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Generation en ligne de trajectoire synchronisée a une
entrée capteur

Résumé : On s’intéresse a la question suivante : comment synchroniser en ligne une
commande cyclique avec un signal capteur lui aussi cyclique ? Nous modélisons notre me-
sure 3 l'aide d’un oscillateur non-lineaire, et en construisons un observateur. Ensuite, on
vient "filtrer" les mesures capteur a l’aide de 'observateur. Ce dernier étant également un
oscillateur, il est possible d’estimer sa phase, et de générer une commande paramétrée tem-
porellement par cette phase. Nous évaluons la méthode et caractérisons sa robustesse aux
erreurs d’estimation des paramétres, ainsi qu’aux changements de rythme du signal d’entrée.
Finallement, une application de cette méthode a la réhabilitation fonctionnelle des patients
hémiplégiques est présentée.

Mots-clés : Génération de trajectoire en ligne - Oscillateur - Synchronisation - Observateur
- Capteur



Online Generation of Cyclic Trajectories Synchronized with Sensor Input 3

1 Introduction

The problem of trajectory generation is basic as well as classical in robotics. Although there
exists now efficent industrial solutions to generate complex trajectories for manipulator ro-
bots, allowing for example to avoid obstacles, or to optimize energy consumption or cycle
time, the problem is still a research one for some classes of mobile robots. In fact, the
realisability of precomputed trajectories may become questionable when it is needed to cope
with control requirements or to adapt in real time to unexpected changes. Non-holonomy of
wheeled robots, and dynamical walking stability of legged robots are two examples of such
difficulties.

In the case of bipedal systems, addressed in this paper, trajectory generation may be
splitted in two parts: 1- path planning of the whole system: this problem is close to the
one of mobile robots, except when an accurate determination of footprints is required; 2-
computation of leg trajectories preserving some invariants in the posture and ensuring a
certain form of stability. Focusing on this second issue, it can be seen that several classes
of methods can be found in the literature (an overview of bipedal trajectory generation
techniques is presented in [AAEA04]), among them: computation of optimal trajectories in
various spaces, derivation of intrinsic trajectories in passive walking, or use of model pre-
dictive control...More precisely, when periodic motions are considered, a frequently used
approach consists in mimicking living being’s CPGs (Central Pattern Generator), under the
form, either of ANNs, or of nonlinear oscillators. Originally designed for very stable systems,
like 6- or more legged systems, snake or fish robots, etc. .. (see for example [Ijs01]), this ap-
proach has more rarely been used for biped robots [EMNC02]. However, to our knowledge,
the problem of using this class of method, in conjunction with sensory inputs delivered in
real-time, has not yet be addressed. This is precisely the goal of this paper. Indeed, we
consider the case where we want to generate the cyclic trajectories of selected links which
have to be synchronous with the output of a sensor mounted on another link. This is a
kind of teleoperation, which can be, for example, very useful in the case of controlling a lef
prosthesis or remotely operating a walking robot.

In this paper we will focus on the case of bipedal systems and, therefore, consider the
following situation: a sensor, installed on the thigh of a human, provides at each time with
an information related to the absolute angular position of the link; the question which arises
is then: how to use this single information to generate the full trajectories of another system
(a robot or the other leg, for example), in a perfectly synchronous way? We will see later
that the problem is addressed by designing a specific conjunction of a nonlinear oscillator
and of the related observer. The paper is organized as follows: after having recalled some
basic facts on nonlinear oscillators required in the following, we will discuss the choice of the
oscillator, and derive the associated nonlinear observer. Then, we will analyze the properties
of the designed system, and give some simulation and experimental results. Finally, we will
draw some plans for the near future.

RR n°® 6101
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2 Framework

2.1 Oscillators: some definitions

In this section, we recall some basic facts concerning periodic solutions of ordinary differen-
tial equations (ODE). All this section is largely inspired from the book of Pikowsky et al.
[PRKO1]: “Synchronization, a universal concept in nonlinear sciences”, part 7.1: phase dy-
namics. The concepts of phase and isochrones are defined, and will be used in the following.

Let’s consider a system of autonomous ordinary differential equations:
dx
— = f(x), x € ®" 1
=) 1)
and suppose that this system has a stable periodic (with a period Tj) solution x¢(t) =
xo(t + Tp). In the phase space (space in which all possible states are represented) this
solution is an isolated closed attractive trajectory, called the limit cycle of eq. (1) (Fig. 1).
A classical example of a self-oscillating system is the van der Pol equation:

F—p(l—2?)i+wiz =0 (2)

with ¢ > 0 and wy > 0.

mu=0.3 ; omega=1

2.0
1.5+
1.0+
05

0.0

velocity

T T T T
-3 -2 -1 0 1 2 3

position

Figure 1: Limit cycle of the van der Pol oscillator. Here y = 0.3 and wp = 1.

