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Abstract 

 

Ca2+ entry in neuronal cells is modulated by the activation of numerous G protein coupled 

receptors (GPCR). Much effort has been invested in studying direct G protein inhibition of 

voltage-dependent CaV2 type calcium channels. This inhibition occurs through a series of 

landmark convergent modifications in channel biophysical properties. An integrated view of 

the structural organization of the Gβγ dimer binding site pocket on the channel is progressively 

emerging. In this review, it is shown how a variable geometry of the Gβγ binding pocket can 

yield distinct sets of channel inhibition. In addition, specific mechanisms are proposed for the 

channel regulation by G proteins which take into account the regulatory input of each Gβγ 

binding element. 
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Neuronal voltage-dependent calcium channels (CaV2) which give rise to P/Q-, N- and R-type 

currents, are in great part localized in synaptic terminals where they control neurotransmitter 

release and thereby synaptic communication. Their involvement is thus essential for the 

normal functioning of the peripheral and central nervous system [1-3] and any mechanism 

that leads to their dysfunction is responsible for severe neuronal diseases. As for most key 

contributors to cell physiology, these molecular structures are under heavy regulatory control. 

One of such regulation comprises the negative control provided by G protein coupled 

receptors (GPCR) whereby activation of one GPCR activates a signaling mechanism that 

terminates calcium influx and hence inhibits neurotransmitter release [4]. This process can be 

derived for therapeutic purposes. For instance, pain treatment is provided through the 

administration of a specific agonist of opioid receptors (morphine) that inhibits N-type 

channel activity at peripheral synapses. The number of GPCRs (600 estimated from the 

Human genome) along with the diversity of G proteins identified (27 Gα, 5 Gβ and 14 Gγ 

genes) implies a great diversity in the forms of inhibition. No less than 20 known GPCRs 

have been shown to inhibit N-type channel activity. This inhibition can occur as the result of a 

feedback mechanism whereby the neurotransmitter, just released in the synaptic cleft, 

activates a GPCR adjacent to the channel to inhibit the process responsible for its own release. 

It can also be the result of the activity of an inhibitory neuromediator released from a nearby 

site. 

Understanding how the activation of various GPCRs can lead to calcium channel inhibition is 

thus essential for the understanding of the physiological implications of this regulation and for 

the design of new therapeutic strategies. Many structure-function approaches have been 

undertaken to reach this goal. However the actual mechanistic picture of calcium channel 

regulation by G proteins remains unclear and the goal of this review is to sharpen our 

understanding of this important regulatory process. After a period of controversial reports 

(1990-1995), Herlitze et al. (1996) [5] and Ikeda (1996) [6] established that this inhibition can 

be produced by Gβγ dimers which with Gα-GTP can be produced following GPCR activation. 

Expression experiments clearly demonstrated that the pore-forming CaV2 subunit alone is 

sufficient to display direct G-protein-mediated inhibition [7-9]. The identification of multiple 

Gβγ binding sites on CaV2 channels leads to an unclear structural picture of the direct G 

protein inhibition. Here, all CaV2channels are considered to contain a single Gβγ protein 

binding pocket (GPBP) with multiple interactive binding sites. The aim of the present review 

is to dissect out the functional consequence of Gβγ binding on the GPBP of CaV2 channels. 
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The number of active Gβγ binding sites on CaV2 depends on the composition of the implicated 

dimer, the state of the channel and its protein environment, with here a particular emphasis 

put on CaVβ , one of the three calcium channel auxiliary subunits. 

 

Gβγ binding sites on CaV2 channels and their relative contribution to the 

direct GPCR-induced calcium channel inhibition 

GPCR activation produces in fact two signaling molecules, Gα-GTP and the Gβγ dimer (Fig 

1). The focus in the present review is on the direct role of Gβγ in the G protein mediated 

inhibition which does not preclude a functional implication of Gα-GTP in channel regulation 

[10]. Very few of the possible Gβγ combinations have been tested. However, the rank order of 

efficacies of the various Gβ isoforms is strongly linked to the type of CaV2 and CaVβ  

combination [11]. Additionally, it also seems related to the isoform type of Gγ that pairs with 

Gβ [12] and most data converge to establish that Gγ is mandatory for observing a G protein 

induced inhibition [6,13,14]. 

