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Abstract. We propose a new formula for the saddle-to-scission time that is more general that the one based

on Kramers’ approach. Its validity and applicability is then studied in detail. Such a formula is useful for

the evaluation of the fission time of very heavy nuclei.

PACS. 02.50.Ey Stochastic processes – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin,

etc.) – 24.75.+i General properties of fission – 25.70.Jj Fusion and fusion-fission reactions

1 Introduction

Kramers formula [1] for the stationary escape rate from a

metastable well under friction in a thermal environment,

proposed one year after the discovery of nuclear fission, is

still used nowadays in the case of thermal fission. Besides

its simplicity, the fact that the fission rate is defined by

a master equation for the compound nucleus population

PCN ,

dPCN = −ΓfPCNdt, (1)

allows one to introduce this decay channel into a more

general cascade scheme, which, when integrated out, gives

back the statistical model [2,3]. This may be the main

reason for its success, since it is well known that the fis-

sion time is determined by the competition of the fission

channel with the evaporation of light particles and γ-ray

emission. Unfortunately, the domain of application of the

escape-rate concept is limited. In addition, to get the for-

mula itself, some approximations are needed.

This is particularly the case for the evaluation of the

fission time. The escape rate defined by Kramers gives ac-

cess to the escape-time distribution at the saddle point.

For very heavy nuclei, the time necessary to go from the

saddle to the scission point cannot be neglected. The Mean

First Passage time (MFPT), for which a simple formula

is available in the high friction limit [4,5], could be a use-

ful theoretical tool. Unfortunately, it is only an average
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time and we would rather need a first passage time distri-

bution to consider the evaporation of light particles in a

statistical-model simulation. For this purpose, one gen-

erally keeps Kramers’ formalism and adds a saddle-to-

scission time [6]. A simple formula was proposed in Refs [7,

8], based on the hypothesis used by Kramers: a parabolic

potential and low temperature. In this paper, we propose

a more general formula for the saddle-to-scission time that

goes beyond Kramers’ approximation.

In addition, numerical simulations using either the Klein-

Kramers equation [9] or the Langevin one [10] have shown

that at high excitation energies the finite time needed to

build up the quasi-stationary probability flow over the fis-

sion barrier is long enough to be comparable to the life-

times for desintegration channels such as particle evapo-

ration. This fact is now commonly accepted [6,11,12] but

a general analytical formula for the transient regime that

depends on the initial conditions is so far not available.

This important aspect goes beyond the scope of this pa-

per, which is limited to the saddle-to-scission time.

2 General derivation in the overdamped limit

As already mentionned in the introduction, the MFPT is

a useful tool to evaluate the time needed to reach the scis-

sion point. When the friction coefficient is large enough

to neglect the inertia, the Klein-Kramers equation [13,1]

can be reduced to the Smoluchowski one [14] and an ana-

lytical formula is available for the MFPT [4,5]. Assuming

a metastable potential well, V (x), with an arbitrary but

fixed initial condition in xi and an absorbing point at xe

one has,

MFPT [xi → xe] =
mβ

T

∫ xe

xi

dy e
V (y)

T

∫ y

−∞
dz e−

V (z)
T .

(2)

Here, β is the reduced friction and T , the temperature. As

usual in nuclear physics, the Boltzmann constant is set to

1. The boundary conditions of the MFPT are well adapted

to the fission problem if the exit point xe is chosen at the

scission point.

But at the saddle the situation differs. The MFPT cal-

culation supposes that a sink absorbs all the coming parti-

cles whereas the Kramers’ rate includes backward currents

due to particles that can cross several times over the bar-

rier. The stationary positive and negative currents over

the barrier, defined as,

j+(x) =
∫ +∞

0

dv v W (x, v), (3)

j−(x) =
∫ 0

−∞
dv v W (x, v), (4)

where W (x, v) is the stationary probability distribution,

can easily be evaluated in the same way as Kramers’ sta-

tionary rate (see e.g. Ref. [15] for a detailed calculation of

the latter). With the same approximations, one gets,

j+(xb) =
jK

2
[1 +

β

2ωb
+

√
1 +

(
β

2ωb

)2

], (5)

j−(xb) =
jK

2
[1− β

2ωb
−

√
1 +

(
β

2ωb

)2

], (6)

where jK is Kramers’ stationary current. Here, ωb char-

acterises the osculatory parabola at the barrier. For very

large viscosities (β � 2ωb), the previous results become,

j+(xb) ' jK(
1
2

+
β

2ωb
+

ωb

2β
), (7)

j−(xb) ' jK(
1
2
− β

2ωb
− ωb

2β
). (8)
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Both positive and negative currents are larger than the

Kramers current which results from the difference between

them. Beyond the saddle, assuming that locally the poten-

tial is an inverted parabola, the backward current vanishes

when V (xb) − V (xe) � T . Similar results were obtained

in Ref. [16].

