of the new integral equations

B. Després wrote a new system of integral equations for the 3-D Maxwell equation and the 2-D
Helmholtz equation. This system derives from the minimization of a quadratic functional. Classical
systems do not have good matrix properties and are not suitable for an efficient iterative resolution.
On the other hand, the considered IE (new integral equations according to B. Després) lead to a new
system whose matrix properties enable one to use an efficient iterative resolution based on the conju-
gate gradient, without the use of preconditioning. Thus, in this paper, we study the coupling of the
microlocal discretization and the fast multipole method for the solution of this IE system. However,
this coupling could be considered in the same way for more classical integral systems. N. Bartoli and
F. Collino rewrote the IE for the 2-D Helmholtz equation in a more comprehensible way (see [5]). In
this section, we establish the IE for the 3-D Helmholtz equation in the similar way as N. Bartoli and
F. Collino.

We first consider the Helmholtz equation with a particular impedance boundary condition

Au+r*u=0 , in Q|

0

_u/l’—}'ZKU/P:g, OI].P, (1)
on

lim T(a—u—mu> =0,
r—+oo  \ Or

where Q is a regular bounded domain of R?, of boundary I', and Qt = R*\Q~ (Fig. 1). ¢ is given as
a function of the incident wave. The unit normal n is directed to the exterior domain.

Q+

Figure 1: the obstacle

A first equation is obtained, considering that the solution of
Au+kKu =0, in QF |
rgrfoor (% — mu) =0,

is given by

ou .
ku = M(kup) — L(% /) in QF . (2)



L and M are the single and double-layer potential defined for all £ not in T by

oG
Lp(z) =& g G(z,y)p(y)dy(y) and Me(z) = - on, (z,y) o(y) dy(y)
y

‘ gnle—y

u
With the notations ¢ = kur and p = o /T we have the following relations
n

!
I
_K+- S P 0
2
where the operators S, K, K’ and D are defined for all z in T' by

2
Spla) = [ Gle.w)p)drty) . Do(e) = 1 [ G =) a0 dr(0)
Ko@) = [ Cwpawmanty) . K@) = [ 2 (@) p)drty) -
r Y T T

The singularity of D will be treated by the following formula

< Dot > [ [ 6@l #a) 7@ e m)
~ curleg(y) - curlrd (2) 1dv(y) dr(e) -

Considering the kernel expression, two other relations can be derived from the system (3). The kernel

G(z,y) can be split into real and imaginery parts

cos(klz — yl)
Gr(z,y) = ﬁa

G(H}',y) = Gr(x,y) + 'LGZ(iL',’y) ; with SiI’l(I‘E|.’E _ y|)

G, =
Following this decomposition, the operators read

S=5+1S , K=K,+1K; , K'=K,+1K] , D=D,+1D;

where Sy, K,, K|, D,, S;, K;, K| and D; are real operators.

We now introduce a new couple of unknowns on the boundary, p = 1g and A = 4p. Thus, the system (3)

becomes

SHEIHNEHE

(5)



where

I
D -K! — = . _K!
K= T2 andM:[l;z,. SKz]
—Kr + 5 Sy S
that implies, multiplying by 2
[ q
K[A]_M[p]. (6)
S, and D, are symmetrical, K is related to its adjoint K* through the relation
« |0 =T ]
K—K—[I O]_H. (7)

Up to now, the boundary condition has not been used. It implies the two equivalent relations

p+tpu=g,
“A+qg=—g.
Let g = [ —;g ], we obtain
q pl _ .
1] nlt] -5
Hence, considering the relations (8), (7) and (6), we obtain the following system
q q | B ~
+ M - K =g . 9
2o fh] - ®

We will now proceed to the derivation of the matrix M from the far field operator in order to deduce
some of its properties. Let us consider the operator defined for all p,q in L?(T") and 3 in S? by

A K — 5 A
(4= [ 2]) 0= 5= [ 000 +16m)a)ar) (10)
p T Jr
Its adjoint is given for all ¢ in L?(S?) by
_—H/ 1(8.my) "3 p(3)d5
47[' S2 Y
(A%p) (v) = : (11)
i 1KY.5 (oY da
pp 526 ©(8)ds
where .d§ denotes the integral around the unit sphere S?. Next, using the relation

S2

Sin(’ﬂx_y') _ kK / w(z—y).5 72
sy @)t ®

5



we can easily check that
M = A% A, (12)

ie. Vp,qe L*T)

RNHES PRI RE

Considering the relations (5) and (9), we obtain the following system

{X+A;OAOOX—K*Y:g, (14)

KX + A% A =0,

where X = [ Z ] and Y =1 X = l;\ . The theory of the inf-sup condition enables one to check the

existence and the unicity of X and the existence of Y. In order to gain the unicity of Y, B. Després
suggested the following modification (see [5]), i.e. adding

BX = —1BY  to the first equation

and fBY =16X to the second one, (15)
given that § is a strictly positive parameter. We then obtain the $-system

(Id+pB)X + AL A X — K'Y =g —18Y (16)

KX+ (B+ A Ax)Y =48X .

Hence, the coercivity condition satisfied, the -system has a unique solution (X,Y’).

Now, consider a general impedance condition, the Robin condition

%/p-i-mZU/p:f onT' |,

where the impedance operator Z has a positive real part. The Dirichlet condition can be considered
when Z — +o00. Let R be the associated reflection operator

Id-Z

R Id+ 7~

This condition is written in the form

ou
%/F+mu/p =g onl |
with g expressed as follows 5
u
9= R(=50 m+uwur) + (1+ B)f .



