
A DfT Architecture for Asynchronous Networks-on-Chip

Xuan Tu Tran, Jean Durupt, François Bertrand, Vincent Beroulle, Chantal

Robach

To cite this version:

Xuan Tu Tran, Jean Durupt, François Bertrand, Vincent Beroulle, Chantal Robach. A DfT
Architecture for Asynchronous Networks-on-Chip. The 11th IEEE European Test Sympo-
sium, May 2006, Southampton, United Kingdom. IEEE Computer Society, pp.219-224, 2006,
<10.1109/ETS.2006.3>. <hal-00142999>

HAL Id: hal-00142999

https://hal.archives-ouvertes.fr/hal-00142999

Submitted on 30 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52703185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00142999

A DFT Architecture for Asynchronous Networks-on-Chip

Xuan-Tu TRAN, Jean DURUPT,
and François BERTRAND

LETI – CEA
17, rue des Marstyrs, 38054 Grenoble, France

Xuan-Tu.Tran@cea.fr

Vincent BEROULLE,
and Chantal ROBACH

LCIS – INPG
50, rue Barthlmy de Laffemas, Valence, France

Chantal.Robach@esisar.inpg.fr

Abstract

The Networks-on-Chip (NoCs) paradigm is emerging as
a solution for the communication of SoCs. Many NoC archi-
tecture propositions are presented but few works on testing
these network architectures.

To test the SoCs, the main challenge is to reach into the
embedded cores (i.e, the IPs). In this case, the DFT tech-
niques that integrate test architectures into the SoCs to ease
the test of these SoCs are really favoured. In this paper, we
present a new methodology for testing NoC architectures.
A modular, generic, scalable and configurable DFT archi-
tecture is developed in order to ease the test of NoC archi-
tectures. The target of this test architecture is asynchronous
NoC architectures that are implemented in GALS systems.
The proposed architecture is therefore named ANoC-TEST
and is implemented in QDI asynchronous circuits. In ad-
dition, this architecture can be used to test the computing
resources of the networked SoCs. Some initial results and
conclusions are also given.

1. Introduction

A global shared-bus cannot meet the needs of communi-

cation on a System-on-Chip (SoC) because long-wire loads,

resistances and shared bandwidth result in slow signal prop-

agation. An alternative solution, the bus hierarchical archi-

tecture, presented by [1], becomes a provisional solution but

still faces many constraints in on-chip interconnections.

Network-on-Chip (NoC) paradigm is emerging as a

promised solution for the communication of SoCs with nu-

merous advantages in comparison with bus-based SoC ar-

chitectures: good efficiency, high scalability and versatility,

as well as high bandwidth communication [2–4].

With this innovation, NoC-based SoCs integrate more

and more Intellectual Property (IP) blocks into a single chip.

This gives many challenges to designers and also makes the

test of SoCs more difficult. In addition, the IPs are hierar-

chically embedded into the IPs, and the systems are divided

into many parts with different clocks and design technolo-

gies.

To test a common core-based SoC, the challenge is to

access to the embedded cores. A general architecture to

test the embedded cores in core-based SoCs has been first

proposed in [5]. In this architecture, the embedded cores

are covered by wrappers that with test access mechanisms

(TAMs) improve the controllability and the observability

of the embedded cores. In order to make this design-for-

test (DFT) methodology for the embedded cores become

reusable, a standard for embedded core test has been devel-

oped, IEEE 1500 Standard for Embedded Core Test [6]. In

the age of NoC-based SoCs, to test a SoC we must deal with

two main issues: the test of the IP cores that are embedded

in the SoC and the test of the communication networks (i.e.,

the NoC architectures) [7].