At the saddle, to cope with the negative currents, one

should rather define a Mean Passage Time (MPT). Calling

P (t, xb;xi) the probability that a particle launched at t =

0 in xi situated in the potential well is still in the well at

time t, the escape current at the barrier top xb, defined as

j(t, xb;xi) = −∂P (t, xb;xi)
∂t

, (9)

gives the distribution of the escape times. Eq. (9) is a

consequence of the continuity equation. Then, the MPT

could simply be evaluated,

MPT [xi → xb] =
∫ +∞

0

t j(t, xb;xi) dt (10)

=
∫ +∞

0

P (t, xb;xi) dt. (11)

The second line was obtained by a trivial integration by

part, using the fact that P (t, xb;xi) vanishes for large

times. The Mean Passage Time coincides with the Non

Linear Relaxation Time (NLRT) [17] defined by eq. (11)

when P (t = 0, xb;xi) = 1 and P (t →∞, xb;xi) = 0.

In Ref. [18], analytical formulas are derived for the

NLRT for various kinds of potentials from the Smolu-

chowski equation. For the metastable well we are inter-

ested in here, one has,

NLRT [xi → xe] =
mβ

T

[∫ xe

xi

dy e
V (y)

T

∫ y

−∞
dz e−

V (z)
T

+
∫ λ

xe

dy e
V (y)

T

∫ xe

−∞
dz e−

V (z)
T

]
, (12)

where λ is an absorbing condition that could be at the

scission point. If the exit point xe is chosen at the ab-

sorbing limit λ, this formula gives back the MFPT, eq.

(2).

In Ref. [19], some universal relationships between these

escape times were derived. The main results are recalled

here. The MFPT needs, by definition, an absorbing point

at the boundary and is therefore only suitable to evaluate

the average time necessary to reach the scission point.

This constraint does not exist with the NLRT which can

be used at the saddle. The difference between these two

times is called the saddle-to-scission time:

τb→s = MFPT [xi → xs]−NLRT [xi → xb]. (13)

The NLRT itself includes the long-time-limit escape rate,

Γ∞ well approximated by Kramers’ formula, and the tran-

sient time. Unfortunately, no general formula is available

to link these quantities, except in the very specific case

where the transient function is approximated by a step

function up to the time τr,

Γ (t) = Θ(t− τr)Γ∞, (14)

where one gets

NLRT [xi → xb] = τr +
1

Γ∞
. (15)

A clear distinction should be done between the NLRT

and the MFPT that are average times and the escape rate

approach which gives access to the escape-time distribu-

tion, see eq. (1). It is then natural that both the NLRT

and the MFPT include the transient time. Such a result

was already shown in Ref. [20] in a different context, but

contradicts the main conclusion of Ref. [21].
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From the expressions of the MFPT and the NLRT, Eqs

(2) and (12) respectively, it is easy to get a simple formula

for the saddle-to-scission time that has the merit of being

exact for very large friction:

τb→s =
mβ

T

∫ xs

xb

dy e
V (y)

T

∫ y

xb

dz e−
V (z)

T . (16)

Such a formula is also valid for potentials having a struc-

ture beyond the saddle point.

3 Extension to medium friction

Although there is still a large uncertainty on the viscosity

of nuclear matter at finite temperature, the approxima-

tion used for the general formula obtained in the previous

subsection is probably too crude in the nuclear context

and has to be extended to medium viscosities.

Kramers’ stationary escape rate, which can be applied

down to medium viscosities, was shown to correspond to

the escape rate obtained in the transition-state theory cor-

rected by a prefactor characterising the dynamics of the

barrier [22]. Both the MFPT and the NLRT formulas,

Eqs. (2) and (12) have a similar structure. Therefore, we

suggest replacing the prefactor in these formulas by chang-

ing β:

β → 1
2
(β +

√
β2 + 4ω2

b ). (17)

Such a prefactor is similar to the one obtained in Refs

[7,8] with a derivation based on Kramers’ approach [1].

It comes from the study of the dynamics of a parabolic

barrier [23,24].