Figure 2 summarizes the actual state of knowledge on Gβγ / CaV2 interaction. Gβγ regulation 

requires several structural and functional CaV2 channel determinants: one in the amino-

terminus (Ns), several in the I-II loop (I-IIS1,  I-IIS2, and I-IIS3) and two in the carboxyl-

terminus of the channel (Cs). I-IIS2 contains the QXXER Gβγ binding motif and I-IIS3 contains 

the GID (G protein interaction domain). In the QXXER motif, mutation of its R residue 

blocks G-protein-mediated slowing of activation kinetics of CaV2.1 [15], whereas an 

additional mutation at the third position (I to L) decreases G protein modulation and enhances 

the rate of reversal of G protein effects [16]. The GID denomination was introduced because 

the 21-mer peptide I-IIS3 blocked paired-pulse facilitation of channels under tonic Gβγ 

inhibition [17]. Both the 60 and 20 nM binding affinities of the QXXER domain and of the I-

IIS3 site [15] are one order of magnitude lower than for the CaV2/CaVβ  interaction [18]. The 

interaction point Cs, in the middle of the carboxyl- terminus of CaV2.3 [19] has homologous 

sequences in CaV2.1 and CaV2.2 [20]. After truncation of Cs, together with the remaining 

downstream carboxyl-terminal CaV2.3 sequence, current is no longer reduced by GPCR 

activation [19]. Interestingly, this Cs site for Gβγ is close to the Gαo binding site in CaV2.1 and 

CaV2.2 [21] and to the Gαq binding site [20], which opens the possibility of a large 

CaV/Gαβγ/GPCR complex [22,23]. 
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Importantly, the amino-terminus and the carboxyl-terminus of the channel have been shown 

to interact with the I-II loop [24,25]. This pattern of interactions likely brings the various Gβγ 

interaction points in close spatial proximity of each other. Convincingly, Zamponi and Snutch 

(1998) [26] demonstrated that the reassociation of Gβγ onto CaV2.2 follows a mono-

exponential time course whose time constant linearly depended on Gβγ concentration. It was 

therefore concluded that Gβγ reassociation to the channel occurred as a bimolecular reaction 

implicating the binding of a single Gβγ onto each channel.  

All the above observations suggest that there is a single GPBP on CaV2 and that the activation 

of GPCR produces variable sets of G protein-mediated regulation. Figure 3 summarizes all 

the effects that are considered as hallmarks of direct G protein regulation. Four “On” effects 

converge to achieve an efficient inhibition of CaV2 and washout of the receptor agonist leads 

to full recovery of the current amplitude. Recovery (“Off” effect) kinetics appear to be 

systematically slower that the “On” effects, lasting a few seconds [27,28]. Experimentally, 

“Off” effects are also observed when large prepulse depolarizations are applied (Fig 3b) [29]. 

However, recovery of the current amplitude is then rarely complete [30]. Prepulse application 

has always been assumed to reverse the direct G protein “On” inhibition by producing 

unbinding of the Gβγ dimer from the channel. 

The molecular determinants implicated in the various effects of G protein regulation have 

been dissected out by mutagenesis of G protein-sensitive channels and sequence swapping 

between G protein-sensitive and G protein- insensitive channels. Despite the variability among 

the data, the following conclusions can be extracted. First, to observe any kind of effect, the 

Ns site is mandatory. Evidence comes from the fact that G protein inhibition of CaV2.3 is only 

observed for a long isoform that comprises the Ns site, but not for a short isoform that lacks it 

[31]. Conversely, a CaV2.2/CaV1.2 chimera with the Ns of CaV2.2 is more sensitive to G 

protein regulation [32]. Second, the carboxyl- terminus of all CaV2 channels play an obligatory 

or facilitating role (depending on CaV2 or GPCR isoform) when G protein inhibition is 

mediated by GPCR activation [19,21], whereas it does not seem to contribute when a 

combination of Gβγ complex is over-expressed [32]. Also, peptides mimicking the binding site 

for Gα, present on the carboxyl-terminus of CaV2.1 and CaV2.2, impair the GPCR induced 

channel inhibition [21]. Deletion of the Cs site in CaV2.3 induces a complete loss of 

regulation by the activation of the muscarinic M2 receptor [19], whereas a similar deletion in 

