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Effect of the anisotropy of the cells on the topological properties of 2D and 3D froths
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We study the effect of the anisotropy of the cells on the topological properties of monodisperse
2D and 3D froths. These froths are built by Voronoi tessellation of actual assemblies of monosize
disks (2D) and of many numerical packings of monosize disks (2D) and spheres (3D). We show
that topological properties of these froths depend universally on the anisotropy of the cells.

PACS numbers: 87.80.Pa, 82.70.Rr, 61.43.Bn

The physics of disordered froths is of great interest
because of their importance in metallurgy (grain ag-
gregates), biology (cells), geology (fracture patterns)
etc...Such structures can be represented in a simplified
way by convex polyhedra filling space (3D froths) or by
convex polygons covering the plane (2D froths) which
can be obtained by the Voronoi tessellation of packings
of equal spheres [1, 2] or disks [3]. Tt has been shown
that these artificial froths behave, from a topological
and a metric point of view, like natural froths [2]. In this
paper we present new results on the correlation between
the anisotropy of the cells and the topological properties
of monodisperse 2D and 3D froths issued from monosize
packings of disks and spheres.

In order to build our packings of particles, we use five
algorithms that have been already described in previous
papers as mentioned later. Here, we just recall briefly
their principles in three dimensions. They can be divided
into three classes.

1. Sequential algorithms

For these algorithms, the particles are placed once
at the time. The most simple algorithm of this class
is the Random Sequential Adsorption (RSA) [4, 5].
Spheres are deposited at random positions; if the
last deposited particle overlaps any of those already
present it is removed, otherwise it is permanently
fixed. We also use the Modified Random Sequential
Adsorption algorithm [6] (MRSA). This algorithm,
based on the RSA, allows particles overlapping one
or several particles already present to make small
displacements to eliminate these overlaps.

The next two sequential algorithms build packings

under the influence of a directional force like the
gravity. The first one, the Visscher and Bolsterli’s
algorithm [7] consists in launching randomly parti-
cles at the top of box which contains the packing.
A particle is definitively deposited when it is in a
stable position, i.e. in contact with 3 particles al-
ready placed. The second one is the Powell’s algo-
rithm [8], which is very similar to the previous one.
It consists in adding spheres, at the lowest position,
in contact with 3 randomly chosen spheres already
placed.

2. Cooperative algorithms.
We use the Jullien algorithm [1], which is based
on the Jodrey-Tory construction [9]. Tt consists in
slowly reducing overlaps of packing of growing soft
spheres.

3. Dynamic algorithms
The last algorithm we use is a classical hard sphere
molecular dynamic algorithm (event-driven) [10].

According to these algorithms we can build packings
of any packing fraction, C', between 0 and 0.74 (FCC
packing fraction). The packings are made of approxi-
mately 16000 spheres. For the packings of disks we use
2D versions of the algorithms mentioned above. The
packings of disks can then have any packing fraction
between 0 and 0.907 (triangular lattice). The numerical
packings contain approximately 10000 disks. We also
use actual packings of disks built on an air table [11].
Such packings are then studied by numerical image
analysis. The statistics are made on approximately 3000
disks.

Now, we build our froths and for that purpose we focus



on the Voronoi tessellation of packings of monosize
disks and of packings of monosize spheres. We recall
that a Voronoi cell is defined as the ensemble of points
closer to a given sphere (or disk) than to any other and
is characteristic of the local environment around this
particle. We have represented in figure 1 an example of

FIG. 1: Example of a 2D Voronoi tessellation. Each cell
is a convex polygon. The set of cells fills the plane.

a Voronol tessellation of a packing of disks.

In 2D, the topological properties of a cell are linked to
its number of edges n. Due to the Euler’s relation, the
mean value of edges per cell, (n) is a constant equal
to 6. Thus, the topological energy of a 2D froth can
be defined as the variance of n : ps(n) = (n?) — <n>2
Metric characteristics of such 2D froths are the mean
area (a), the mean perimeter of the cells (I) and any
higher moments of these quantities.

For 3D froths, things are a little more complicated:
as the mean number of faces (f) is not a constant[2],
we have to consider both this mean number and the
variance of f, ps(f) = <f2> - <f>2 As for 2D froths,
we can compute the mean volume (V), area (A) and
perimeter (L) of the cells and any higher moment of
these quantities.