Note that this correction is based on the hypothesis

that there is a single barrier. The study of potentials hav-

Fig. 1. Dimensionless plots for the NLRT [xi = 0→ xb] at the

barrier xb as a function of the scission point xs evaluated nu-

merically and analytically with the exact formula in the over-

damped regime and the corrected one. x = 0 corresponds to

the bottom of the well. Figures a) and b) are calculated for a

quadratic potential, with a medium friction β
2ω

= 2 and at two

temperatures, T
B

= 0, 5 and T
B

= 2 respectively. Figure c) is

calculated with a very large friction β
2ω

= 10 for a quadratic

potential at temperature T
B

= 2. Figure d) is calculated for

a cubic potential with a medium friction β
2ω

= 2 at a large

temperature T
B

= 2.

ing a structure beyond the saddle is out of the scope of

this paper.

This correction was checked numerically with a Langevin

equation [25] for various potentials, temperatures and vis-

cosities. In Fig. 1, a typical example is shown for the

NLRT. For a medium friction coefficient, β
2ω = 2, the cor-

rected formula differs quite a lot from the one derived in

the high-friction limit and is in good agreement with the

numerical evaluation. See Figs. 1a and 1b. When the scis-

sion point is close to the saddle, i.e. when V (xb)−V (xs) <

T , the disagreement is partly due to the statistical fluc-

tuation of the numerical simulation. In the overdamped

regime, the NLRT formula is exact and we can still ob-

serve the same discrepancies, see Fig. 1c. With a cubic

potential, Fig 1d, the agreement limit, V (xs) ' V (xb)−T

is reached for smaller values of xs.

The results are similar for the MFPT and then for the

saddle-to-scission time.
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Fig. 2. Dimensionless plot comparing three formulas for the

saddle-to-scission time. The solid curve corresponds to the for-

mula of Refs. [7,8], the dotted one to the new formula, Eq. (19),

and the dashed one to the approximate formula, Eq. (21).

4 Comparison with other formulas

With a potential landscape assumed to be parabolic be-

tween the saddle and scission points,

V (x) = B − 1
2
mω2

b (x− xb)2, (18)

the saddle-to-scission time simply becomes,

τb→s =

√
β2 + 4ω2

b + β

ω2
b

∫ √ m
2T ωb(xs−xb)

0

dy e−y2
∫ y

0

dz ez2
,

(19)

and can be compared to the result of Refs. [7,8]. A com-

parison is shown on Fig. 2 for a very large friction for which

our formula is exact. The behavior for weaker friction is

similar.

When the scission point is far away from the saddle

point, the two formulas coincide nicely. It is not the case

when the scission point is close to the saddle. This is due

to the fact that in Refs. [7,8] the evaluation is based on

the current and then includes an up stream contribution,

whereas in our case, it is based on the MFPT formal-

ism which assumes an absorbing boundary which is better

adapted to the context of nuclear fission.

The difference of the behavior can be easily under-

stood if we consider that the potential is almost flat near

the barrier. Then, we can reverse Einstein’s free diffusion

formula to get, with a reflecting point in xi, [26,5],

MFPT [xi → xe] =
mβ

2T
(xe − xi)2. (20)

Fig. 3. Relative error between the approximate formula for the

saddle-to-scission and the new formula defined by Eq. (22).

Fig. 2 shows that the new formula leads to a parabolic

behavior near the origin where the formula of Refs. [7,8]

is linear.

Eq. (19) is not so easy to compute and takes time to

evaluate in a cascade code. We propose then an approxi-

mate formula only valid for a parabolic potential between

the saddle and scission points:

τb→s '
√

β2 + 4ω2
b + β

2ω2
b

log(2.7

√
V (xb)− V (xs)

T
− 0.3).

(21)

Fig. 2 shows that it fits well Eq. (19), far enough from

the saddle. For practical reasons, it is useful to estimate

the accuracy of this approximate expression. In Fig. 3, we

plot the relative error defined as

τapprox
b→s − τb→s

τb→s
, (22)

where τapprox
b→s is given by Eq. (21) and τb→s by Eq. (19).

Note that this relative error does not depend on the re-

duced friction β.

5 Role of the potential

One has to be cautious with the application of this formula

for higher order potentials.

