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Abstract. In this work, we used simultaneously the Reaction Ensemble Monte Carlo (ReMC)

method and the Adaptive Erpenbeck Equation Of State (AE-EOS) method to directly cal-

culate the thermodynamical and chemical equilibrium of mixtures of detonation products on

the Hugoniot curve. The ReMC method (W. R. Smith and B. Triska, J. Chem. Phys. 100,

pp 3019-3027 (1994)) allows to reach the chemical equilibrium of a reacting mixture, and the

AE-EOS method (J. J. Erpenbeck, Phys. Rev. A, 46, p 6406 (1992)) constrains the system to

satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation products mixture is

established, the CJ state of the explosive can be determined. Performing a NPT simulation at

PCJ , TCJ , we then calculate the direct thermodynamic properties and the following derivative

properties of the system using a fluctuation method: calorific capacities, sound velocity and

Grüneisen coefficient. As the composition fluctuates, and the number of particles is not necessarily

constant in this ensemble, a fluctuation formula has been developed to take into account the

fluctuations of mole number and composition. This type of calculation has been applied to sev-

eral usual energetic materials: nitromethane, tetranitromethane, hexanitroethane, PETN and RDX.

I. INTRODUCTION

In the classical description of ideal one-

dimensional planar detonation waves using the

ZND model, the propagation of the wave in the

explosive is associated with a sudden increase

of pressure and temperature which brings the

system onto a particular point of its hugoniot

curve: the ZND state. At this point (high

pressure and temperature), chemical reactions

start to occur, and bring the system from the

ZND state (on the hugoniot of the inert explo-

sive) to a point on the hugoniot of the mixture

of detonation products, the Crussard curve.

Only one point of this curve could support a

stationary behavior of the reactive wave, the

∗corresponding author: emeric.bourasseau@cea.fr

Chapman-Jouguet state, where the entire sys-

tem is supposed to be reacted and at chemical

equilibrium. From this point, the system then

expands isentropically, with a decrease of both

temperature and pressure. As a consequence,

the calculation of the Crussard curve and the

CJ point is particularly important, because

it characterizes the initial state of the system

after the detonation, before the isentropic

expansion. The Crussard curve and the CJ

point can be calculated using thermochemical

methods through perturbation theories and

simplified models. These methods can use a

wide variety of equations of state either empir-

ical or theoretical. Thus, the MCRSR method

[1] is a standard method in the literature and

allows nowadays to correctly reproduce the

detonation properties of a variety of explosives

[2]. This method is based on a variational
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theory using molecular interactions described

by exponential-6 potential models. It is also

possible to treat a mixture of several different

molecules by reducing the mixture to an

equivalent pure fluid using the Ree’s mixture

law in the so-called one-fluid approximation

[3]. Nevertheless, the use of such methods

necessarily implies several approximations

concerning theoretical background as well as

potential models, which make the method

less accurate and transferable than molecular

simulations.

In this work, we then propose a method to

calculate the Crussard curve and the CJ state

through molecular Monte Carlo simulations.

This presents two main advantages. In the first

hand, the use of statistical thermodynamics

ensures that the exact EOS of the model

material is obtained from atomistic simulations

without any approximation. In a second hand,

the Monte Carlo method allows to perform

simulations using a large variety of potential

models from simple, mono center Lennard-

Jones materials, to complex, fully atomistic

molecular systems (including all atoms models,

fluctuating charges, ...), leading to more

accuracy and transferability. In this paper, the

method is tested with very simple potential

models, where molecules are represented by

single exponential-6 force centers, in the same

fashion as in our thermochemical code [2].

This allows a direct comparison of our results

with those coming from thermochemical codes.

Results concerning more accurate simulations

performed with more complex potential models

will be published later.

In this paper, we describe the two methods

(ReMC and AE-EOS) used simultaneously

to obtain the Crussard curve of any given

energetic material. The first method is the

Reaction Ensemble Monte Carlo (ReMC)

method. This method allows to reach the

thermodynamical and chemical equilibrium of

a molecular system constrained by chemical

equations. This method has been proposed at

the same time by Smith and Triska [4] and

Johnson et al. [5]. The second method is

the Adaptive Erpenbeck Equation Of State

(AE-EOS) method, proposed by Erpenbeck [6]

and adapted by Brennan and Rice [7]. This

method constrains the system to converge

toward a point on its hugoniot curve where

the Rankine-Hugoniot relations are satisfied.

The simultaneous use of both methods has

been applied to simple systems constrained by

only one chemical equation [7]. In this work,

we have coupled the ReMC method implying

several chemical equations and the AE-EOS

method to perform simulations of realistic

mixtures of detonation products composed of

up to 7 different molecular species implied in

up to 3 simultaneous chemical equilibrium.

Using this method, we have calculated the

Crussard curve of 5 usual energetic materials:

tetranitromethane (TNM), hexanitroethane

(HNE), PETN, RDX and nitromethane

(NiMe). Then, the CJ states of those five

systems have been determined and compared

to experimental CJ properties and results

obtained from thermochemical calculations.