Thus, we can still have the system (16) with

()L L)

| A+ R)f B 1 o
Let F = [ (1+R)f ] and Np =R [ . 1 ], the system (16) is written
(Id+ B)X + A AwX — K*Y = NgX + F — 1Y, )
KX + (84 A% Ax)Y =18X .
ie.
X X F
sy =m0 ] &
where
| (Id+p)+ AL Ax -K* | Np —1p8Id
Ms = [ K B4+ At Ay | B Rrs=] 514 ¢ (19)

Due to the condition | R |< 1, the inf-sup condition is also satisfied in order to ensure existence and
unicity of the solution.
We will now consider a finite element discretization of the system (17). Let I'j, be an approximation
of the surface I', obtained by a triangulation 7. Let V}, = Vect{y; ; i =1, N} with ¢;, 1 € {1,..., N}
the P; basis functions associated to 7j, and N the number of nodes of the finite element mesh I',
N ~ k?
p; € P1 and (pi(NOdj) = (Sz'j

where Nod; denotes the jth node of the finite element mesh.

Let 9; = [ (’f)z ] and YN = [ 2 , for all 4 in {1,..., N}.
Z -
After using the variational formulation, we obtain the following discrete system
[ Xn ] _ Xh Fy,
MB_Y}L:|_RR”B|:Yh:|+|:O:| ) (20)
where Mg and Rp g are given by
| Dg+A K . Nr —1Bg
Mg = [ K Bg-l—.A] and Rprpg = [ \Bg 0 , (21)
with Bg, Dg, K, K*, A, Ng the matrices 2N x 2N and Fj, the vector of size 2N defined by
(Fn)j = <Fh>v, , (Bg)ji = < PBvij >v, ,
(Dp)ji = <1+ Bty >v, , Wr)ji = < Nri,vj >v, ,
(22)
(}C)]z = < K¢za¢] >Vh 3 (}C*)JZ = < K*¢z’¢] >Vh 3

(Aji = <Axti,Acctj >12(s2) > or (Aji = <My, 9 >v, ,



where V;, = V;, x Vj. The discrete inf-sup condition also confirms the existence and unicity of the
solution. The finite element structure ensures that the discrete solution converges to the solution to
the continuous system (18).

2.2 Solution of the linear system
In order to solve the system (20), we suggest using the relaxed Jacobi method according to the

(0)
following definition. Let a be the relaxation parameter. Let ;(’(‘0) ] be such that Yh(o) = zX’(LO).
h

(n)
We define ([ X’(‘n) ]) according to the relation
Yh n>1
(n) (n) (n—1)
X X
v [ =] Gl | T {Y%A)]’
h h h
v (n)
where | . {Ln) is the solution of
h
Dy+A -k V[ X | _[Ne =B | [ X0V ], [ Fa 23)
K Bg+A v | T LBs 0 VAR 0
Let
V] _ [Ne —Bg] [ xY [ Fn
W | | Bgs 0 Yh(n—l) 0

The ntt iteration of the solution boils down to the solution of the following system for [ ‘;( ]

D+ AX -KY =V (24)
KX+ (Bg+AY =W ~
ie.
X =(Dsg+ A) "1V +K*Y) (25)
K(Dsg+ A~V +K(Dsg+ A)7KY +(Bg + AY =W
Thus, the point at stake is to solve the following equation for YV
(K(Dg+A) 'K* +Bg+ A)Y =W —K(Dsg+A) 'V . (26)

This solution is based on the use of the conjugate gradient method
1/ Calculation of Z =W — K(Dg + A)~'V
«) Solution of (Dg +A)Z =V according to the conjugate gradient method with the matrix (Dg+A).
B)Z=W—-KZ



2/ Solution of (K(Dg + A)~'K* + Bg + A)Y = Z using a conjugate gradient method with the
matrix (K(Dg+.A)"1K* +Bg+.A). In this way, we have to perform products of the form (Ds+.4)~1X
where X is a given vector. This kind of products is described in 1/ ).

As far as the convergence of the conjugate gradient method is concerned, we can easily check that
the matrices (Dg +.A) and (K(Dg +A)~'K* + Bs + A) are Hermitian positive definite. The conver-
gence of the relaxed Jacobi method is ensured on the assumption that | R |[< 1. Due to the integral
operators K, K* and A, the calculation of the matrices K, K* and A implies a calculus cost of
order O(N?). Regarding K and K*, the calculation consists in performing the following expressions,
Vi,j €41,..,N}

1° < Sgi, p; >vh=/~c/F g G(z,y) vi(y) @;(x) dy(y) dy(z) ,
h h

2° < Kyi,pj >y, = / a (z,y) pi(y) ¢j(z) dy(y) dy(z) ,
Fh Fh ny

3 < K'gi,pj >y, = (z,y) @i (y) ¢;(z) dy(y) dy(z) ,
8
Fh Fh ’n’.’.U

e

w JT5 OngOny (z,) pily) ¢ () dy(y) dv(z) .

1
4° < Dy, pj >y, = —/
Kk Jr
The 4t term is performed according to the following formula ([23])

<Dogs>v=r [ [ Gl e @ nen)
— curly, i(y) - curly, 9;(z) 1dy(y) dy(z) -

Singularities for x = y are treated according to a change of variables in the close interactions. As
regards A, the calculation is performed using the relation (A)ji =< Accti, Acotj >12(s2)-

Such a resolution has a complexity of order @(N?) due to the products matrix-vector with the
matrices K, K* and A. The next sections will then deal with speeding up the solution of the system
(20).

3 Reduction of the Size of the System: Microlocal Discretization

In this section, we give a short presentation of the microlocal discretization method introduced by
T. Abboud, J.-C. Nédélec and B. Zhou ([1], [2], [34]), assuming the following conditions to be met

e () is a bounded open conver domain in R3,

e 4" is an incident plane wave.