Many propositions of NoC architectures for SoCs de-

sign have been presented, such as SoCBUS [8], NOS-

TRUM [9], SPIN [10], HERMES [11], xPIPES [12],

ÆTHEREAL [13], QNOC [14], PROTEO [15], OC-

TAGON [16], but works on testing the NoC architectures

are few. Some works presented in [17,18] reuse the on-chip

communication networks as TAMs to reach into the embed-

ded cores. Test vectors are transported from the test vector

generator to the embedded cores under test and the test re-

sults are transported from the embedded cores under test to

the analyzer via the on-chip networks. The advantages of

this technique are low cost overhead and high bandwidth

TAM for testing of embedded cores. Some other litera-

tures discuss on testing of NoC architectures (i.e., testing

the communication networks) [2, 7], but no solution is pro-

posed. A.M. Amory et al. [19] presents a methodology to

test the synchronous network routers but it remains the test

of internode wires and network interfaces.

In addition, the above NoC propositions solve most of

the SoCs problems but do not cover the problem of multi-

clocks used in SoC designs. In [20], the CEA-LETI has

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

proposed an asynchronous NoC (ANoC) architecture that

is used for Global Asynchronous – Local Synchronous

(GALS) platforms. This ANoC architecture, nodes and

their interconnections, is implemented in asynchronous cir-

cuits. It allows using multi-clocks for NoC-based SoCs

design, a different clock for each distinct IP block. With

the same approach, some other works have been proposed

such as CHAIN [21], NEXUS [22], etc. All of these

asynchronous NoC architectures adapt well for GALS plat-

forms. They are the best solutions for the interconnection of

SoCs with different clock domains and design technologies

but they give also a huge difficulty for the manufacturing

test because of many feedback loops.

The goal of our work is to develop an innovative method-

ology to test the asynchronous NoC architectures. In this

paper we introduce a modular, generic, scalable and config-

urable architecture to ease the test of asynchronous NoC ar-

chitectures. This DFT architecture targets the asynchronous

NoC architecture presented in [20]. It is therefore named

ANoC-TEST architecture.

The paper is organized as follows. Section 2 presents

briefly the context and objectives of this work; Section 3 is

a recall of the ANoC architecture, for which we develop a

test method; Section 4 presents an innovative DFT architec-

ture for testing the asynchronous NoC architectures, applied

for the ANoC architecture; Section 5 presents the design

of the proposed architecture; and finally design results and

conclusions are given in Section 6.

2. How to Test NoC-based Systems-on-Chip

In NoC-based SoCs, we can imagine that the NoC com-

munication architectures look like embedded cores with

many identical sub-cores, nodes and network interfaces

(NIs). Testing a NoC-based SoC for manufacturing defects

can be categorized into two issues: the test of the NoC com-

munication architectures; and the test of the computing re-

sources (i.e., the IPs). Some works in [17, 18] reused the

NoC communication architectures as TAMs to test the IP

cores. However, making sure that the NoC communication

architectures have no defect should be done first. If the NoC

communication architectures contain defects, the following

actions can be proposed: elimination of the die, use of a

degraded mode, or replacement of the defective logics by

redundant logics.

To test the NoC communication architectures, a simple

method that the test stimuli are transported on the networks

as communication packets may be used. This method does

not need additional logics but it is insufficient to cover all

possibilities of defects, for example, arbitration faults in

case of concurrent data paths. In addition, when a fault is

detected, we do not know where it is.

3. ANoC: an Asynchronous NoC Architecture
for GALS Systems

The CEA-LETI has proposed a low latency Asyn-

chronous Network-on-Chip (ANoC) architecture in [20].

This ANoC communication architecture is composed

of network nodes, links between nodes, and asyn-

chronous/synchronous NIs between asynchronous nodes

and synchronous resources. The nodes are the basic el-

ements of the network and they usually have five bi-

directional ports that connect to four neighboring nodes and

the nearest synchronous computing resource via an asyn-

chronous/synchronous NI. The role of nodes is to compute

where to transmit an incoming data, then to arbitrate be-

tween potential concurrent data, and finally to transmit the

selected data to the selected output. All of these nodes

are implemented in Quasi-Delay Insensitive (QDI) asyn-

chronous logics in order to adapt GALS platforms and allow

to use multi-clocks in different IPs.

4. ANoC–TEST: a Proposition for Testing NoC
Architectures

4.1. Architecture description

Figure 1. ANoC-TEST: a general architecture.