In a third time, we have performed Reac-

tion Ensemble NPT simulations at the CJ

conditions, in order to obtain thermodynamic

derivative properties of the detonation prod-

ucts mixtures at the CJ point. Indeed, those

quantities are known to play an important role

in the behavior of the detonating system. More

precisely, the calorific capacity at constant

pressure, the sound velocity and the Grüneisen

coefficient are needed for both inert explosive

and detonation products mixture in order to

feed hydrodynamic codes. Unfortunately, it is

also very difficult to obtain those quantities by

experimental measurements. Indeed, experi-

ments needed to obtain derivative properties

in suitable thermodynamic conditions are

often too expensive and too complicated to

be performed. Monte Carlo methods appear

particularly well suited to obtain derivative

properties because fluctuations formula can be
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used to obtain the main derivative properties

through a single simulation. Lagache et al.,

for instance, have derived the expressions to

obtain several thermodynamics properties in

the isobaric-isothermal ensemble [8]. This

method can be used to calculate derivative

properties of inert explosives, but this can not

be applied to the detonation products mixture.

Indeed, the system after the detonation is

under chemical equilibrium, and the deriv-

ative properties should be calculated in the

appropriate statistical ensemble: the Reaction

Ensemble. In fact, although this ensemble has

already been used in several conditions (see

[4, 5, 7, 9–16] for examples), no derivative

properties calculation has already been per-

formed in this ensemble to our knowledge. In

this work, we derive the equations to propose a

fluctuation formula that allows the calculation

of the main derivative properties under chemi-

cal equilibrium conditions, performing a single

ReMC simulation.

This paper is organized as follow. In a first

part, we present the two particular methods

used to obtain our results: the ReMC method

and the AE-EOS method, and we present a way

to establish the fluctuation formula used to cal-

culate derivative properties following the exam-

ple of Lagache et al. [8]. In a second part, sim-

ulation details are presented together with the

results obtained for the five systems of interest.

Then, discussion and conclusions are provided

at the end.

II. METHODS

A. AE-EOS Method

In order to compute the hugoniot curve of a

system, we employed the Adaptive Erpenbeck -

Equation Of State (AE-EOS) method proposed

by Brennan and Rice [7]. As discussed in this

paper, it is possible to implement this method

following several algorithms. We did not follow

the idea of Brennan, who chose a succession of

NPT simulations to converge to the Hugoniot

pressure at a given temperature. Indeed the

hugoniot curve is usually plotted in the (us,up)

- shock velocity vs particle velocity - diagram

because it corresponds to direct observable

of the system. Then, it is possible to plot

the Hugoniot in the (P,V) diagram, using the

Hugoniot relations. The temperature is not a

direct measure: its calculation is not possible

from the Hugoniot relations, and it generally

implies the use of particular approximations.

In these conditions, temperature does not

seem to be the most relevant quantity to use

as a constrain. Instead, we proposed here a

way to implement the AE-EOS method based

on a succession of NVT simulations. In our

simulations, the volume is constrained and

the temperature is adjusted in order to fulfill

the hugoniot conditions. Finally, this method

appears more efficient considering that NVT

simulations converge more quickly than NPT

simulations.

Starting from an initial configuration, the

system is simulated in the canonical ensem-

ble (NVT1) and the following expression, cor-

responding to the hugoniot difference Hg(1) is

evaluated by averaging over several hundred of

thousand iterations:

Hg = E − E0 −
1

2
(P + P0)(V0 − V ) (1)

where E0, P0 and V0 are the energy, pressure

and volume of the inert explosive before the

detonation (the pole of the hugoniot). In fact,

this term measures the gap between the simu-

lated thermodynamic state and the real hugo-

niot state.

After several hundred of thousand iterations

(typically 500000 in our case), the temperature

of the simulation is slightly modified from T1

to T2 (± 10 K). During the following 500000 it-

erations, Hg(2) is evaluated. At the end of this

second step, the following derivative is evalu-

ated:
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dHg

dT
(2) =

Hg(1) − Hg(2)

T1 − T2
(2)

From here, the new temperature of the sim-

ulation T3 is calculated through:

T3 = T2 −
Hg(2)
dHg

dT
(2)

(3)

and the simulations NVT3 is performed

for 500000 iterations, during which Hg(3) is

evaluated.

This process is automatically iterated every

5.105 steps, evaluating each time:

dHg

dT
(n) =

Hg(n − 1) − Hg(n)

Tn−1 − Tn

(4)

and a new temperature is calculated using:

Tn+1 = Tn −
Hg(n)
dHg

dT
(n)

(5)

until the hugoniot difference Hg(n) has con-

verged to the required accuracy. Once the

Hugoniot temperature Thug is reached, an addi-

tional NV Thug simulation could be performed

in order to compute accurately the pressure

Phug. The advantage of this method is its ra-

pidity. The convergence on the hugoniot curve

is usually obtained after 5·106 steps only per-

formed in the NVT ensemble (this corresponds

to 10 temperature changes). This remains ac-

curate even when simulations are performed in

the Reaction NVT ensemble, where chemical

equilibrium is reached within the first 200000

iterations for each NVT simulations.

B. ReMC method

The goal of the ReMC method is to com-

pute thermodynamic properties of a multi

component system at chemical equilibrium.

In order to fulfill this condition, a particular

statistical ensemble is defined: the Reaction

Ensemble. The complete definition of this

ensemble, and the rigourous way to obtain its

density probability have been done firstly by

Smith and Triska [4]. Here, we will only give a

brief description of this ensemble and we invite

interested readers to see [4] for more details.

We consider a system of s different chemi-

cal species ai, and begin by writing the usual

canonical ensemble density probability for a

non reacting system [17]:

ρens =

s
∏

i=1

V Ni

Ni!Λ
3Ni

i

·

exp

(

−βU +
s

∑

i=1

βNiµi

)

· Q−1
ens

(6)

where Ni is the number of molecules of

species i, V is the volume of the system, Λi is

the de Broglie wavelength of species i, U is the

configurational energy of the system, and µi is

the chemical potential of species i. Qens is the

partition function of the canonical ensemble.