Let ¢ = uyr be the potential on the boundary I'. Let I', be a piecewise I-degree polynomial
boundary. We denote by 7}, the orthogonal projection from I'j, to I', which is a bijection if h is small



enough, where h denotes the greatest diameter of the elements of I'y,. Consider ¢ the unknown of the
P,,, finite element discrete problem based on I'y, we then obtain the following estimates

| 'q — mn(an) las)
| g llzsry

<C  (hw)™tL| (28)

where s = 0 in the Dirichlet case and s = 1/2 in the Neumann case. These estimates involve the
choice h ~ k~!. The method considered in this section permits to obtain new estimates using an
approximation of the phase function of the unknown. It stems from the coupling of finite element
methods and asymptotic methods. It involves concepts of asymptotic expansions of the amplitude and
the phase functions introduced by the geometrical theory of diffraction and the uniformed theory of
diffraction based on ray methods (see e.g. the book [6] by D. Bouche and F. Molinet). The unknown
writes ¢ = Qe*® when Q is the amplitude and ¢ the phase function. An asymptotic behaviour of the
phase function is given by ¢ = K¢y —|—~(’)(f<;1/ 3) ([21], [32], [4]). An approximation of the phase function
at the first degree is then given by ¢ = k¢y. When the obstacle is convex and the incident wave is
plane, i.e. u™¢(z) = e*&% ¢y is defined by ¢o(z) = £&.2. Denoting by § the new unknown such that

g = qe"? § = Qe’? %) new error estimates are given as follows

| g~ 7r(an) |2

— <C [B™ + B+ (he!/3)™H 4 kbl ]
| g ||L2(r)

in Dirichlet case,

(he/3Ym+l 1 G3/2pl(kh 4 1) ]

1 G — mn(@n) |z <c|

G || /2y
in Neumann and Robin cases.

The error associated to the boundary approximation consists of the A terms. On the other hand, the
h™ terms come from the finite element discretization. Thus, thanks to the term hx!/3, a new mesh
can be considered with h ~ £~1/3, but due to the terms xh! and k3/2h!(kh + 1), we should consider a
boundary approximation of degree [ > 3 in Dirichlet case and [ > 7 in Neumann and Robin cases. Such
a consideration is very difficult to achieve numerically. Thus, T. Abboud, J.-C. Nédélec and B. Zhou
proposed a new P, finite element method based on a coarse mesh I'; to define the unknown and a fine
mesh I'y to approximate the boundary I'. h. and hy will denote respectively the greatest diameter of
the elements of I'c and of I'y. The unknown is defined on T'; and the integrals are performed on the
fine mesh I'y. New error estimates are given by the following formulae

| g — 7n(gn) Iz
(CRIFERS

D<o [ hp + b7+ (hest/BymH 4+ bR ]

in Dirichlet case,
G = ma(@n) [l g1z

n <C |:I<&1/2h:;n+1/2 4 RV2RE 4 (hoit/3)mHL 4 (B L2 4 k320 (shy + 1)]
g [y d d d
in Neumann and Robin cases.

(30)

I'; is associated to the discretization of the unknown with the h7* terms. The hlf terms confirm the
contribution of I'y to the boundary discretization. These new error estimates imply the following

10



choices
he ~ kY3 hp~K! (31)

In the Dirichlet case, we merely need a geometrical approximation with / = 1. In both Neumann and
Robin cases, [ > 3/2 (then [ > 2) is a theoretical necessary condition, but the numerical tests show
that the case [ =1 is quite relevant.

Now, we have to introduce notations about the meshes. The unknown is defined from the coarse
mesh T';, with a number of nodes N, of order x%/3. T s denotes the fine mesh used to approach the
surface of the obstacle, with a number of nodes Ny of order k2. Actually, T ¢ will be obtained from
I'; as follows. We first consider I'. a given mesh. Let I‘;” be the plane refinement of I'c. Then, 'y
is obtained from F;’r by projection on the surface I' of the obstacle. Due to these considerations, we
subsequently denote by 7 the orthogonal projection from the plane triangles of I'c to the ones of I';.
7 is such that 'y = W(PJT”). We also define I'; the projection of I'c on I'y by 7. The elements of I}

follows the surface as I'y does, but are not plane elements.

oneelement T,” of ¢

elements Ty, of 't

oneelement T, of I'¢
elementsof ;™

Figure 2: coarse mesh and fine mesh

In our case, we consider a new P; finite element discretization based on I'). The new discrete space is
then defined by

Va(T3) = {@n/ @ = dont, §lr,€ P1(Ty)}

where (T7); describes the elements of I'.. To simplify the notations, the subscript & denotes h,.

Let ; = [ ('g’ ], PirN,) = [ O. ], for all ¢ in {1,...,N.}, where ¢;, 7 € 1,..,N., is the basis

7

function associated to the it! node of the mesh I',. Let ilfh = ‘th X I7h.
2N,

The unknown is then given by g, = gpe”? = Z Gib; and (@i)i=1,..2n, is the new discrete unknown,
i=1

11



with {[, = (o) e“‘”“"’o~ . 1; is defined on T'; and evaluated only for points from the plane triangles
of I'c, but the functions 1); and ¢o are evaluated for quadrature points of the mesh I'}.