Let’s introduce the phase ¢ as a coordinate along the limit cycle, such that it grows
uniformly in the direction of the motion and gains 27 during each rotation, thus obeying
the equation:

d
o= 3)

INRIA
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where wg = 27/Ty is the frequency of the self-sustained oscillations.

From eq. 3 follows an important property of the phase: it is a neutrally stable variable, in
the sense that a perturbation in the phase remains constant: it never grows or decays in time.

Consider now the effect of a small external periodic input on the self-sustained oscilla-
tions, described by:

B )+ e (@
where the input ep(x,t) = ep(x,t + T') has a period T, which is in general different from
Ty. The input is proportional to a small parameter ¢, and below we consider only first-order
effects in e. The external perturbation drives the trajectory away from the limit cycle, but
because it is small and the cycle is stable, the trajectory only slightly deviates from the
original one x((¢). Thus perturbations in the directions transverse to the limit cycle are
small; contrary to this, the phase perturbations can be large.

A need is then to define the phase variable in such a way that it rotates uniformly
according to eq. 3 not only on the cycle, but in its neighbourhood as well. To this end,
we define the so-called isochrones in the vicinity of the limit cycle [GH90]. Observing the
dynamical system stroboscopically, with the time interval being exactly the period of the
limit cycle Tp, we get a mapping:

x(t) = x(t + Tp) = (%)

This construction is illustrated by the figure 2. Let us choose a point P* on the cycle
and consider all the points in the vicinity that are attracted to P* under the action of ®.
They form a (M —1)-dimensional hypersurface I called an isochrone, crossing the limit cycle
at x*. An isochrone can be drawn at each point of the limit cycle, thus we can parametrize
the hypersurface according to the phase as I(¢) (see Fig. 2). We now extend the definition
of the phase to the vicinity of the limit cycle, demanding that the phase is constant on each
isochrone. In this way, phase can be defined in the neighbourhood of the limit cycle.

2.2 CPG for trajectory generation

Recently, the concept of Central Pattern Generator (CPG) hase been used in robotics for
online trajectory generation [Wil98, RA06, Tag00, EMNCO02]. The CPG concepts comes
from biology [Gri85, CRG88]: it is a small neural network, located at the spinal level, able
to generate rhythmic commands for the muscles. It can be divided into two parts: a rhythm
generator, and an patterning mechanism [PPS98]. CPGs receive inputs from higher parts of
the central nervous system, and also from peripheral afferents; thus, its functioning results
from an interaction between central commands and local reflexes (see fig 3).

RR n° 6101
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Figure 2: Isochrones in the vicinity of the limit cycle

Left side Right side
Descending control
(supraspinal commands) Central
B STy P +=-=m Pattemn
i X D \ Generator
i ( Rhythm : / Rhythm 1\ 1 (CPG)
T generator = generator :
; L Synchronization R 1
B 1 ! 1
! i 1 i
1 : H i
Afferent 1 . : ! Afferent
signals H Output ; : Output 1 signals
T Mechanism ! ; Mechanism
i map) | ! Yol (Map) i
7 1
e l T . l ’
f TRI—— N—— -

Musculo ‘
Skeletal
System ‘

Figure 3: CPG architecture for movement control in vertebrates

The CPG can be modeled either with a simulated neural network (for example using the
Fitzhugh-Nagumo model [Mat85]) or a non-linear oscillator. In both cases, the idea is to
encode the desired trajectory in a stable limit cycle.

In robotics, a CPG-bases command structure has several advantages for the design of
cyclic trajectories: the system is stable against small perturbations, thanks to the intrinsic

INRIA
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stability of the limit cycle; one can easily modulate the amplitude or the period of the trajec-
tory; it is well suited for feedback integration [DZZZ06]. Finally, a multidimensional output
can be generated for the same low computational price, which is helpful when dealing with
robots with numerous Degrees Of Freedom (DOFs), having to exhibit multiple synchronized
perodic motions, like walking machines. The Fig. 4 control scheme gives an example of a
multi-DOFs command structure.

Figure 4: This schematics gives an example of a joints command structure. Four coupled
oscillators (osc 1 .. osc 4) produce rhythm for the output mechanisms of the four joints J1
. J4

In this paper, we will focus on the input integration problem in the CPG concept: “ How
can we build a rhythm generator (oscillator) such as we can be sure that it will synchronize
with a given input ?”