In the Reaction Ensemble, the temperature

and the volume (or pressure) are fixed. In com-

parison with the canonical ensemble, two more

constraints are applied to satisfy the chemical

equilibrium:

• the number of atoms is fixed for each

atom type, so the number of different

molecules in the system is controlled by

the chemical equation which defines the

chemical equilibrium:

s
∑

i=1

νiai = 0 (7)

for example:

2NH3 ⇄ N2 + 3H2 (8)

• the sum of chemical potentials over the

different molecule species implied in the
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chemical reaction, weighted by stœchio-

metric coefficients, is equal to zero:

s
∑

i=1

νiµi = 0 (9)

for exemple:

µN2
+ 3µH2

= 2µNH3
(10)

The key point is to establish a Metropolis

algorithm that satisfies those constraints over

the simulation. To obtain the mechanical equi-

librium of the system, the usual Monte Carlo

moves can be used: translation, rotation and

internal relaxation of molecules. The probabil-

ity to accept a move is given by [18]:

Pacc = min

(

1, exp

(

ρens(new)

ρens(old)

))

(11)

where ρens(new) (respectively ρens(old)) is

the density probability of the new (respectively

old) configuration in the statistical ensemble.

So, following equation 6, it can be shown that

in the case of usual moves, only the total energy

of the system varies between the two configu-

rations. We obtain:

Pacc = min (1, exp (−β∆U)) (12)

where ∆U = U(new) − U(old).

To obtain the chemical equilibrium, we used

an additional move: the so-called reaction

move, proposed at the same time by Smith and

al. [4] and Johnson and al. [5]. This move con-

sists first in choosing a direction to perform the

reaction, secondly in deleting a set of reactant

molecules randomly chosen in the system, and

finally inserting product molecules. Following

the example given before, the reaction move can

be:

2NH3 → N2 + 3H2 (13)

where two randomly chosen NH3 molecules

are deleted and one N2 and three H2 molecules

are inserted, or:

N2 + 3H2 → 2NH3 (14)

where one N2 and three H2 molecules

randomly selected are deleted, and two NH3

molecules are inserted.

During this move, not only the energy is

modified, but also the respective number of

molecules involved in the reaction. Introduc-

ing the parameter ξ, positive (respectively neg-

ative) if the reaction move is performed in the

forward (backward) direction, it is possible to

show that the ratio between ρens(new) and

ρens(old) is:

ρens(new)

ρens(old)
=

s
∏

i=1

V ξνiNi!

(Ni + ξνi)!Λ
3ξνi

i

exp

(

−β∆U + ξβ

s
∑

i=1

νiµi

)

(15)

Following equation (9), the second term of

the exponential should vanish. Nevertheless,

as recommended by Ungerer et al. [19], it

is important to clarify the definition of the

chemical potential in our equations before such

simplification.

In equation (9), the chemical potential is the

one commonly used in chemistry. The zero

of the chemical potential scale (the reference

state) in chemistry is usually the chemical po-

tential of elements of the periodic table taken in

the standard state (pure element at P0 and T).

In the following, this chemical potential scale is

noted µ̂. Equation (9) could then be rewritten:

s
∑

i=1

νiµ̂i = 0 (16)

In equations (6) and (15), the chemical po-

tential is the one calculated during the simula-

tion through the Widom test insertion:
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µi = −
1

β
ln

〈

V

(Ni + 1)Λ3
i

exp
(

−β∆U+
)

〉

(17)

where ∆U+ is the change in energy due to the

insertion of a molecule i. The zero of this chem-

ical potential scale is obtained for µi = 0, i.e.

for a molecule i whose insertion energy is equal

to zero in a system of density equals to Λ−3
i .

These two scales have a different reference state

and the simplification in equation (15) cannot

be done straightforwardly. Indeed, it appears

necessary to first link these two scales. This is

achieved by expressing the chemical potential

of a perfect gas in both cases. In the chemistry

scale, the chemical potential of a perfect gas is

equal to the standard formation free enthalpy

of one mole of perfect gas at P0 and T:

µ̂i(GP ) =
∆fG0

i (T )

NA

(18)

In the simulation scale, the chemical poten-

tial of a perfect gas is equal to:

µi(GP ) = −
1

β
ln

〈

1

βP0Λ3
i

exp
(

−β∆U+
int

)

〉

(19)

And we can write:

µi − µi(GP ) = µ̂i − µ̂i(GP ) (20)

and

s
∑

i=1

νiµi =

s
∑

i=1

νi

(

µ̂i − µ̂i(GP ) + µi(GP )

)

(21)

This becomes, following equation (9):

s
∑

i=1

νiµi =

s
∑

i=1

νi

(

µ̂i(GP ) + µi(GP )

)

(22)

Finally, introducing ν̄ =
∑s

i=1 νi, and using

equations (15), (18) and (19), simple algebra

leads to the following result:

ρens(new)

ρens(old)
= (P0βV )

ξν̄
exp

(

−ξ
∆rG

0(T )

RT

)

·

s
∏

i=1

Ni!

(Ni + ξνi)!

exp (−β∆U)
〈

exp
(

−β∆U+
int

)〉ξνi

(23)

In our case, this expression simplifies because

we used only molecules represented by a single

exponential-6 force centre (i.e. without internal

energy contribution):

ρens(new)

ρens(old)
= (P0βV )

ξν̄
exp

(

−ξ
∆rG

0(T )

RT

)

·

s
∏

i=1

Ni!