Hence, in our case defined in the previous section, the new system has a size of order N x N.. Using
1; like test functions, it can be written like (20)

D/j + .A —K* Xh _ NR —’LBﬂ Xh + Fh (32)
K Bg+ A Y, 1Bg 0 Y, 0 ’
with the new definitions
(Fn)j = <FEyj>3 = <Fjor e >y (33)
(Bglji = <PByithy >y, = <Biom e, (dhjomt)er® >q
and defined in the same way
(Dg)ji = < Q+B)%i; >, (Nr)ji = < Nrthi,9; >,
(K)ji = <Ky >, (KN = <K'ty >q, (34)
Ajp = < Aoo’(Zz',Aoon >12(82)
For example, the duality < S¢;,¢; >v, (27) becomes
<SFu >g,= [ [ G ao) @ h) dre)
— 5[ [ 6w s FE@ dw ) |
Ly /Ty
(35)

D SD VRN DD S

k/Tgn supp(p;)#@ ko 1/TPN supp(p;)#@ lo

/ G(x,y) pi(r " ())e" W) o (n1(z))edo@ dy(y) dy(z)
Te kg Y Tiig

where we denote by {7}, }, the set of triangles of 'y that make up T} (see Fig. 2).
The new system (32) has the same properties as the previous one (20) due to the particular choice
of the test functions. Thus, we select the same resolution, given in subsection 2.2.

Hence, we obtain a problem whose size is of order x*3 instead of k*. Thus, the memory cost is
much less but, due to the performing of the matrices with respect to the consideration of the fine
mesh I'y, the matrices calculation still requires O(k*) operations. To reduce the cost, the authors T.
Abboud, J.-C. Nédélec and B. Zhou, suggested using the theory of the stationary phase ([19]). However
the numerical approach of this theory is very complicated and implies difficulties not yet solved in 3-D.
In the next section we then present a study of the FMM in order to speed up the calculation of the
matrices (see Section 5) without the theory of the stationary phase.

12



4 Acceleration of the Calculation: The One-Level Fast Multipole
Method

The fast multipole method is a robust method that speeds up the calculation of the matrix-vector
products of the iterative solution. We briefly present the one-level fast multipole method. For further
information, we refer the reader to recent articles written by Darve for the multilevel FMM ([11], [12],
[13]) and to previous articles ([8] or [27]).

The method is based on two developments. Through groups of elements, an uncoupling between
two points is established using the Gegenbauer series and an integral around the unit sphere S?. The
obstacle is included inside a cube. Subdividing recursively the cube as an oct-tree, we obtain the
groups of elements considering the boxes of the finest level.

... G G
‘Xl‘\rl O,

O Fo &Xz‘

Figure 3: interaction between z; and zo

Let z1, zo € T'y. Let O1, Oy be the centers of the two boxes Cy and C3 including z; and zo (Fig. 3).
Then, 1 — 9 = o+ where rg = O; — O2, 7 = 11 — 19 and r; = z; — O;. With |rg| > |r| the expansion
of the Green function used by the multipole method is given by this formula (see [3])

em\w1—$2| N K Z 1K< Sp,T1> T ( ) —1K<Sp,r2>
L (36)
with Trro(s) = D (2m + 1) hiz) (slro|) Pm(cos(s, o)) -
m=0

The integer L is the truncation parameter of the Gegenbauer series and P the number of discrete
directions {s,, p = 1,.., P} corresponding to a numerical quadrature on the unit sphere S?. The
quadrature generally considered consists of a trapezoidal quadrature in the ¢ direction and a Gauss-
Legendre quadrature in the cos direction where (p, 6, ¢) is the spherical coordinate system ([12], [20],
[24]). Recent studies of Chew [20] validate the following empirical formula for L, for relatively large
values of kd:

L =rkd+ C(rd)'/? (37)

where d is the diameter of the multipole boxes and C depends only on the desired accuracy. Next, P
is given as follows

P=(L+1)(2L+1). (38)
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We suggest the application of the one-level FMM to speed up the matrix-vector products whose matrix
is, respectively, K, K* and A, defined for the IE system in Section 2. New integral kernels and
developments are considered here (see [22]). We have the following multipole approximation for the
singular integral kernel of the IE system, when the matrix is K or K£* (see [3], p. 440)

P

cos(k|z1 — z2]) P _
~ 47T pr 1< Sp,T1> T (Sp) e~ <spr2>

47‘("(171—.732| = (

L (39)
with TF, (s) = ) (2m + 1)¢™ ym(klro|) Pm(cos(s, ro)) -
m=0
The normal derivative of the integral kernel has the following approximation, for j = 1,2
_ 1)7
COS(lﬁI'IEl IE2|) ’Hﬂ pr < Spy T CC]) > 6m<sl,,7"1> TIS?,TO (Sp) e—m<sp,r2> . (40)

i 47T|.’171 — .’L'2|

After derivation, P must be a little greater than previously, as J. Rahola showed in [24]. As well as
the classical case, the previous approximations are available for far interactions (condition |rg| > |r]).

We will now study the case of the matrix A, with the regular integral kernel of the IE system. We
then consider the relation (A)j; =< Mu;,1; >v,. Due to the regularity of the integral kernel, the
approximation can be written for all 1, z9. Thus, the far and close interactions are approximated in
the same way

sin(k|r — z2|)

K
(47T)2 pr em<sp,rl> TETO(SP) e—m<sp,r2>

Am|z1 — 39|
I (41)
with T3, (s) = Y (2m + 1)t™ jm(sro|) Prm(cos(s, o)) -
m=0
The normal derivative of the integral kernel has the following approximation, for j = 1,2
sin(k|z1 — 72|) _ (—1)7+1en? <sp,r1> —1<8p,r2>
" 4|z — 29| - (47)2 Pz_:lwp < sp,m(zj) > e T\s,ro( sp) €SI (42)
sin(k|z1 — z2|) oS R
8n18n2 47T|.7)1 — -TZ‘ ~ ( 2 pr < Sp;s M (371) >< Sp, T (372) > (43)

p=1
1K<Sp,r1> T —IK<8p,T2>
eI TP (sp) e P22

We give for example the algorithm of the fast product MY for a given vector Y and with the matrix
M defined by