Because NoC architectures may be imagined as em-

bedded cores, some principles of the IEEE 1500 Standard

for Embedded Core Test therefore may be used. A gen-

eral architecture of ANoC-TEST is illustrated in Figure 1.

The ANoC-TEST architecture includes test wrappers that

cover the network nodes, a configuration channel, and a

generator-analyzer-controller (GAC) unit used to generate

test vectors, analyze test results, and control the configura-

tion channel. Specially, to adapt well to the asynchronous

NoC architectures, the test wrapper is implemented by us-

ing asynchronous cells instead of using classical shift reg-

isters with a clock signal. The communication between

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

these cells is realized by handshake signals. Additionally,

the network wires are reused to transport test stimuli and

test results as high bandwidth TAMs. It is why the IEEE-

compliant test wrapper is not used.

With this test architecture, the test vectors generated by

the GAC unit are transported to the nodes-under-test via the

network wires and are loaded to the nodes by the ANoC-

TEST wrappers. In the other side, the test results are with-

drawn by the ANoC-TEST wrappers and transported to the

GAC unit via the network wires for analyzing. All the oper-

ations of ANoC-TEST wrappers are configured by the con-

figuration channel and the actions of the configuration chan-

nel is operated by a finite state machine in the GAC unit.

The GAC unit may be implemented on-chip as an IP, or off-

chip as a computer program which communicates with the

ANoC via I/O ports, or an Ethernet port. In the following

subsections we focus on the design of ANoC-TEST wrap-

pers, the most important parts of the ANoC-TEST architec-

ture.

4.2. ANoC-TEST wrapper

Figure 2. Connections between 2 wrappers.

In corresponding to the number of ports of the ANoC

node, the ANoC-TEST wrapper is composed of five input

stage cells, five output stage cells, and a local test control

module (TCM). Two asynchronous 5/5 test wrappers and

their communication channels are presented in Figure 2.

The TCMs are serially interconnected to establish a config-

uration channel in order to control the input/output stages

of the test wrappers. The role of the ANoC-TEST wrapper

is to transport test vectors to the node-under-test in correct

situations and get the test results from the node-under-test

through many operations: updating test vectors (update new

test vectors to the input cell); shifting test vectors (shift the

test vectors to the targeted input cell); loading test vectors

(load the test vectors to the node-under-test); withdrawing

test results (withdraw the test results from the node-under-

test); shifting test results (shift the test results to the tar-

geted output cell); transmitting test results (transmit the test

results to the TAMs); etc. To improve the quality of ser-

vices (QoS), the asynchronous NoC presented in [20] uses

k virtual channels with k levels of priority. All these lev-

els of priority are arbitrated so that only one virtual channel

is established at a time. Obviously, the test wrapper has to

make no change to the values of data and their levels of pri-

ority. The details of ANoC-TEST wrapper are presented as

follows:

Input stages: In test mode, the input stage cell trans-

mits an incoming flit from the network or from the previous

cell to the node-under-test or to the next cell, correspond-

ing to the control signals that derive from TCM module.

The main goal of the input stages is to transmit the test vec-

tor to the node-under-test on correct input ports. If a shift

or a load operation is requested, the incoming test vector

will be stored in an immediate buffer, named “Buff R0”. In

asynchronous design, this buffer is easily realized by com-

munication channels in the input stage cells. Then, the test

vector may be shifted to the next cell or loaded to the node

at the next communication cycle. All “Send” and “Accept”

signals are combined and generated inside this input stage.

The architecture of the input stage for an N -inputs/ out-

puts node and k priority levels is presented in Figure 3,

where the “Buff R0” is just a symbolic view of the imme-

diate buffer.

Figure 3. Input stage of the wrapper.

To reduce test time, a bypass function is usually

favoured. If a bypass operation is required by the TCM

module, the input stage will establish a bypass channel in

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

order to transmit directly the incoming test data from the

network to the selected bypass output (depending on the di-

rection we want to realize a bypass).

Output stages: In test mode, the output stage cell trans-

mits an incoming flit from the node-under-test or from the

previous cell to the network or to the next cell, correspond-

ing to the control signals that derive from TCM module.