(Ni + ξνi)!
exp (−β∆Uext)

(24)

Finally, the acceptance probability along a

reaction move is given by:

Pacc = min

(

1, (P0βV )
ξν̄

exp

(

−ξ
∆rG

0(T )

RT

)

·

s
∏

i=1

Ni!

(Ni + ξνi)!
exp (−β∆Uext)

)

(25)

Practically, when a reaction move is chosen,

the algorithm is the following:

• The direction of the move is randomly

chosen (ξ = 0 or 1). This determines the

type R of reactant molecules to be deleted

and P product molecules to be inserted.

• νi molecules of each reactant type R are

randomly chosen and deleted from the

configuration.

• νj molecules of each product type P are

randomly inserted in the configuration

(i.e. the place of insertion is randomly

chosen).

• The energy of the new configuration is

calculated, and the acceptance probabil-

ity of the move is obtained using equation

(25).
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• According to the Metropolis algorithm,

the new configuration is accepted or re-

jected in the markovian chain depending

on the comparison between the value of

Pacc with a real randomly taken between

0 and 1.

Combining translation, rotation and reaction

moves, it is possible to simulate a chemical

equilibrium at a given temperature and density.

Nevertheless, the algorithm presented above is

limited to low density systems only. Indeed, as

density increases, the insertion of product mole-

cules becomes difficult. This limitation should

be overcome if one wants to compute hugoniot

curves at high density.

The question regarding the insertion of mole-

cule in dense phases is well known, and ap-

pears similarly in the Gibbs Ensemble, or in

the Grand Canonical ensemble. This problem

is usually solved by the use of a statistical bias

in the algorithm that enhances the insertion

probability. As an example, John Brennan has

proposed the use of the cavity bias sampling to

improve the insertion of molecules during a re-

action move [12]. We rather choose to use the

pre-insertion bias [20], already implemented in

our MC code, but the two algorithms remain

quite similar. This bias applied to a reaction

move consists first of all on inserting the first

product molecules in the empty space left by

the deleted reactant molecules. If more prod-

uct molecules have to be inserted (i.e. if ν̄ > 0),

the insertion is performed at a preselected lo-

cation using the following criterium: for each

insertion, a set of k locations are tested, and

one position x is selected following the accep-

tance criterion:

P (x) =
exp (−βULJ(x))

W
(26)

with W , the Rosenbluth factor:

W =

k
∑

j=1

exp (−βULJ(j)) (27)

In our simulation, this bias has been used

for the insertion of the P molecules of product,

with k=1 for the R first molecules of product,

inserted at the place released by the R deleted

reactant molecules, and k=20 for the (P-R)

last molecules if P > R.

Two important points have to be considered

when using a statistical bias. The first one is

that, in order to preserve microreversibility of

the Metropolis algorithm, it is necessary to al-

ways perform the move in the same way, in the

forward or backward direction. More precisely,

if the move A + B → C + D + E is performed

by deleting A and B, then replacing A by C

and B by D and finally inserting E using the

bias, the move C + D + E → A + B must be

performed by first deleting C, D and E, and

then by replacing C by A and D by B. The

second important point is to take into account

in the acceptance probability the fact that the

move is not random anymore. In fact, a new

term should be introduced in the acceptance

probability, and for a biased move, we obtain:

Pacc = min

(

1, exp

(

ρens(new)Pgen(n → o)

ρens(old)Pgen(o → n)

))

(28)

where Pgen(n → o) (respectively Pgen(o →

n)) is the probability to generate the old (new)

configuration from the new (old) one using the

bias. In the case of the pre-insertion bias ap-

plied to our reaction move, we obtain (see [20]

for detailed description of the bias):

Pgen(o → n) =

R
∏

p=1

1 ·
P
∏

p=R+1

exp (−βULJ(xp))

W (xp)

(29)

where xP are the P locations where the

product molecules are inserted. Note that the

second term vanishes if R > P.

In the same way:

Pgen(n → o) =

P
∏

r=1

1 ·
R
∏

r=P+1

exp (−βULJ(xr))

W (xr)

(30)
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where xr are the R locations where the

reactant molecules were placed before the

move. Note that the second term vanishes if

P > R.

Finally, if the move is performed in the sens

for which P > R, the acceptance probability is:

Pacc = min

(

1, (P0βV )
ξν̄

exp

(

−ξ
∆rG

0(T )

RT

)

·

s
∏

i=1

Ni!

(Ni + ξνi)!
exp (−β∆Uext) ·

P
∏

p=R+1

exp (−βULJ(xp))

W (xp)

)

(31)

And, if the move is performed in the sens for

which R > P, the acceptance probability is:

Pacc = min

(

1, (P0βV )
ξν̄

exp

(

−ξ
∆rG

0(T )

RT

)

·

s
∏

i=1

Ni!

(Ni + ξνi)!
exp (−β∆Uext) ·

R
∏

r=P+1

exp (−βULJ(xr))

W (xr)

)

(32)

It is interesting to note that the only input

data needed is the ∆rG
0(T ) of the simulated

reaction. This standard free enthalpy of

reaction is easily obtained from experimental

database.

It is also possible to compute a chemical

equilibrium combining several chemical reac-

tions. To do this, we used the same algorithm

as presented above, but we added a prelimi-

nary step consisting on randomly choosing the

reaction to perform before each reaction move.