Cav2.2 reduces somatostatin regulation by about 50% [33]. These findings are in favor of the 

hypothesis along which the initial binding of the heterotrimeric G protein onto the carboxyl-
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terminus of CaV2 facilitates channel regulation [22]. Third, the binding determinants of the I-

II loop of CaV2 do not seem to be obligatory for observing current inhibition, one of the “On” 

effects of G protein inhibition [19,34]. However, the presence of the I-II loop makes G protein 

inhibition more prominent [32]. There is also some evidence [35] to believe that the I-II loop 

of some CaV2 are more efficient than others in controlling the Gβγ binding affinity to the 

channel, thus probably imposing the well established rank order of sensitivity to G protein 

inhibition CaV2.2 > CaV2.1 >> CaV2.3. At the functional level, one convincing role of I-IIS2 is 

its implication in the rate of channel facilitation by prepulse application [16,36]. This index is 

interpreted as measuring Gβγ dissociation from the channel complex (“Off” effect); the I-IIS2 

would act as a voltage-sensor and its movements during membrane depolarization constitute 

one step in the pathway leading to channel facilitation. Actually, voltage-sensitivity of I-IIS2 

has recently been evidenced [37]. Interestingly, peptides mimicking either I-IIS1, I-IIS2 or I-

IIS3 are all able to prevent G protein inhibition [16,17,21]. The poor involvement of CaV2 I-II 

loop in the “On” effects of G protein regulation suggests that I-II loop determinants might 

rather contribute to “Off” effects. This hypothesis will require specific testing and, if proven 

true, implicates that the GPBP undergoes a real dynamic of sequential interacting events 

during the “On” and “Off” course of G protein regulation.  

 

Contribution of the β subunit to G protein regulation 

Any protein that forms part of a larger Ca channel protein complex, such as the machinery 

regulating transmitter release, is expected to interact with Gβγ determinants and to alter G 

protein inhibition as a consequence. For instance, this was shown to be the case with syntaxin 

1A ([38,39]). Here, focus will be put on the “constitutive” CaVβ , whose modulatory effects on 

the activity of the pore forming CaV2 subunit have been extensively studied. Furthermore the 

structures of three CaVβs have been obtained in 2004 (for a review [40]).  

The CaVβ  acts by increasing the coupling efficiency between the gating charge movements 

and the pore opening (measured by Ca2+ currents) [41,42]. The voltage-dependence of gating 

current is however not modified. As a result, channel opening is facilitated, an effect that 

translates into an hyperpolarizing shift of the voltage-dependence of current activation. From 

this point of view, the effects of the CaVβ  are seemingly opposite to those observed with Gβγ. 

A more subtle picture emerges however when comparing Gβγ regulatory effects on a channel 

that either lacks or comprises CaVβ . On a “nude” channel, G-protein regulation produces 1) 
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marked current inhibition, 2) mild slow-down of activation kinetics, but 3) no clear-cut shifts 

in the voltage-dependencies of either activation or inactivation properties. Current facilitation 

induced by prepulse application has been observed, though not systematically. When CaVβ  is 

added, Gβγ effect on the current amplitude is conserved, whereas the slowing of activation 

kinetics is enhanced. Furthermore, prepulse facilitation is clearly evidenced, the depolarizing 

shift of the voltage-dependence of activation is obvious, and changes in inactivation have 

been demonstrated. These observations rather point to a synergistic or “promoting” effect of 

CaVβ  on Gβγ regulation. This diversity of effects might be due to distinct experimental 

conditions. In the actual physiological representation, one must keep in mind that the 

regulatory CaVβ  is constitutive (with all CaV2 in a CaV2/β  complex form with a generally 

accepted 1:1 stoechiometry) whereas Gβγ concentration varies spatio-temporally with GPCR 

activation. Expression of CaVβ  introduces an experimental bias in the study of G protein 

regulation. To be optimal, the experimental conditions should be set so that Gβγ concentration 

rises sufficiently to also approach a 1:1 ratio between CaV2 and Gβγ. Most favorable 

conditions appear to be i) the acute injection of Gβγ or ii) the over-expression of a Gαβγ 

complex. Assuming that the stoechiometric requirements have been reached in most studies, 

the data indicate that the regulation by Gβγ in the presence of CaVβ  can be placed into four 

different case scenarios. 