The main goal of the output stages is to withdraw the test re-

sults from the node-under-test and transport them to the test

result analyzer. If a shift or an export operation is requested,

the incoming test result will be updated in an immediate

buffer, “Buff R0”. As in the input stages, this buffer is real-

ized by communication channels. Then, the test result may

be shifted to the next cell or exported to the output port at

the next communication cycle. All “Send” and “Accept”

signals are combined and generated inside this output stage.

The architecture of the output stage for an N -inputs/ out-

puts node and k priority levels is presented in Figure 4,

where the “Buff R0” is just a symbolic view of the imme-

diate buffer.

Figure 4. Output stage of the wrapper.

If a bypass operation is required, the output stage will se-

lect a bypass channel that is established by the correspond-

ing input stage and the test data from this bypass channel

will be directly transported to the output port.

Test Control Module: The local test control module

(TCM) is composed by a multiplexer and two registers, see

Figure 5, a register is used for building a configuration chan-

nel and the other one is used for updating test instructions.

The instruction bypass is simply realized by a bypass mul-

tiplexer in the TCM module. This multiplexer is controlled

by a flag in the update instruction register, the flag is named

“bypass flag”. If this flag is set, the control data input of the

TCM module will be connected directly to the control data

output. This technique allows to reduce efficiently the test

time. If a node is put in test mode and the others are put in

bypass mode, the node-under-test is directly connected to

the GAC unit in both of data and configuration channels.

The update of test instructions is realized by an instruc-

tion update signal from the GAC unit. The “Send” and

“Accept” signals of the control data channel are combined

and generated inside this module by “send–accept” process.

The output control signals, CTRL < i >, are used to de-

cide the operations of the input and output stage cells.

Figure 5. A local Test Control Module (TCM).

4.3. ANoC-TEST Configuration

With the architecture described above, the ANoC-TEST

wrapper is configured to get test vectors from the network

wires and load them to the node-under-test, then to with-

draw the test results from the node-under-test and transmit

them to the network wires. It may be easily configured in

the following modes:

Normal Mode: In normal mode (i.e., transparent mode),

the ANoC-TEST wrapper is transparent. The network

nodes operate as if they are not covered by the test wrap-

per. The inputs of the ANoC-TEST wrapper’s input stages

are directly connected to the inputs of the ANoC node and

the outputs of the ANoC node are directly connected to the

outputs of ANoC-TEST wrapper’s output stages.

Test Mode: In test mode, there are two main sub-modes:

testing the node-under-test and testing the surrounding con-

nections. When a test process is enable, the GAC unit es-

tablishes the configuration channel in order to configure the

nodes in bypass mode or in test mode. Then, the GAC unit

activates the instruction-update operation to put these nodes

in the selected modes.

When nodes-under-test are defined, the configuration

channel and the test data channel are directly connected to

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

the wrappers of these nodes. The GAC unit now controls

the test wrappers to transmit the test vectors to the inputs of

the nodes and to withdraw the test results from the outputs

of these nodes by a set of operations as described above:

update, shift, load, withdraw, export, etc. The testing pro-

cess will be stopped when the reset signal is set. To realize

an other test process, the configuration channel must be re-

established. Depending on the test configuration, a node or

more is set under test mode.

Bypass Mode: In order to reduce the test time, the by-

pass mode is developed. This mode allows us to isolate

each node from the others and to do the test of this node

only. The advantages of this mode is not only to reduce test

time, but also to allow us to know exactly where the faulty

node is. In addition, the bypass mode also makes the testing

processes become easier.

5. Design and Verification

5.1. Flit-level handshake protocol

The handshake protocol is used to interconnect between

the wrappers and between the wrappers and the nodes to ex-

change a data flit. The flit handshake protocol in our archi-

tecture is defined as the “Send/Accept” protocol, in which

the communication between two wrappers or between a

wrapper and a node is performed via the “Send” and “Ac-

cept” signals, see Figure 6. To establish k virtual chan-

nels in the network, this flit handshake protocol is imple-

mented by k “Send” and k “Accept” signals: send < i >
and accept < i >, where i gets values from 0 to k − 1.