Finally, note that it is also possible to sim-

ulate a chemical equilibrium at constant pres-

sure. To do this, an other move has to be used

during the simulation: the usual volume change

Monte Carlo movement. As in the NPT en-

semble, it consists on modifying the volume of

the simulation box, performing an homothetic

transformation of the system. The acceptance

probability of this move is given by [17]:

Pacc = min

[

1, exp

(

− β

(

∆U + P∆V

+ Nln

(

Vnew

Vold

)))]

(33)

C. Fluctuation Formula in the Reaction

Ensemble

In this section, starting with the Reaction

Ensemble partition function defined by Smith

[4], we will develop equations following the

example of Lagache et al. [8] in order to

establish the fluctuation formula for thermo-

dynamic derivative properties. We will use

capital letters X for extensive properties, and

lower case letters x for the associated molar

properties.

As discussed previously, the system is com-

posed of s molecular species assuming the fol-

lowing chemical equilibrium:

s
∑

i=1

νiµi = 0 (34)

where µi is the chemical equilibrium of mole-

cular type i and νi is the stœchiometric coef-

ficient of i. This condition can be considered

as an external constrain imposed on the ther-

modynamic system. As a consequence, Smith

and Triska have established the expression of

the Reaction Ensemble partition function under

chemical equilibrium from a Legendre transfor-

mation [4]:

Q =
∑

ξ

s
∏

i=1

(V (ξ) qi)
Ni(ξ)

Λ
3Ni(ξ)
i Ni (ξ)!

×

∫

exp
[

−βĤ (z1, ...)
]

dz1...

(35)

where ξ is the extent of the chemical re-

action used to define all the accessible states
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of the system: for a given molecular type i,

Ni(ξ) = Ni
◦ + ξνi, with Ni(ξ) the number

of molecules of type i for a given state, and

Ni
◦ the initial number of molecules of type i.

In equation (35), V (ξ) is the volume of the

simulation box, qi is the part of the partition

function corresponding to an isolated molecule

of type i, Λi is the de Broglie thermal wave-

length, and Ĥ is the configurational enthalpy,

Ĥ = Uext + U int + PV , expressed in terms of

the relative coordinates zi of the molecules.

As done in previous parts, we set:

qi

Λ3
i

= P0β × exp

[

−β
∆fGi

◦ (T )

NA

]

(36)

As a consequence, the Reaction Ensemble

partition function can be written:

Q =
∑

ξ

s
∏

i=1

(P0βV (ξ))
Ni(ξ)

Ni (ξ)!
× exp

[

−βNi (ξ)
∆fGi

◦ (T )

NA

]

×

∫

exp
[

−βĤ (z1, ...)
]

dz1... (37)

Then, an average property X in this ensemble is given by:

〈X〉 = Q−1
∑

ξ

s
∏

i=1

(P0βV (ξ))
Ni(ξ)

Ni (ξ)!
× exp

[

−βNi (ξ)
∆fGi

◦ (T )

NA

]

×

∫

Xexp
[

−βĤ (z1, ...)
]

dz1...

(38)

To obtain the expression of calorific capacity, it is necessary to derive this expression with respect

to temperature. Two quantities depend directly on T in equation (38): β and ∆fGi
◦ (T ). Thus,

through simple algebra and using properties of perfect gas concerning ∆fGi
◦ (T ), it can be shown

that:

(

∂ 〈X〉

∂β

)

P

=

(

〈X〉
〈

Ĥ
〉

−
〈

XĤ
〉

)

−
1

β

(

〈X〉 〈Ntot〉 − 〈XNtot〉

)

+

(

〈X〉

〈

s
∑

i=1

Ni

NA

∆fHi
◦ (T )

〉

−

〈

X

s
∑

i=1

Ni

NA

∆fHi
◦ (T )

〉) (39)

where Ntot =
∑s

i=1 Ni is the total number

of molecules which can fluctuate during the

simulation, and ∆fHi
◦ (T ) is the standard

entalpy of formation of molecular type i at

temperature T.

In fact, in comparison with the fluctuation

formula obtained in the isobare-isotherm en-

semble [8], the equation (39) takes into account

not only the fluctuations of energy, but also

the fluctuations of composition and number of

molecules. From this equation, taking X = V ,

the coefficient of thermal expansion αP can be

calculated:

αP =
1

〈V 〉

(

∂ 〈V 〉

∂T

)

P

(40)

The derivation of calorific capacity is a little

more complicated. Indeed, it needs the deriva-

tion of total energy in regard with tempera-

ture, including kinetic energy. But in a Monte

Carlo simulation, the kinetic energy K is not

taken into account, and as a consequence, only

the residual calorific capacity can be calculated

during the simulation. Thus, Lagache et al.
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have proposed to clearly separate the two con-

tributions, ideal and residual:

CP (T, P ) = Cid
P (T ) + Cres

P (T, P ) (41)

with

Cid
P (T ) =

(

∂
〈

Hid
〉

∂T

)

P

(42)

and

Cres
P (T, P ) =

(

∂ 〈Hres〉

∂T

)

P

(43)

Considering that Hid can not be evaluated

in regard with K, but that it is possible to give

an expression of it in regard with standard ther-

modynamical data (Hid =
∑

i 〈Ni〉
∆f H

◦

i

NA
), we

obtain:

Cid
P (T ) =

∑

i

∂ 〈Ni〉

∂T

∆fH
◦

i

NA

+
∑

i

〈Ni〉C
◦

Pi

(44)

and with Hres = Uext + PV − NtotkT ,

we can thus obtain Cres
P (T, P ), and then

CP (T, P ), using equation (39) with X = Hres

and X = Ni.