Case 1: lack of Gβγ binding in the presence of CaVβ - There are clear-cut examples in the 

literature in which Gβγ regulation is ineffective on Cav2.3 in the presence of a particular CaVβ  

subunit isoform [43]. For instance, the co-expression of CaVβ2a with Cav2.3 blocks the M2 

receptor- induced current inhibition [19]. In this study, it was found that Gβγ and CaVβ2a are 

both able to bind separately on the Cs interaction point. Furthermore, binding of CaVβ2a to Cs 

occludes the subsequent interaction of Gβγ with CS. As suggested earlier, it is tempting to 

propose that Cs represents an initial anchoring point for Gβγ that controls the efficient position 

of Gβγ for regulation.  

Cases 2 and 3: simultaneous binding of Gβγ and CaVβ . The first evidence demonstrating that 

Gβγ and CaVβ  can bind simultaneously onto the channel comes from the fact the activation 

kinetics of Cav2.2 under Gβγ inhibition are much slower when CaVβ2a subunit is used over any 

other CaVβ  [11]. The second evidence came from FRET experiments between Cav2.1 and 

CaVβ1b that indicated a conformational change induced by Gβ binding onto Cav2.1 carboxyl-

terminus interaction site (presumably Cs) [44]. All, these observations suggest that some 
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isoforms of Gβ bind to the channel simultaneously with CaVβ . The functional antagonism 

between CaVβ  and Gβγ might thus result from steric hindrance due to the presence of the CaVβ  

on the I-II loop. Consequently, binding of Gβγ to the I-II loop would occur with a lower 

affinity (reduced interaction points and altered conformation). The induction of an inhibited 

channel mode induced by Gβγ in the simultaneous presence of CaVβ  can be envisioned along 

two mechanisms illustrated in Figure 4: the state- induced model (Fig 4a) or the Gβγ 

dissociation model (Fig 4b). 

Case 4: Binding of Gβγ complex produces CaVβ  dissociation 

One simple explanation for some of the G protein and CaVβ  opposite effects would be that 

Gβγ displaces the CaVβ  from its binding site on the channel, thereby reversing its regulatory 

properties (Fig 4b, “β  dissociation” model).  CaVβ  association to AID has been shown to 

modify this site from a random coiled structure to an α-helix with a concomitant increase in 

affinity [45,46]. This observation strongly suggests that the interaction of Gβγ with I-IIS2 

would be able to destabilize the α-helical structure and shifts AID from a high to a low 

affinity binding site for CaVβ  (binding antagonism). Though steric information is lacking, 

simultaneous binding of Cavβ  and Gβγ onto the I-II loop (required as the initiation step for 

Cavβ  dissociation) is likely considering the number of high affinity sites for Gβγ present 

downstream of AID. In agreement with these structural considerations, such a CaVβ  

displacement by Gβγ has been observed experimentally [47]. Using a I-II loop/ CaVβ  chimera 

to impose the 1:1 stoechiometry of interaction, it was shown that Gβγ binding on the I-II loop 

produces a loss of internal AID / CaVβ  interaction. This conclusion was also reached with a 

FRET approach using the full- length GFP-tagged CaV2.1 channel and a chemically modified 

Cy3-CaVβ . CaVβ  dissociation may require specific conditions: 1) a single anchoring point for 

CaVβ  onto the channel (AID), 2) a peculiar Gβγ combination, and 3) a specific Gγ subunit for 

an interaction with the I-II loop [48]. 

Further investigations are required to determine which combination of subunits leads to one 

or the other type of Gβγ interactions. Importantly, this variety of interactions is likely to occur 

also when any constituent of a CaV complex is substituted with a related isoform. 
 