And the sender is allowed to send a new flit on virtual chan-

nel i with send < i >= 1, if and only if, the receiver

indicated accept < i >= 1 at the previous cycle. With

this “Send/Accept” protocol, flit transactions are realized

in many virtual channel with an assurance of free physi-

cal channel. In practice, we have implemented the ANoC-

TEST architecture with k equals 2.

Figure 6. Flit-level “Send/Accept” signaling.

5.2. QDI asynchronous design

To design the ANoC-TEST wrapper, the Quasi-Delay

Insensitive (QDI) asynchronous design style [23] is used.

We have used a 4-phase RTZ protocol signaling for asyn-

chronous channels. To have low power consumption, the

1-of-4 code signaling is used [24].

5.3. Verification platform

The ANoC-TEST wrapper has been modeled in Sys-

temC/C++ and validated by using a test bench model that is

illustrated in Figure 7. The role of the GAC unit is to gen-

erate test vectors, to receive the test results, and to control

the operations of all other blocks in the test bench model.

It is also done in SystemC/C++. In fact, the generation of

test vectors and the establishment of configuration channel

are simply realized by reading test data and test configura-

tion files. The test results are received and stored in a test

result file that will be compared with the source test data

file. In addition, the values of the configuration channels

are re-read and stored in a test result file in order to allow a

verification of configuration operations.

Figure 7. A test-bench with 4 test wrappers.

6. Results and Conclusion

The design of the proposed architecture is generic and

can be adapted to the number of virtual channels required by

the ANoC. The modularity of the ANoC-TEST is expressed

through the independence of the test wrappers and theirs im-

plementation in asynchronous logic. In addition, this archi-

tecture may be easily configured to test many nodes at the

same time, in parallel. In this case, thanks to the identity of

the network nodes, the test vectors are simultaneously ap-

plied in parallel and the test responses can be compared to

each other. The test of NIs and the test of IPs can be ef-

ficiently realized by configuring the test wrappers to have

bypasses to the IP-under-test.

In term of reuse, the network wires are reused as high

bandwidth TAMs and the test vectors can be reused for all

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

nodes. The reuse of network wires allows to reduce the sur-

face and to avoid the wiring congestion in layout process.

In test mode, the maximum TAM throughput of each test

path is about 1 Gbytes/s for an average communication de-

lay corresponding to an equivalent frequency of 250 MHz

and 32-bits width.

The proposed architecture is scalable and can be ex-

panded to accommodate to the size of the ANoC by adding

the test wrappers in corresponding to the number of the net-

work nodes, while the test time and test data volume in-

crease little thanks to the possibility of test in parallel and

high throughput TAMs.

The ANoC-TEST wrapper architecture is modeled and

validated in a SystemC/C++ environment that corresponds

to the behaviours of asynchronous circuits. The surface cost

of this wrapper is evaluated at about 8000 gates. It is incon-

siderable compared to the surface cost of our test target, an

asynchronous NoC with 20 nodes, 23 IPs, and a total sur-

face of 4.5 Mgates without memories.

References

[1] ARM Inc. AMBA On-chip Bus Architecture.

http://arm.com/products/solutions/AMBAHomePage.html
[2] A. Jantsch and H. Tenhunen. Networks on Chip. Kluwer Aca-

demic Publisher, Feb. 2003.

[3] L. Benini and G. De Micheli. Networks on Chip: a New SoC

Paradigm. IEEE Computer, Vol. 1, pp. 70–78, Jan. 2002.

[4] W. J. Dally and B. Towless. Route Packets, not Wires: On-

Chip Interconnection Networks. In Proc. of the Design Au-
tomation Conf. (DAC), pp. 684–689, NV, USA, June 2001.

[5] Y. Zorian. Testing Embedded-Core based System Chips. In

Proc. of the Int’l Test Conference (ITC), pp. 130–140, Wash-

ington, DC, USA, Oct. 1998.

[6] IEEE Std. 1500. IEEE 1500 Standard for Embedded Core

Test. http://grouper.ieee.org/groups/1500/.
[7] B. Vermeulent, J. Dielissen, K. Goossens, and C. Ciordas.