To obtain the other derivative properties of

interest, it is necessary to calculate the isother-

mal compressibility βT whose expression is the

same as in the isothermal-isobaric ensemble:

βT = −
1

〈V 〉

(

∂ 〈V 〉

∂P

)

T

=
1

〈V 〉 kT

(

〈

V 2
〉

− 〈V 〉2
)

(45)

Then it is possible to obtain the calorific ca-

pacity at constant volume CV , the sound veloc-

ity CS and the Grüneisen coefficient γ:

CV = CP −
α2

P V T

βT

CS =

√

V CP

CV βT

γ =
V αP

CvβT

(46)

It is important to note that the quantity X

(for example CP (T, P )) is extensive. To ob-

tain the exact molar quantity, it is necessary

to derive the molar quantity of X (for example

the molar enthalpies hid and hres), introducing

again the Ni’s in the derivative, for which fluc-

tuations have to be taken into account. Nev-

ertheless, the only constant quantity during a

detonation is the mass of the system, and the

use is to employ massic quantities, so we did

not evaluate molar quantity in this work.

III. RESULTS

A. Simulation Details

All the simulations performed in this work

have been done with the program GIBBS,

owned by the Institut Francais du Petrole,

the Université Paris Sud, and the CNRS, and

developped in collaboration between those

three owners and the CEA [19].

In order to reach the chemical equilibrium

of a system using the ReMC method, it is

necessary to define a priori the set of chemical

equations driving the system. To do this, the

first step is to choose which type of molecule

is expected at equilibrium. In our case, it

is known that the detonation products of

NiMe, HNE, TNM, PETN and RDX are the

following: CO2, H2O, CO, N2, H2, O2, NO,

NH3 and CH4 in a fluid phase, and eventually

carbon in a solid phase. More precisely, it is

possible to neglect some of those molecules,

because their molar fractions are known to be

very small. So on, table I shows the detonation

products taken into account for each studied

explosives.

The second step consists on finding a set of

linearly independent chemical equations involv-

ing those molecules that satisfy the stœchiom-

etry and the chemical specificity of the system.

To do this, we applied the formula-vector ma-

trix stœchiometric algorithm devised by Smith
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NiMe TNM HNE PETN RDX

CO2 x x x x x

H2O x x x

CO x x x x

N2 x x x x x

H2 x x x

O2 x x

NO x x x x

NH3 x x x

CH4 x

Csolid x

TABLE I: Molecular species taken into account in

the detonation products mixture of the studied ex-

plosives.

and Missen [21]. It is important to note that

the nitromethane case is particular due to the

presence of solid carbon. We will show later

that the solid phase is not included in the chem-

ical equilibrium, and this is the reason why it

has not been included in the formula-vector ma-

trix stoechiometric algorithm used here. This

method leads to the following set of reactions:

• NiMe:

2NH3 ⇄ N2 + 3H2

CO + 2NH3 ⇄ N2 + CH4 + H2O

CO2 + H2 ⇄ CO + H2O

• TNM (All the carbon atoms are in the

CO2 molecules):

2NO ⇄ O2 + N2

• HNE:

2NO ⇄ O2 + N2

2CO2 ⇄ 2CO + O2

• PETN and RDX:

2NH3 ⇄ N2 + 3H2

2CO2 + N2 ⇄ 2CO + 2NO

CO2 + H2 ⇄ CO + H2O

The potential models used in this study are

the exponential-6 potential proposed by Fried

et al. [22] that reproduce the thermodynamic

behavior of pure compounds under high tem-

peratures and pressures. A cut-off equal to

the half of the box length has been used to

reduce the computing time. Periodic boundary

conditions together with long range corrections

have been used.

All the simulations performed in this work

were initiated with a number of molecules cor-

responding to a system of several hundred of

explosive molecules. During ReMC NVT sim-

ulations, the respective probabilities of choos-

ing a translation move and a reaction move

were 0.8 and 0.2. During ReMC NPT simu-

lations, the respective probabilities of choos-

ing a translation move, a volume change and

a reaction move were 0.8, 0.02 and 0.18. The

pole conditions used to compute Hg in the AE-

EOS method are given in table II. The conver-

gence of AE-EOS ReMC simulations were gen-

erally obtained after 107 iterations, changing

the temperature every 0.5·106 iterations and

calculating the Hg value on 0.25·106 iterations

before evaluating the new temperature. The

NPT simulations performed to obtain deriva-

tive properties should be much longer: around

20·106 iterations to converge, and averages were

calculated on 30·106 iterations after conver-

gence.

V0 (cm3.g−1) E0 (J.kg−1)

NiMe 0.883 -1.939·106

TNM 0.606 1.879·105

HNE 1.096 3.987·106

PETN 0.971 -1.68·106

RDX 1.0 3.181·105

TABLE II: Pole conditions used to compute Hg in

the AE-EOS method.
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B. Crussard curves

To calculate the Crussard curves of the

four systems without solid phase of carbon

(TNM, HNE, PETN, RDX), we have directly

applied the AE-EOS ReMC method described

previously. Five simulations have been per-

formed for each system, at five different specific

volumes between 0.4 and 0.95 cm.g−1. Monte

Carlo results are displayed in figure 1 (TNM), 2

(HNE), 3 (PETN) and 4 (RDX), and compared

with results obtained with our thermochemical

code using the same potential models [2].

FIG. 1: Calculated Crussard Curve of Tetrani-

tromethane (TNM).