Ending the channel inhibition produced by activated G proteins 

Ending the GPCR-induced channel inhibition occurs physiologically on recapture of the 

agonist, pharmacologically by application of a specific antagonist or experimentally by 
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application of a strong depolarization. The latter relief of inhibition is transient because as 

soon as the depolarizing trigger is lost, re- inhibition occurs with well-defined kinetics that are 

dependent on Gβγ concentration. Although the end result is similar, at least temporary for the 

prepulse application, the “Off” position of Gβγ is maybe not identical whether the “Off” signal 

is provided by Gα or prepulse application. 

In a physiological context, hydrolysis of GTP bound on Gα converts the latter from a low to a 

high affinity ligand for Gβγ. Rebinding of Gα to Gβγ terminates the inhibitory signal and may 

follow two possible paths. First, Gα may naturally chelate free Gβγ that would come on and off 

the channel as a result of binding equilibrium. Second, Gα may bind onto Gβγ while on the 

channel which implies that Gβγ determinants essential for Gα association remain accessible in 

spite of the association of Gβγ to the GPBP. The consequences of this Gα re-association to Gβγ 

can leave the Gβγ associated to CaV. In this case, the trimeric G protein is permanently 

associated to the channel, a view that is probably incompatible with data suggesting that Gβγ 

may come on and off the channel in a concentration-dependent manner [26]. Alternatively, Gα 

binding produces a complete dissociation of Gβγ from the GPBP which however does not 

preclude that the trimeric G protein complex may remain associated to the channel through 

Gα. In all these potential mechanisms for signal termination, what matters the most is the loss 

of influence of a critical Gβγ element onto a structural element that controls channel opening. 

In that respect, termination of G protein inhibition by prepulse application has to share this 

critical step with the physiological termination. 

The channel structural elements required for prepulse termination of Gβγ inhibition have not 

yet been identified. Expectations are that these channel structural elements are voltage-

sensitive and translate their conformational changes to the structural elements that bind Gβγ. 

The molecular schemes just proposed for the physiological termination of Gβγ inhibition 

should also apply to prepulse termination. Full Gβγ dissociation is most frequently assumed 

but clearly lacks a molecular demonstration. A fourth case scenario should be introduced 

based on the proposal that a strong depolarizing prepulse introduces a temporary 

conformational change in the channel [49] that would be sufficient to convert the channel 

from a “reluctant” to a “willing” mode (see Figure 4) with the assumption that these states are 

controlled respectively by Gβγ and CaVβ  association.  

In a model in which CaVβ  dissociation would occur, an additional molecular event should 

take place upon termination of Gβγ inhibition. This step is linked to CaVβ  re-association to the 



25/04/05  10 

channel once its binding site has been freed from the competitive action of Gβγ. This second 

step is required for shifting back the channel from a “reluctant” to a “willing” state. A 

consequence of this two-step procedure is that the kinetics of termination of G protein 

inhibition is also bi-modal: a rapid reversal for current amplitude and activation kinetics, and 

a slower one for the shift from “reluctant” to “willing”. 

 

 
Concluding remarks 
 
The study of Gβγ interaction on CaV2 channels in expression system has opened the way to 

vary independently the various molecular components. However, following the basic rules of 

physiology, the concentration of CaVβ  is not expected to vary, as opposed to the Gβγ 

concentration which is strictly controlled by GPCR activation. Thus, G proteins and not 

calcium channel auxiliary subunits are the key regulatory elements. In the present model of G 

protein regulation, a G protein binding pocket of variable geometry, as defined by the direct 

protein environment of the channel, governs the various mechanisms of G protein inhibition. 

Landmark effects that at once seemed all to depend of different mechanisms can be regrouped 

in a single one, but still adapt the possibility of interesting variations such as CaVβ  

dissociation. Channel remodeling under G protein regulation is by far one of the most 

interesting concepts as it depicts a calcium channel with all its dynamics and opens intriguing 

new roles for each of its elementary components. 
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Figure 1 – Structure of Gβγ, and its essential binding determinants. The crystal structure of 

Gβγ points to a complex of 80 x 50 x 45 Å thick (PDB accession 1TBG; [50]). CPK model of 

transducin Gβγ crystal structure [50] shown at two opposing faces (180° rotation). Considering 

its membrane attachment, Gβγ should be oriented with its longest axis perpendicular to the 

plasma membrane positioning the Gβγ at the periphery of CaV2. Gβ is shown in blue, whereas 