We have plotted in figure 2 the evolution of (f) versus
the packing fraction for the different algorithms used.
We observe that this quantity depends not only on the
packing fraction but also on the algorithm used, i.e. on
the history of the packing. So the packing fraction is
clearly not a good quantity in order to describe the state
of a froth and we now look for a better parameter. We
can turn to the relation between (f) and the anisotropy
of the cells. This can be done qualitatively by looking
at the figure 2. First, we can compare the different
algorithms for a given packing fraction. Second, for a
given algorithm, (for which we can modify the packing
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FIG. 2: Evolution of the mean number of faces versus
the packing fraction, C', for different algorithms.

fraction) we observe a decrease of (f) when the packing
fraction increases; actually, it may be checked that cells
become more isotropic with this increase.

For example, due to its principle of construction,
the MRSA algorithm provides very distorted -cells.
The Visscher-Bolsterli and Powell algorithms also give
anisotropic cells since the direction of the gravity is fa-
vored. The last example is event-driven algorithm: for
high packing fractions (C' > 0.545) the system crystal-
lizes [10]; the cells are then more isotropic than those of
disordered packings at the same packing fraction. We
observe in figure 2 that the higher the anisotropy, the
higher the value of (f). This result is in agreement with
a theory developed by Rivier [12].

In order to study more quantitatively the anisotropy of
the cells we have computed for each packing a sphericity
coefficient of the cells which we define by

Kopn = 36w (V?) [ (A%). (1)

For a sphere, this coefficient is equal to 1. For a con-
vex polyhedron, the more anisotropic the polyhedron, the
lower K,,,. We have reported in figure 3a the variation
of (f) versus this coefficient. In agreement with Rivier’s
theory and with our previous qualitative study, we find
that the higher the anisotropy the higher (f). Further-
more, surprisingly, it seems that all points are positioned
on a unique curve. We have also represented, in figure 3b,
the evolution of the variance of f, us(f), with the spheric-
ity coefficient and find once more a unique curve for all
the algorithms used. So, unlike packing fraction (see fig-
ure 2), the sphericity coefficient seems to be a good pa-
rameter in order to describe the 3D froths: all the algo-
rithms used give similar results for a given anisotropy.

Then, we have checked if a similar law can be found
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FIG. 3: Evolution of the mean number of faces (a) and of
the variance of the number of faces (b) versus the spheric-
ity coefficient K, for all the algorithms used.

for 2D froths. We first define the 2D equivalent of the
sphericity coefficient for 2D froths

Keire = Am (a) / (I7) . (2)
We have reported in figure 4 the evolution of us(n) for
all packings of disks used versus the coefficient K jpc.
As in
3D, the different froths give similar results for a given
anisotropy. We can also notice that this curve is linear
except on a very short range of packing fraction, where
the packings of disks are crystallized (C' > 0.89) and
Ha(n) = 0.

All the points seems to be in the same curve.

In conclusion we have reported, in this letter, studies
on the effect of the anisotropy of cells of disordered
2D and 3D froths on their topological properties. In
order to build our froths we use the Voronoi tessellation
of packings of monosize particles built by numerical
simulation. For the 2D froths, we also use actual
packings built on an air table. For 3D froths, we have
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FIG. 4: Evolution of the variance of the number of edges
of the cells versus the coefficient K., for froths gener-
ated from 2D disk packings.

shown, in agreement with Rivier’s theory that the mean
number of faces (f) increases when the anisotropy of
the cells increases. A more careful study shows that this
quantity and the variance of the number of faces ps(f)
seem to depend universally on this anisotropy. A similar
result exists in 2D.

An open question is the following : is that universality
verified by natural froths like, for example, polycrystals?
The answer is difficult because 1t is not easy to mea-
sure the mean quantities in the expression of K;,;. The
next step of this work is to study the link between the
anisotropy of the 3D froths and the anisotropy of their
cuts (see [13] for a preliminary work on cuts of 3D froths).
We expect to find information on the 3D structure from
the cuts.

t Electronic address: luc.oger@univ-rennesi.fr
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