For those four systems, we can see that

Monte Carlo results are in good agreement

with thermochemical ones. The small dis-

crepancies seen in figures 1, 2, 3 and 4, are

probably due to the various approximations

used in the thermochemical code, for example

in the MCRSR theory [1] and the one-fluid

hypothesis. Those results, obtained with the

same potential models in both cases, validate

our microscopic method to calculate Crussard

curves.

Concerning Nitromethane, the simulation

process is a little more complicated due to the

fact that we are not actually able to explic-

FIG. 2: Calculated Crussard Curve of Hexani-

troethane (HNE).

FIG. 3: Calculated Crussard Curve of PETN.

itly simulate a chemical equilibrium involving

a solid phase. To obtain the Crussard curve

of nitromethane, we then applied the following

two steps process:

• In a first step, we performed a calcula-

tion of the Crussard curve with our ther-

mochemical code, in order to determine

the quantity, the molar volume and the

molar energy of the solid phase of carbon

along the Crussard curve, using the Ree-

van Thiel equation of state [23].
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FIG. 4: Calculated Crussard Curve of RDX.

• Then, we performed the five AE-EOS

ReMC simulations at five different vol-

umes, but with the stoechiometry corre-

sponding to nitromethane minus the car-

bon trapped into the solid phase. During

those simulations, the AE-EOS method

is applied with a modified Rankine-

Hugoniot relation:

Hg = Etot − E0 −
1

2
(P + P0)(V0 − Vtot) (47)

with

Etot = Efluid + Esolid (48)

Vtot = Vfluid + Vsolid (49)

where Efluid and Vfluid are the energy

and volume of the fluid calculated during

the Monte Carlo simulation, whereas

Esolid and Vsolid are the energy and

volume of the solid phase of carbon taken

from the thermochemical calculation.

Results obtained concerning the ni-

tromethane appear in figure 5.

FIG. 5: Calculated Crussard Curve of Ni-

tromethane (NiMe).

As far as nitromethane is concerned, Monte

Carlo and thermochemical results are also

consistent. Nevertheless, in this case, Monte

Carlo results depend on the thermochemical

ones through the Ree-van Thiel equation

of State for solid phase of carbon. This is

not satisfactory, because this means that the

accuracy of a complex microscopic Monte

Carlo simulation is bound to the quality of

an empirical equation of state. Moreover, in

our simulations, the quantity of solid carbon is

determined a priori.

As a consequence, although we propose in

this work a simple and successful way to take

into account the solid phase in the fluid chemi-

cal equilibrium, this may be improved to better

simulate the equilibrium between the solid and

fluid phases. Some perspectives of this work are

presented in the conclusion.

C. Chapman-Jouguet State

Once the Crussard curve has been calculated

for each system, the five CJ points could be

determined. To do this, we have fitted the cal-

culated points by the following function, which

gives the pressure on the Crussard curve in re-
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gard with η = V/V0:

P (η) = a · e−bη + c · η−d (50)

The CJ point is then the tangential point be-

tween the Rayleigh line and the Crussard curve.

Thus, knowing the pole conditions, we are able

to give a value of the derivative of the pressure

along the Crussard curve with respect to the

volume at the CJ point:

dP (η)

dV
(CJ) =

P (ηCJ ) − P0

V (ηCJ ) − V0
(51)

which is equal to:

dP (η)

dη
(CJ) =

P (ηCJ ) − P0

ηCJ − 1
(52)

Introducing equation (50), and assuming

that P0 << P (ηCJ ), we obtain the CJ point

where η satisfies:

a · e−bη + c · η−d

(1 − η)
= a · b · e−bη + d · c · η−(d+1)

(53)

In this method, the CJ points calculated for

the five systems are presented in table III. From

the calculated PCJ and VCJ , we have deter-

mined the detonation velocity DCJ , using the

following equation derived from the Hugoniot

relations:

DCJ = V0

√

(PCJ − P0)

(V0 − VCJ )
(54)

This property is interesting because it can

directly be measured experimentally. Table

III shows a comparison between the calculated

and measured values of DCJ .

Table III shows that the CJ states calculated

using our Monte Carlo method are in good

agreement with thermochemical results. The

discrepancies between the two methods are

below 4 % concerning pressures, below 1 %

concerning volumes, below 1.5 % concerning

NiMe TNM HNE PETN RDX

Monte Carlo Results

PCJ (kbar) 118.7 149.7 61.42 83.17 93.83

VCJ (cm3.g−1) 0.658 0.470 0.780 0.721 0.742

TCJ (K) 3463 2250 6017 4677 4325

DCJ (m.s−1) 6414 6364 4828 5599 6028

Thermochemical Results

PCJ (kbar) 123.1 155.0 62.57 85.85 97.22

VCJ (cm3.g−1) 0.653 0.470 0.784 0.721 0.742

TCJ (K) 3513 2229 6042 4685 4350

DCJ (m.s−1) 6493 6464 4897 5696 6137

Experimental Resultsa

DCJ (m.s−1) 6370 6450 4950 5620 6050

aReference [24] for NiMe

Reference [25] for TNM

Reference [26] for HNE

Reference [27] for PETN

Reference [28] for RDX

TABLE III: CJ states of the studied explosives cal-

culated using our Monte Carlo method, using our

thermochemical code [2], and, considering the det-

onation velocity, compared with experimental mea-

surements [24–28].

temperatures and below 1.8 % concerning

detonation velocities.