Gγ is depicted in green. The Gβγ is oriented such that Gγ binds the plasma membrane by its 

farnesyl residue at the amino-terminus. Noteworthy a positively charged pocket is also 

oriented towards the plasma membrane. Various structural and functional studies have 

defined critical Gβ amino acid residues for the regulation of calcium channels (shown in red) 

[51-58]. Amino acid residues common to Gβ subunits that bind to the I-II loop, but absent 

from Gβ subunits that do not bind this loop include R19, S31, N35, P39, A193, R197 and 

A305 according to Gβ1 numbering. Some of these residues are within or near regions involved 

in the interaction with the Gγ subunit. The observation that Gβ isoforms differ in their ability 

to interact with the I-II loop of Cav2.2 is confirmed by a study demonstrating that the 

antagonistic effect of PKC phosphorylation of the I-II loop is only observed with Gβ1 [52,53]. 

Additional residues required for binding peptides with the QXXER motif are shown in light 

purple [59,60]. The yellow arrow depicts the phosphorylation sensor of GID [53]. All 

important functional residues for calcium channel regulation are distributed on the two faces 

of the Gβγ dimer shown here. Interestingly, Gα binding site (dark purple) is almost completely 

masked by the “interaction” with the calcium channel with the exception of a few amino acid 

residues [54,56-59,61-64]. The masked residues are outlined by a dark purple dashed line. Of 

note, the important functional channel regulation provided by a peptide that comprises amino 

acid residues 270-305 of Gβ2 [65]. Figure created with RasMol v2.7.2.1 (Raswin Molecular 

Graphics, Berntein H. 1998-2001). 

 

Figure 2 – Important G protein determinants on Ca v2-type channels. Top diagram shows 

the characteristic topology of the pore-forming Cav channel. Each hydrophobic domain (I to 

IV) is made of six transmembrane spanning segments (1 to 6), S4 representing the voltage-

sensor, rich in positively-charged amino acid residues. The major Gβγ determinants on Cav 

cytoplasmic domains (Ns, QXXER, GID and Cs; see text) are reported in red and detailed in 

the three lower panels, amino-terminal, I-II loop and carboxyl-terminal regions. The Ns 

determinant has been described on CaV2.3 [31] and on CaV2.2 [31,32] and identified on the 

basis of functional evidence only. An equivalent sequence is found on CaV3.2 but on the I-II 
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loop [66]. Two binding domains, QXXER and GID, have been identified in the I-II loop using 

either peptides (peptides I-IIS1 to I-IIS3 [17] and peptide PL1 [21], illustrated by underlined 

sequences), mutagenesis [15] or binding experiment [19].  

GID forms part of the I-IIS3 sequence [67], whereas PL1 is part of both I-IIS1 and I-IIS2 

[21,68]. The inhibitory phosphorylation site in GID is shown in blue [17]. Green refers to the 

primary site (the 18 amino-acid residues of the AID on I-II loop [69]) and the secondary sites 

(SS1 on the amino-terminus [70,71] and SS2 on the carboxyl-terminus [70,72]) that interact 

with CaVβ . Brown refers to the EF hand, preIQ, IQ and CBD domains [73,74] which 

constitute the carboxyl-terminal Ca2+ binding domains. Gαq [20] and Gαo [68] binding sites 

are reported in dark purple. Lower panels show sequence alignments for Cav2.1 (SwissProt 

accession number: P54282, rat), Cav2.2 (Q02294, rat), Cav2.3 (Q15878, human) for non L-

type channels, and Cav1.2 (P22002, rat) for L-type channel. Boxes refer to sites defined by 

point mutations. Sequence gaps are shown by dashes.  

 

Figure 3 - Hallmarks of G protein modulation. a) “On” effects observed after GPCR 

activation are a1: an inhibition of the current amplitude (ranging from 15 to 80% depending 

on the CaV/GPCR combination) which is far more pronounced at the start of the 

depolarization than at the end of the pulse, a2: a slowing of the kinetics of current activation 

between 10 to 100 ms, a3: a depolarizing shift of the voltage-dependence of channel 

activation which has been described in terms of channel modes, and a4: a shift to 

hyperpolarized potentials of the steady-state inactivation curve. 

 b) Experimental “Off” effect. Prepulse application at 100 mV before test pulse at 10 mV 

reduces Gβγ inhibition (relative facilitation). Current traces and curves were obtained from 

various Cav2.2/CaVβ  combinations expressed in Xenopus oocytes (all data obtained with the 

combination Cav2.2/β3 except panel 2 traces obtained from Cav2.2/β2a). 