For a cubic potential in the high-friction limit, the de-

terministic equation of motion can be evaluated analyti-

cally:

x(t) =
x0xi exp(ω2

b t/β)
x0 + xi(exp(ω2

b t/β)− 1)
, (23)
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where xi corresponds to the initial condition. To get this

expression, the general cubic potential is written in a con-

venient way,

V (x) = mω2
b (−x2

2
+

x3

3x0
), (24)

where x0 < 0 refers to the bottom of the well. The oscu-

latory parabolic potentials in the well and at the saddle

(in x = 0) have a pulsation equal to ωb. When xi is out-

side the saddle (xi > 0), it takes a finite time (t∞ =

β ln(1 − x0/xi)/ω2
b ) for x(t) to reach infinity. Such a be-

havior is also observed in the numerical solution of the full

deterministic equation of motion where the inertia is not

neglected. Since the stochastic equations are not linear,

the previous results do not represent the average value,

but one finds similar results with a Langevin equation.

Then, the observation that the MFPT does not depend on

xe is simply due to the strength of the potential, for which

the force increases without limit as x increases, leading to

unphysical results.

The saturation for large xe observed in Ref. [27] for

higher power potentials occurs for the same reason. Start-

ing the calculation at xi far away from the saddle, the

potential reduces to V (x) ' −c.xn. Then, the time to

reach infinity is given by

t∞ =
∫ ∞

xi

− mβ

dV/dx
dx =

mβ

n(n− 2)cxn−2
i

, (25)

for n > 2, which is also finite.

With a parabolic potential, it is not the case. Outside

the saddle, an analytic expression for the average trajec-

tory is available in Ref. [23]. For large times,

〈x(t)〉 ∝ exp(at) with a =
1
2
(
√

β2 + 4ω2
b − β). (26)

Then, the MFPT should increase proportionally to ln(xe)/a

for large xe. In the overdamped limit, a ' ω2
b/β. This re-

sult could also be obtained from the MFPT formula, eq.

(2). For large xe, one has,

∂MFPT [xi → xe]
∂xe

' mβ

T
e−

mω2
b

x2
e

2T

∫ xe

0

dv e
mω2

b
v2

2T ,(27)

→ β

ω2
bxe

. (28)

With a cubic potential, numerical calculations show that

the previous derivative vanishes for large xe.

This analysis shows that we have to be cautious in the

application of these formulas when the scission point is far

from the saddle one. The same problem would arise with

a numerical simulation based on classical mechanics.

6 Role of memory effects

The present study is based on a Markovian approximation,

assuming that the heat bath relaxes faster than the chara-

teristic time of the collective variable. When the Langevin

equation is derived from a microscopic model, one obtains

a memory kernel which is due to the coupling of the col-

lective variable to the deformation of the Fermi surface

[28–30].

For a typical kernel, an exact solution of the non-

Markovian evolution over a parabolic barrier is given in

Ref. [31]. In this reference, the reduced friction coefficient

and the relaxation time of the heat bath are artificially

considered as independent parameters. It is shown that,

for a given friction parameter, non-Markovian dynamics

lead to diminish the effect of the viscosity and then to a

shorter saddle-to-scission time. In addition, the memory
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kernel gives rise to oscillations along the drift path to scis-

sion at the frequency of the giant quadrupole resonance

that may break up the nucleus earlier.

But when the friction parameter is derived from a

microscopic model [28–30], it depends on the relaxation

time chosen for the memory kernel. In [29,30] β is pro-

portionnal to this relaxation time. Then, a larger relax-

ation time also means a larger viscosity with a net effect

of a longer saddle-to-scission time. This last tendency was

also pointed in Ref. [28] for another memory kernel, where

the authors give an estimate: “due to the memory effects

the saddle-to-scission time grows by a factor of about 3

with respect to the corresponding saddle-to-scission time

obtained in liquid drop model calculations with friction

forces”.

Our new formula does not include any memory effect.

7 Conclusion

In a multi-channel de-excitation scheme the fission process

competes with other decay modes. If a decay happens in

another channel before the saddle point is reached, the

subsequent decrease of the available energy will greatly

hinder fission. Therefore, one generally takes into account

the fission process up to the saddle only. But, for very

heavy nuclei the scission point is very far from the sad-

dle and one cannot neglect the saddle-to-scission time. In

this paper we propose a new formula to evaluate such a

time that is exact in the high-dissipation limit. Since the

nuclear viscosity may not be that large, we propose a cor-

rection to the formula that has been checked numerically.

We showed that a high order potential leads to un-

physical results far from the saddle. The applicability of a

classical saddle-to-scission dynamics is then limited. This

explains why we can apply locally a parabolic approxima-

tion to the potential in order to improve the formula of

the saddle-to-scission time.
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