We can also note that the calculated values

of DCJ are in good agreement with the exper-

imental values in each of the five cases. The

difference between Monte Carlo simulation re-

sults and experimental ones is about 1.8 % for

nitromethane, 1.6 % for TNM, 1.3 % fo HNE,

0.4 % for PETN and 1.2 % for RDX, which

is very satisfactory considering that simple po-

tential models have been used, and considering

that experimental uncertainties concerning the

positions of the CJ state are in the same order

of magnitude. It is already anticipated that

MC results would be more significant as real-

istic potential models become used. It is also

important to notice that, considering detona-

tion velocity, thermochemical results are some-

times closer to experiment than Monte Carlo

ones. This can be explained by the fact that po-
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tential models are effective potentials. Indeed,

they have been optimized through the use of

thermochemical codes, and thus integrate the

different sources of errors coming from the dif-

ferent approximations.

D. Derivative properties at the CJ point

Four ReMC NPT simulations have been

performed in order to calculate the derivative

properties of TNM, HNE, PETN and RDX.

Because of the contribution of the carbon solid

state in the CJ point of nitromethane, this

system has not been considered. Results are

presented in table IV.

First of all, it is important to note that

the converged volume obtained at the end of

those NPT simulations is consistent with the

predicted CJ volume presented in table III.

TNM HNE PETN RDX

Monte Carlo Results

CP (J.kg−1.K−1) 1660 1826 2199 2024

CV (J.kg−1.K−1) 1568 1593 1977 1800

CS (m.s−1) 4927 3434 4177 4494

Γ 0.619 0.396 0.436 0.536

Thermochemical Results

CP (J.kg−1.K−1) 1660 1824 2233 2085

CV (J.kg−1.K−1) 1575 1592 1998 1827

CS (m.s−1) 5008 3492 4233 4551

Γ 0.59 0.40 0.45 0.57

TABLE IV: Derivative properties (heat capacities,

sound velocities and Grüneisen coefficients) at CJ

point for the four studied explosives.

Table IV shows that the derivative properties

calculated at the CJ points using our Monte

Carlo method are in good agreement with

thermochemical results. The discrepancies

between the two methods are below 3 %

concerning heat capacity at constant pressure

(CP ), below 1.5 % concerning heat capacity at

constant volume (CV ), below 1.8 % concerning

sound velocity (CS) and around 5 % concerning

Grüneisen coefficient (Γ). It is important to

note that a part of those discrepancies is due

to the fact that the (PCJ , TCJ ) are not exactly

the same.

The calculation of the sound velocity at the

predicted CJ state appears really interesting

because it allows to verify that the considered

thermodynamic state is really the CJ state.

Indeed, the CJ state is the only point in the

Crussard curve where the following relation

is verified: DCJ = CS + uP (CJ). uP is the

particle velocity, obtained from the Hugoniot

relation: uP = P−P0

ρ0D
[29]. Using the Monte

Carlo results presented in tables III and IV,

it appears that this relation is verified for the

4 systems, with an accuracy of 0.5 %. This

is very satisfactory because it validates in the

same time the way to determine the CJ state

from the Crussard curve, and the fluctuation

formula used to calculate CS .

Those results concerning derivative proper-

ties are important because to our known, it

represents the first results of microscopic cal-

culations of such properties for systems under

chemical equilibrium.

IV. CONCLUSION

We have proposed in this work a new micro-

scopic method to calculate the crussard curve

and the CJ state of detonation products mix-

tures of usual explosives. This method, based

on Monte Carlo simulations employing ReMC

and AE-EOS methods, has been validated by

comparison with thermochemical calculations.

The simulations presented here have been

performed with simple potential models, and

it can be expected that simulations performed

with complex potentials would give more

accurate results. This is the first perspective

of our work.

We also have proposed a fluctuation for-

mula to calculate derivative properties in the
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Reaction statistical ensemble. This formula

takes into account the energy fluctuations, and

the fluctuations of composition and number

of molecules. This formula has allowed us to

calculate heat capacities, sound velocities and

Grüneisen coefficients through ReMC NPT

simulations, in the 4 cases where no carbon

phase was included. Concerning the last case

(NiMe), the calculation of derivative properties

was not possible with this formula, because of

the way the solid phase has been taken into

account.

Finally, we have proposed a simple way to

take into account the solid phase of carbon

which could appear in the detonation prod-

ucts. In this work, the properties of the solid

phase are determined by thermochemical calcu-

lations via the Ree-van Thiel equation of state,

and included in the Monte Carlo simulation.

This leads to a satisfactory restitution of the

Crussard curve and the CJ properties, but still

presents unconsistency in the treatment of the

equilibrium between the fluid mixture and the

solid phase. This constitutes the second per-

spective of this work. We could think about

several ways to improve this equilibrium. A

first idea should be to explicitly treat the car-

bon phase in the simulation. Nevertheless, this

would strongly increase the computing time.

Moreover, the intrinsic properties of the solid

phase are not the main goal of this type of

study. So, it should be sufficient to take into

account the solid phase in a more implicit way.

For example, considering that experimentally,

the solid phase of carbon seems to appear as

agregates, it could be interesting to simulate

those agregates via mesoparticules with more or

less interactions with the fluid mixture. More-

over, those improvements should allow us to

calculate the derivative properties of system

under a chemical equilibrium including a solid

phase.

V. ACKNOWLEDGEMENTS

Pr P. Ungerer from IFP is gratefully acknowl-

edged for fruitful discussions about the theory

of the Reaction Ensemble and the way to ob-

tain the acceptance probability. E. Auroux

from CEA is gratefully acknowledged for his

help on thermochemical calculations and for his

knowledge about experimental data. All Monte

Carlo simulations have been performed with the

Gibbs code from IFP, CNRS and the Université
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