 

Figure 4 – Willing and reluctant modes of Cav2-type channels. The terms willing and 

reluctant [75] refer to the easiness of channel activation. The willing mode corresponds to 

channel activation at more hyperpolarized potentials than the reluctant mode. We have 

identified three different possible mechanisms for the induction of the reluctant mode by Gβγ 

(state-induced, β  dissociation and Gβγ dissociation). a) State- induced model. This model 

assumes that willing and reluctant modes are intrinsic modes of Cav2. Alteration of voltage-

detection induced by Gβγ binding preferentially shifts the equilibrium between willing and 
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reluctant modes towards the reluctant mode. In favor of this model, a mutation of CaV2.2 

(G177E) in the IS3 segment can shift the channel in a reluctant mode without the contribution 

of Gβγ [76]. The state- induced model implicates that simultaneous binding of Gβγ and CaVβ  is 

possible. b) CaVβ  dissociation model. Binding of CaVβ  to the Cav2 channel induces a shift 

from a reluctant state to a willing state [77]. The binding of Gβγ physically displaces the CaVβ  

from its binding site and simultaneously imposes the reluctant mode of the channel. In this 

model, the converse displacement of Gβγ by the CaVβ  is not likely to occur because Gβγ 

occupies multiple binding sites on Cav2 and the CaVβ  concentration is not supposed to vary. 

Signal termination occurs with the departure of Gβγ without modal shift. Re-association of the 

CaVβ  and induction of the willing mode will only occur after Gβγ departure. The  CaVβ  

dissociation model implicates that simultaneous binding of Gβγ and CaVβ  is not possible. 

Evidence for this model was provided for the Cav2.1 channel [47]. c) Gβγ dissociation model. 

Panel 1: prepulse depolarization at strong voltage is known to induce a facilitation which can 

be interpreted as a departure of a blocking Gβγ from the channel complex (CaV2/Gβγ/β). This 

departure is prepulse duration dependent and has been proposed to be completed in less than 

100 ms [78]. Panel 2: this process is therefore likely to occur during the first depolarizing 

pulse itself resulting in a voltage-dependent variable proportion of mixed CaV2/β/Gβγ and 

CaV2/β  complexes. Small depolarization favors the undissociated state, whereas strong 

depolarization favors the dissociated state. Gβγ departure induces an increased Ca2+ entry, 

probably by an increase in opening probability. The inhibitory effect of Gβγ becomes voltage-

dependent as illustrated by the bottom current traces. Panel 3: two relationships were drawn, 

one in which Gβγ does not dissociate from the channel (grey line) and another one in which 

increased dissociation of Gβγ from the channel occurs with increased membrane 

depolarization (red line). Panel 4: I-V relationships before (control) and after Gβγ-binding in 

two conditions (without and with a voltage-dependent Gβγ dissociation during pulse 

application). In the case where Gβγ does not dissociate a constant 50% inhibition of the current 

occurs at all potentials (grey line). With a voltage-dependent Gβγ dissociation, the resulting I-

V curve is close to the grey line at low potentials, whereas it gets closer to the control black 

line at depolarized potentials. Panel 5: resulting voltage-dependence of the conductance for 

control and liganded Gβγ channels with or without dissociation. The red curve illustrates the 

appearance of an apparent reluctant mode. As a result, the reluctant mode and the slowing of 

activation kinetics are not “On” effects but become “Off” effects of G protein regulation. 
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Activation curves have been described by Boltzmann-derived equations. The Gβγ dissociation 

model is not yet experimentally demonstrated. Like the state- induced model, it implies that 

Gβγ and the CaVβ  subunit can bind together on the channel. Noteworthy, further complexity in 

the mechanism of G protein regulation can be introduced by combining the three different 

mechanisms that are not exclusive of each other. 
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