2.3 Synchronization and observation

The synchronization problem has been of great interest recently [CP91, PRKO01] and a link
has been made between synchronization and observation theories, mostly by Nijmeijer and
his group [NM97, BENP97]. The observer theory, coming from the control theory, has been
introduced in the early seventies by Luenberger [Lue71] in the linear case; in the non-linear
case, some partial results exist [Isi95].

The idea of observation is to estimate the state variables of a system, only given the inputs
and the outputs of the system. Let’s consider the system

[ = S@)+ g
E'{y—h(x) (5)

RR n° 6101
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and build a copy of ¥ with output injection (Fig. 5):

Z/:{ﬂff({'Hg(U)JrK(yy) (6)
§=nh(z)

) output y

input u System Z Observer ' | I state

Figure 5: Observer principle

In the linear case, if the original system ¥ is observable (see [Kai80] for a complete de-
scription of the observability conditions), and if gain K is correctly set, then the observer
state will converge towards the original system state. When the output error (§ — y) is
canceled, the observer state exactly matches 3’s state: the observer is synchronized with
the observed system.

In the non-linear case, there is no general result concerning the observer existence. How-
ever, it is sometimes possible to build a non-linear observer, when the error dynamics is
feedback linearizable. To achieve this, the system has to belong to the Lur’e class [LP44],
in which the non-linearity is a function of the output only:

E:{izé;&—i-f(y,t)—i-Bu reR"ueR™ yeR? (7
The observer is then given by:
/ =A%+ f(y,t) + Bu+ K (§ —
E:{g:c@ fly.t) (5 —y) (8)
and the error dynamics can be linearized:
e=1I—ux,
th e =3—1
wi —Ait [y 1)+ But K@ —y)— Av— f(g,t)~ Bu )

— (A+ KQ)e

INRIA
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2.4 Synthesis : our approach

Our aim is to build an oscillator which will synchronize with a given cyclic sensory input.
If we want to use the observer theory, we need to have a model of the system. However,
sometimes, there is no model available. This leads us to propose the following method, into
two parts (Fig. 6):

1. build a system as a phenomenological model, which simulates the sensor measurements

2. build an observer of this system, in which are injected the real sensor measurements

/—‘ has to simulate
System T output sensor measurements
N —_—

(oscillator)

measurements s Observer | State

Figure 6: Schematics of the method

To simulate a cyclical sensor measurement, one could choose a linear system as model,
and provide it with a cyclical input u (for example, a sinusoidal input); in that case the linear
system is shaping the input so as its output simulates the given measurement. A problem
arises then: there is a need for providing with a cyclical input which has to be synchronous
with the measurement. This problem has been explored [RBI05], but the proposed solutions
adapt to frequency changes too slowly for our application.

For this reason, we chose a non-linear oscillator as phenomenological model for our sensor
measurement: it can autonomously (without input) generate a cyclical signal.

3 Methods

We previously presented our approach in a general way. In this section, we will focus on one
application of this method: human gait observation using a sensor placed on a leg.

RR n° 6101



10 Héliot € Espiau

3.1 Which oscillator and why ?
3.1.1 What could be the right form of an oscillator?

To some extent, and under the assumption of rigidity, a bipedal walking system can be
modelled as a tree-structured n-link mechanical system free in space. Its dynamics can
therefore be described through a Lagrange equation:

M(q)i+ N(q,q) + G(q) = —=B(¢) + T + A"C(q) (10)

where ¢ is the set of joint coordinates, ¢ € R" ® SE(3), M is a sdp. mass matrix, N
gathers coriolis and centrifugal forces, B is the friction term, G the gravity vector, I' the
actuation input, and ATC(q) are the constraints of ground contacts, which are unilateral
and time-varying. In the absence of constraints, friction and control, this equation becomes
autonomous (i.e. with a right-hand side equal to zero), with mechanical energy as first inte-
gral, in which the continual exchange between kinetics energy and potential energy produces
a periodic motion.

Let us now consider a single coordinate ¢,, which can be for example the thigh angle.
Starting from the autonomous version of eq. (10), we can express its dynamics as:

H(.)ga + F(ga;-) =T() (11)

where T is a set of bounded perturbations depending on all the variables and their
derivatives, H(.) the equivalent of a mass term, F' is analogous to a potential function.
Therefore, the behaviour of ¢, is the one of a periodic solution, issued from a nonlinear
second-order equation, with a potential term and disturbances. This incitates to research
the nonlinear oscillator preferably within the class of modified and disturbed second-order
mass-spring systems.