V’i,jE{l,---,N}, MZ]:a_ZaJ GT‘(K”|$Z'_:E].|)’ Qg OéjE(C,
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The matrix stands for a discretization of (27-1°). We apply the one-level FMM using the relation (39).
Let Nymm be the number of FMM boxes. Due to the condition |rg| > |r|, we consider the close part
and the far part of the matrix, for z; in a FMM box C and z; in a FMM box C

0 if C close to C

(Mfar)ij _ e M;; if C close to C
M;; if C far from C

o~ , (44)
0 if C far from C

, (Mclose)ij — {

where “C close to C” means that the cubes C and C have at least one common vertex. The multipole
approximation is given by the following relation, for all 4 in {1,..., N}, z; in a box C

(4w Lrce

P
(Mf‘”"Y)i =V, = _’;2 A pr eM<sp.Ti> Z Tﬂ? (Sp) Z e W<sp,Ti> aj Y] . (45)
p=1 C far from ¢ j/z;€C

Thus, the algorithm of the calculation of the matrix-vector product Mf¥Y | using the one-level FMM,
consists of four steps (Fig. 4)
Step 1: Tansfer functions: Translation between two boxes TEOC_Oé(sp) defined in (39),

¥(Oc — Og), with C and C two far FMM boxes, Vp € {1, .., P}.
Step 2: Radiation functions: VC' FMM box, Vp € {1,..,P}

Folsp) = ) em<w0e™ o, Y.
j/$j€6
Step 8: Transfer from C to C: YC FMM box, Vp € {1,., P}
Gelsp) = Z Tgfocfoé(sp) Fé(sp) .
C far from C
Step 4: Integration on $2: Vi € {1,...,N}, z; € C FMM box
P
—K

Wi = o B D NP0 Golsy)
p=1

The other discrete calculations of the products with the matrices K and K* are performed in the same
way, using the relations (39) and (40). We mean also to calculate products with A in the same way,
using the relations (41), (42) and (43). Moreover, this matrix enables us to perform close interactions
as well as far ones.

Choosing a number of FMM boxes Ny ~ N /2 we obtain an algorithm with the complexity
O(N3/?), ie. OK?) ([8]).

15



Figure 4: far interactions

5 Coupling: Microlocal Discretization and Fast Multipole Method

The coupling is based on the reduction of the size of the system using the approximation of the
phase function, and the acceleration of the matrix calculation using the one-level FMM. The one-level
FMM is considered instead of the theory of the stationary phase. The matrix-vector product is then
performed in a classical way. Due to the approximation of the phase function, we have to consider
the coarse mesh (introduced in Section 3). The unknown is defined on the coarse mesh and, in order
to have a good geometrical approximation of I', we resort to the fine mesh which is used in classical
methods. For the multipole method, the elements of the fine mesh are grouped in boxes (Fig. 5).

RN Elementsof I ISR
I/T - »
P oy of one element of & /.
A \ in FMM boxes
JAYASAYAVAV NAYAVAVANAN \ D

Figure 5: meshes and FMM boxes

Then, we consider the approximation of the phase function given by the microlocal discretization.
Using notations of Section 3, we consider the same system (32)-(33)-(34).

D/j +.A —K* Xh _ NR —’LB/j Xh + Fh (46)
K Bg+ A Y}, 1Bg 0 Y}, 0 ’
with the definitions
(Fh)j =< F, "Zj >§h=< F, (’lﬁj o 71'_1)6m¢0 >§7h , (47)
(Bg)ji =< Bei,j >, =< B0 m 1), (j0m 1)e 0 >g (48)
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in the same way

(Dg)ji =< (1+ B)%i, ¥; >3, WR)ji=< Npti, >F, (49)
(A)ji =< Mg, 9 >5, - (51)

The matrices Bg, Dg and N are performed in a classical way with O(INy) operations. In order to speed
up the calculation of the matrices K, £* and A, we use the one-level FMM instead of the stationary
phase, as described below. We recall that {T} k,}x, is the set of triangles of I'f that make up 7. Let
us consider the matrix M defined as follows, Vi,j € {1,...,N.} :

M= >, > D0 kg, @R ayyy @00 G (kg kg — Tl )

k/Tgn supp(p:)#@ /TN supp(p;)#2 Trry Tiig
with Ak kg, A1l € C.

The matrix stands for a discretization of (27-1°) with our new definitions (50). We apply the one-level
FMM separating the close part from the far part of the matrix, and using the relation (39). Thus, the
multipole approximation is given by

Vi,j € {1,.. N}

(Mé}%roz Z wp Z Z Z Wko em¢0 (:Ek ko) em<5p,7"k ko >

p=1 k/TEN supp(p;)#@ C/TENC#D ko/xk kg €C

(52)
R 16¢0(xT)] — K< Sp,T 1>
x ) Do Thrg(sn) Do au e?olm) emn i,
/TN supp(p;)#£2 C/TsnCo lo/z11,€C
C far from C

with L and P defined by (37) and (38). Hence, the algorithm of the calculation of the matrix M7e",
using the one-level FMM, consists of three steps:
Step 1: Tansfer functions: V(O¢ — Og), C far from C, Vp € {1,.., P}

L
To. 0. (sp) = 3 (2m + 1) y(k|Oc — Ogl) Pr(cos(sy, Oc — Op)) -
m=0

Step 2: New radiation functions: Vi € {1, .., N.}, Vk/T; Nsupp(p;) # @, VC FMM box such that
TENC #@,Vpedl,.,P}

Frco(sp) = Z Qf yy €00 (ko) R <00 =Thkg>
ko/wkkoec
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Step 3: Approximation of the matrix, Vi,j € {1,.., N}

Z Z Fic(sp)

p=1 k/T,jﬁ supp(y:)#@ C/TENC#2

> Yo TRou 0.(5) Fialsy)

LT supp(p;)#2 C/TsNC o
C far from C

(M(chg;row

Mw

Then, a matrix-vector product with the matrix M is approximated by the following calculation, Vi €
{1,.., N}
Ne
(MY)i =D (MP")i5 + (MU 00)ig) Yi
j=1
where M5 ig performed in a classical way.