Bringing Communication Networks on a Chip: Test and

Verification Implications. IEEE Communication Magazine,

pp. 74–81, Sep. 2003.

[8] D. Wiklund and D. Liu. SoCBUS: Switched Network on Chip

for Hard Real Time Embedded Systems. In Proc. of the Int’l
Parallel and Distributed Processing Symposium (IPDPS),
Nice, France, April 2003.

[9] S. Kumar et al. A Network on Chip Architecture and Design

Methodology. In Proc. of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 105–112, USA, April 2002.

[10] P. Guerrier and A. Greiner. A Generic Architecture for On-

Chip Packet-Switched Interconnection. In Proc. of the De-
sign, Automation and Test in Europe (DATE), pp. 250–256,

Paris, France, March 2000.

[11] F. Moraes et al. HERMES: an Infrastructure for Low Area

Overhead Packet-Switching Networks on Chip. Integration,
the VLSI Journal, 38(1):69–93, Oct. 2004.

[12] M. Dall’Osso et al. xPIPES: a Latency Insensitive Param-

eterized Network-on-Chip Architecture for Multi-Processors

SoCs. In Proc. of the 21st Int’l Conf. on Computer Design
(ICCD), pp. 536–539, San Jose, California, USA, Oct. 2003.

[13] E. Rijpkema et al. Trade Offs in the Design of a Router with

both Guaranteed and Best-Effort Services for Networks on

Chip. In Proc. of the Design, Automation and Test in Europe
(DATE), pp. 10350–10355, Germany, March 2003.

[14] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNOC:

QoS Architecture and Design Process for Network on Chip.

Journal of Systems Architecture: The Euromicro Journal,
50(2–3):105–128, Feb. 2004.

[15] I. Saastamoinen, S. Tortosa, and J. Nurmi. Interconnect IP

Node for Future System-on-Chip Designs. In Proc. of the 1st
Int’l Workshop on Electronic Design, Test and Applications
(DELTA), pp. 116–122, New Zealand, Jan. 2002.

[16] F. Karim, A. Nguyen, S. Dey, and R. Rao. On-Chip Com-

munication Architecture for OC-768 Network Processors.

In Proc. of the 38th Design Automation Conference (DAC),
pp. 678-683, Las Vegas, NV, USA, June 2001.

[17] É. Cota, L. Carro, F. Wagner, and M. Lubaszewski. Reusing

an On-Chip Network for the Test of Core-Based Systems.

ACM Trans. on Design Automation of Electronic Systems,

Vol. 9(4):471–499, Otc. 2004.

[18] M. Nahvi and A. Ivanov. Indirect Test Architecture for SoC

Testing. IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, 23(7):1128–1142, July 2004.

[19] A.M. Amory et al. A Scalable Test Strategy for Network-on-

Chip Routers. In Proc. of the International Test Conference
(ITC), Texas, USA, Nov. 2005.

[20] E. Beigné et al. An Asynchronous NoC Architecture Provid-

ing Low Latency Service and Its Multi-Level Design Frame-

work. In Proc. of the 11th Int’l Symposium on Asynchronous
Circuits and Systems (ASYNC), pp. 54–63, USA, Mars 2005.

[21] J. Bainbridge and S. Furber. Chain: a Delay-Insensitive

Chip Area Interconnect. IEEE Micro, 22(5):16–23, Sept.-

Oct. 2002.

[22] A. Lines. Asynchronous Interconnect for Synchronous SoC

Design. IEEE Micro, 24(1):32–41, Jan.-Feb. 2004.

[23] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: a Stan-

dard Cell QDI 16-bit RISC Asynchronous Microprocessor. In

Proc. of the 4th Int’l Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), pp. 22–31, San

Diego, USA, April 1998.

[24] J. Bainbridge, W. Toms, D. Edwards, and S. Furber. Delay-

Insensitive, Point-to-Point Interconnect using m-of-n Codes.

In Proc. of the 9th Int’l Symposium on Asynchronous Circuits
and Systems (ASYNC), pp. 132–140, BC, Canada, May 2003.

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