The other discrete calculations of the matrices £ and K* are performed in the same way, using
the relations (39) and (40). The relations (41), (42) and (43) enable one to perform a multipole
approximation of the matrix A. Denoting by Ny, the number of FMM boxes, the new theoretical
complexity of the calculation cost is given for a product MY in the following table, where M is one
of the matrices X, £* and A

Independent of Y Dependent on Y
N? N
Miar ~8LNj+ —1— 4+ max(N%,__ N2)—1 ~ N2
! mem ( fmm ) mem c
N?
Mclose o ~ N2
N fmm ¢

N
The memory cost has the complexity O (max(N fmm»> Ne) N I 4 Nf)
fmm

Concerning the number of FMM boxes, the optimal choice is then Ny, ~ N}/ 2, Thus, the number
of FMM boxes, Ny, is greater than N.. Now, we can compare the different methods

Calculation Calculation
independent of Y dependent on Y Memory
Microlocal Discretization
without stationary phase ~ NJ% ~ N]%/ 3 ~ Ny
1/2 5/4 3/2 3/2 3/2
1 Level FMM (Nymm ~ N/%)  ~ NJ/* (or N}/?) ~ N}/ ~ Ny (or N}/?)
New Method (Njmm ~ Ny/%) ~ N} ~ N3 ~ N}
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With our new method, the calculation which is independent of Y corresponds to the matrix calculation
and is performed once. On the other hand, the calculation that is dependent on Y is performed to
each iteration. Let Niter be the number of iterations within the iterative solution of the system. The
global CPU time of our new method is then O(N;’/ >} Niter Nﬁ/ 3). With the one-level FMM, users
classically store the part of the matrix corresponding to the close iteractions that are performed once.
That implies the complexity given between brackets. However, in order to consider industrial test
cases, we do not store the close part of the matrix and we perform them to each iteration. Hence,
our one-level FMM has a CPU time of complexity (’)(N?/ * 4 Niter N?/ 2) and requires a storage of
complexity O(Ny). Anyway, our method appears really more efficient than the one-level FMM for all
Niter. Moreover, due to the difficulties of the theory of the stationary phase in 3-D, our new method
is more robust than the microlocal discretization with stationary phase and obviously more efficient
than the microlocal discretization without stationary phase.

6 Numerical Results

In order to validate the new method, four codes were written. The first one denoted by C(IE) solves
the IE system in a classical way as defined in Section 2. The second code, C(IE+FMM) is a variant
of the previous one, speeding up the matrix-vector products using the one-level FMM as explained in
Section 4. The third one, C(IE+MD) is an application of the microlocal discretization method to the
IE system, as explained in Section 3. The code C(IE+MD+FMM) is an application of the coupling of
both microlocal discretization and one-level FMM to the IE system which we achieved in Section 5.
As regards the IE system, the parameter  of the S-system (16) is chosen equal to 0.5. The relaxation
parameter of the relaxed Jacobi method is set equal to 0.7 (see Subsection 2.2). Concerning the FMM,
the number of terms in the Gegenbauer series defined by L = kd+ C/(kd)'/? (see Section 4) is evaluated
with C = 6 and d the diameter of the multipole boxes. Besides, we denote by JM the Jacobi method,
GC1 the conjugate gradient applied to the matrix (Dg + .A) (see Subsection 2.2) and GC2 the second
conjugate gradient. In this section, we also denote by N f, Nc and N fmm, the number of triangles
of I'y, the number of triangles of I'. and the number of FMM boxes. All the results are obtained on a
processor EV67 on a Compaq cluster ES40.

We present numerical tests for the unit sphere with a diameter D = 2 which make it possible to
compare numerical solutions with the exact solution, the Mie series solution. Comparisons are made
considering the bistatic RCS (Radar Cross Section). The results are obtained with the residual 104
and 1073 respectively for GC1 and GC2, and the difference 10~3 between two iterates of JM. With the
sphere, we consider a plane incident wave of direction (0,0, —1). Fig. 6 validates C(IE) and the FMM
contribution in C(IE4+FMM). Regarding CPU time and memory requirements, we can give the gain
which results from the FMM approximation. Concerning the accuracy, the following table shows the
good behaviour of the FMM. Err(AD) denotes the relative error in [?-average made on the diffusion
| Yo — 1 X [|2

amplitude in comparison with the Mie series solution. Let Y12X be the relative error A
h 112
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Bistatic RCS (dB.m2)

CPU time (min) | Memory | Y2X | Err(AD)
Fig. 6 a) C(IE) 15256 682 MB | 2.31073 | 0.610~*
C(IE+FMM) 6048 522 MB | 9.11073 | 1.310~*
Fig. 6 b) C(IE) 11311 682 MB | 3.810 3 | 0.410 3
C(IE+FMM) 546 521 MB | 891073 | 1.51073
Fig. 6 c) C(IE) 17701 682 MB | 3.110°3 | 0.510°3
C(IE+FMM) 8450 522 MB | 9.41073 | 0.61073
Sphere, D=2, k=8, Dirichlet case Sphere, D=2, k=8, case Z=1
Nf = 5120, Nfmm = 272 Nf = 5120, Nfmm = 272
20 T T T T
+I1E 20 +IE
x |[E+FMM

Bistatic RCS (dB.m2)

-10 o I I I I I -50

30 60 90 120 150 180 0 30 60 120 150 180
0 (deg)

%
6 (deg)
a) Dirichlet case b) Robin case

Sphere, D=2, k=8, case Z=0

Nf = 5120, Nfmm = 272
20 T T T

+I1E
x |E+FMM

Bistatic RCS (dB.m2)

. . . .
0 30 60 120 150 180

90
0 (deg)
c) Neumann case

Figure 6: C(IE) - C(IE+FMM), for k = 8
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In the same way, Fig. 7 validates the FMM contribution in C(IE+MD+FMM).

Sphere, D=2, k=8, Dirichlet case Sphere, D=2, k=8, case Z=1
Nf =5120, Nc = 80 (\/1.27), N frmm = 272 Nf = 5120, Nc = 80 (\/1.27), N fmm = 272
20 T T T T T T T T T T
+ IE+MD 20 + IE+MD
x |[E+FMM+MD x |[E+FMM+MD
Exact 10+ Exact
g 1wt g o
g g
@ @ -10
8] 8]
14 14
% % -20
@ or -
-30
* 40 F
-10 ‘ : : : : -50 ‘ : : : :
0 30 60 90 120 150 180 0 30 60 90 120 150 180
0 (deg) 6 (deg)
a) Dirichlet case b) Robin case

Figure 7: C(IE4+MD) - CIE+MD+FMM), for k = 8

We can also give the gain which results from the FMM approximation and the accuracy of the different
tests in the following table.

CPU time (min) | Memory | Y:X | Err(AD)

Fig. 7 a) C(IE+MD) 1613 12MB | 1.21072 | 1.51073
C(IE+MD+FMM) 183 37MB | 13102 | 15103

Fig. 7b) C(IE+MD) 1599 12MB | 251072 | 531072
C(IE+MD+FMM) 181 37MB | 26102 | 51102

Thus, thanks to the good behaviour of the FMM approximation, the contribution of the microlocal

discretization, i.e. the code C(IE+MD), is validated by the validation of the code C(IE+MD+FMM)
which follows.
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We now validate the code C(IE+MD-+FMM) considering frequencies higher and higher with the

sphere. The following figures (Fig. 8 and Fig. 9) show excellent results obtained for the Dirichlet
boundary condition.

Bistatic RCS (dB.m2)

Bistatic RCS (dB.m2)

Sphere, D=2, k=12, Dirichlet case

Nf = 11520, Nc = 180 (A/1.27), N fmm = 272
20 T T T T T

— —- |IE+FMM+MD
Exact

-10
0

30 60 120

%
0 (deg)
a) kK =12

180

Bistatic RCS (dB.m2)

Sphere, D=2, k=24, Dirichlet case
Nf = 46080, Nc = 720 (A\/1.27), N fmm = 1144

— —- |IE+FMM+MD
Exact

20

10 -

-10
0

30 60 90 120 150

6 (deg)
b) Kk =24

180

Figure 8: C(IE+MD+FMM), Dirichlet case

Sphere, D=2, k=84 (4 GHz), Dirichlet case
N f = 327680, Nc = 1280 (2% A), N fmm = 1160

——- IE+FMM+MD

30 F —— Exact

20

10

-10 I I I I I

180

Bistatic RCS (dB.m2)

Sphere, D=2, k=84 (4 GHz), Dirichlet case
N f = 327680, Nc = 1280 (2 x A), Nfmm = 1160

- |[E+FMM+MD

30 ' —— Exact

-10 .
140 170

9 (deg) (ZOOM)

Figure 9: C(IE4+MD-+FMM), Dirichlet case, 4 GHz
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The quite good accuracy is given in the table below

Fig. | k Ny | N.| Memory | Y«X | Err(AD)
8a) | 12| 11520 | 180 51 MB | 6.610°% | 1.210°3
8b) |24 | 46080 | 720 | 267 MB | 31073 11073

9 84 | 327680 | 1280 | 2263 MB | 1.41073 | 0.91073

Fig. 10 shows the results about CPU time and memory requirements with log-log curves.

CPU time (min)

CPU time (min)

Precalculation

1e+05

le+04 -

1e+03

le+02

le+01

1e+00

le-01

V—VIE
&--©IE+FMM

* —*IE + FMM + MD E

.
le+05

1e+03 1le+06
Nf(r/10)
a) Precalculation
Total time
1e+05 T
V—VIE
&--<IE+FMM
le+04 - * —*IE + FMM + MD 3
1e+03 E
1e+02 E
1le+01 E
1e+00 El
le-01 . L
1e+03 le+05 1le+06

le+04
Nf(A/10)
c) Total CPU time

Resolution time

1le+05 T
V—VIE
1e+04 L ©--OIE +FMM ]
* —*IE + FMM + MD
1e+03 El
c
£ 1e+02 E
(]
£ %
2 levol - E
o Vol
7
1e+00 ¢ Vs 3
e
//
le-01 ¢ Pl * E
_
=
1le-02 L L
1le+03 le+04 1le+05 1le+06
Nf(A/10)
b) Resolution
Memory requirements
1le+04 T
V—VIE
&--©IE+FMM
* —*I|E + FMM + MD
>
7
7
1e+03 i E
e
—_ 7
[=} 7
g Ve
> *
o e
= e
g 1le+02 El
le+01 E
. .
1le+03 le+04 1le+05 1le+06
NF()/10)

d) Memory cost

Figure 10: CPU time and memory requirements
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Fig. 10 really shows that our new method is very efficient. We apply the code C(IE+MD+FMM)
to the wave number x = 84 with the same requirements as the application of the code C(IE) to the
wave number k = 12. Considering a fine mesh with an average edge length about A/10, we can choose
a coarse mesh with an average edge length about A/C) where C\ decreases when s increases. The
case illustrated in Fig. 9 is really surprising with a coarse mesh where C, = 0.5, i.e. an average edge
length about 2 A\. The frequencies considered are not large enough to validate the behaviour N, ~ N 1/3

estimated by the theory. However, we can plot a first curve concerning N, as a function of Ny (see
Fig. 11).

Nc as a function of Nf

*k——% Nc(Nf)
— — - cube root

1000 -

Nc

100

.
10000 100000 1000000
Nf

Figure 11: N.(Ny)

We can already see that the behaviour of N, as a function of Ny, or as a function of the frequency,
is promising. We give now information about the numbers of iterations in the iterative resolution. In

the table, the numbers are given in the form a - b - ¢ that are the numbers of iterations respectively
of GC1, GC2 and JM.

K 8 12 24
IE 11-8-19|10-8-20
IE+FMM+MD | 10-9-16 | 11-9-15| 12-10- 13

The numbers of iterations do not increase with x and the new method does not damage the convergence
of the iterative methods. Moreover, for the code C(IE+MD-+FMM), when the wave number increases,
the number of iterations of JM decreases as well as the accuracy on || Y, — 21X}, ||2 given previously.
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Although results do not prove as good in both Neumann and Robin cases, probably because the
approximation of the surface is of degree [ = 1 (see error estimations), they are still quite relevant.
Fig. 12 and Fig. 13 give results for the Neumann boundary condition and the Robin boundary condition
with the impedance Z = 1.

Sphere, D=2, k=12, case Z=0 Sphere, D=2, k=60, case Z=0
Nf =11520, Nc = 180 (\/1.27), N fmm = 272 Nf = 327680, Nc = 1280 (1.6 * A), N fmm = 1160
20 T T T T T 30 T T T T T
——- |[E+FMM+MD ——~ |IE+FMM+MD

Exact

Exact
20

10 q

Bistatic RCS (dB.m2)
Bistatic RCS (dB.m2)

'
-10 t Vh‘ 4

}

I I 20 I I I I I
120 150 180 0 30 60 90 120 150 180

30 60

09€deg) 6 (deg)
a) kK =12 b) kK = 60

Figure 12: C(IE4+MD-+FMM), Neumann case, kK = 12 or 60

Sphere, D=2, k=12, case Z=1 Sphere, D=2, k=60, case Z=1
Nf =11520, Nc = 180 (A/1.27), N fmm = 272 Nf = 327680, Nc = 1280 (1.6 = A), N fram = 1160
20 F ——- |E+FMM+MD 80 1 |E+FMM+MD
— Exact — Exact
20 +
10 +
Q Q
E E ot
g g
w @ -10
O O
[14 [14
8 g 20 ¢
g g
@ @ -30
-40
-50
50 ‘ s s s 60 ‘ s ‘ s s
0 30 60 90 120 150 180 0 30 60 90 120 150 180
6 (deg) 6 (deg)
a) k =12 b) £ =60

Figure 13: C(IE+MD+FMM), Robin case, k = 12 or 60
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As regards memory requirements and CPU time, both Neumann and Robin cases are similar to Diri-
chlet one. For the Neumann case, the accuracy is given in the table below

Fig. | & N;| N.| YiX | Err(AD)
12a) | 12| 11520 | 180 | 22102 | 3.71073
12b) | 60 | 327680 | 1280 | 1.21072 | 2.81073

For the Robin case, results are given in Fig. 13 and the accuracy is given as follows

Fig. k Ny N.| YiX | Err(AD)
13a) [ 12| 11520 | 180 [ 1.4107%2 | 6.51072
13Db) | 60 | 327680 | 1280 | 1.81073 | 3.3107°

In this section, we have presented results such that the coarse mesh has an average edge length
about A\/Cy with C, becoming smaller and smaller for the same accuracy when r increases. Thus
the memory requirements and resolution time are less than the requirements of the other methods.
Nevertheless, the matrix calculation deserves acceleration. We are hopeful that CPU time will be
further reduced using a multilevel FMM instead of the one-level FMM.

7 Conclusion

The method we have developed couples two kinds of methods in order to speed up the solution
of integral equations. Firstly, concepts of the geometrical and physical theories of diffraction enable
us to reduce the size of the system considered, using the microlocal discretization introduced by T.
Abboud, J.-C. Nédélec and B. Zhou. Secondly, concepts of the one-level FMM enable us to speed up
the calculation of the matrix of the new system. Such a combination has resulted in a new method more
efficient than the one-level FMM and more robust than the microlocal discretization which uses the
theory of the stationary phase. Moreover, this coupling have been performed within a new formulation
of the integral equations which is suitable for iterative resolution.

Numerical tests confirm the relevant reduction of both CPU time and memory cost. We have
obtained good accuracies for resolutions based on rather coarse meshes, with an average edge length up
to two wavelengths. However, both Neumann and Robin cases merit further improvements, considering
a piecewise 2-degree polynomial surface in order to approximate the boundary of the object.

Moreover, we are contemplating the coupling with the multilevel FMM. It seems to further reduce
the calculation of the matrix of the new system. It should result in an algorithm more efficient than
the multilevel FMM thanks to the approximation of the phase function. For non-convex objects, we
also plan to conduct a study based on the consideration of more directions in the phase approximation
taking one’s inspiration from works of A. de La Bourdonnaye. Besides, we will implement the new
method within Maxwell’s equations.
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