3.1.2 Is the concept of limit cycle licit for human walking?

As seen previously, the natural behaviour of mechanical robotics system without dissipative
and other inputs is an oscillator with constant energy. Nevertheless, this does not correspond
with the idea of an attractive limit cycle which underlies the oscillator-based approach. To
justify this point of view, we have to refer to another class of mechanical systems: the pas-
sive walking machines. Indeed, let us consider the case of a planar compass, walking above
a slope, with instantaneous an inelastic step transition, as addressed in [McG90] and sev-
eral others [GTE98, CWRO01]. It then can be shown that, for a given slope, such a system
exhibits a limit walking cycle, with a rather large basin of attraction (see Fig. 7). This
behaviour can be compared to the concept of “natural gait” or “comfort gait” which is spon-
taneously reached and followed by a human in steady state walking, and which corresponds
to a minimum of the metabolic energy consumption with respect to distance.

INRIA
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Bgoredteg

o

dotted leg

Figure 7: Mechanical model of a passive walking machine, and its stable limit cycle

In conclusion, it appears that searching for a oscillator of second-order type and exhibit-
ing a limit cycle is a natural way of modelling the periodic walking behaviour of a human
link measured with an adequate sensor.

3.1.3 Structure choice and parameters setting

From the previous sections, we know that we have to choose a nonlinear oscillator which
belongs to the lur’e class (defined earlier in section 2.3), and which is derived from a second-
order mass-spring system. Two common oscillators fit these requirements: the van der Pol
oscillator and the Rayleigh oscillator, which are very similar.

So we start from the van der Pol eqation in order to simulate our input. However, depending
on the sensor measurement, it has to be slightly modified to be able to correctly simulate
it. In our case, we are interested in bipedal walking, thus a natural idea is to use the leg
“position”: for example, we could use a measure of joint coordinate, such as knee angle.
Another possibility is to use the absolute orientation of one link; for practical reasons due to
our sensors (see section 4.1), we chose the thigh inclination with regards to vertical. During
humain gait, this inclination presents a dissymetrical pattern, with a ascending phase shorter
than the descending one. The van der Pol equation provides with symmetrical signals; thus,
we have to introduce a new term in the equation:

i—p(l-bx—2?)i+wiz =0 (12)

with b > 0.

The idea is to modify the damping coefficient p(1 — bz — x?) so as it is different when
x < 0 or x > 0. In that way, the output of the modified van der Pol oscillator won’t be
symetrical anymore: for a given |z| when z < 0, |u(1 — bz — 2?)| is higher than when x > 0.

RR n° 6101
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Once the structure of the nonlinear oscillator is chosen, we have to find the best parame-
ters u, b, and wq so that the trajectory of the limit cycle of this oscillator will fit the sensor
measurement. We write this identification as a least squares problem: minimizing the error
between the measurements and the output of the oscillator:

m .
min Y (¢f —af,)’

Hyb,wo, T = (13)
# = p(1 = bal — 21)dl + wial =0

where 2!, are the discretized sensor measurements (for example, over one given cycle),
and x! are the simulated oscillator outputs, thus following the dynamics of eq. (12).

One can notice that this problem is similar to an optimal control problem, that can be
solved using a direct method [Bet97]. We add the discrete output of the oscillator in the
parameters to optimize, and we add constraints on them following the dynamical model of
the oscillator. The discretization of this problem leads to a “nonlinear programming” problem
which has been solved using a successive quadratic programming solver (FSQP [LZT97]).
Practically, this method gave good results: we obtained a very good match between the
measurements and the oscillator output (see fig. 8).

Optimization results

inclination (deg)

— — — — T T T
0 20 40 60 80 100 120 140
sample #

Figure 8: Comparison of the sensor measurment cycle (solid line) with the optimized oscil-
lator output (dotted line)

INRIA
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3.2 Observer design

We want to build an observer of the dynamical system described by the modified van der
Pol equation (12), which can be written as:

(E.l = X2
Y 2o = pu(l—bry —a3)xe — Wiz (14)
Y=

Let’s introduce the variable z:
2= xa + kiy + koy® + kay® (15)
which satisfies the following equation:
2 = s+ k19 + 2kayy + 3kayy?

Z = Zo+ k127 4 2keox1z1 + 3k3$.1$%

Z = X9+ kixo + 2koxox1 + 3k3$2$% (16)
2

2 = p(l —bry — 219 — W3T1 + k179 + 2koT0m1 + k3173

2 = (u+k1)rg + (2ko — pub)z129 + (3ks — p) 23wy — W3 11

so, setting:
‘LL+]€1:71 — klzf,ufl
Skg—u:O - kgzu/?)
we get:
2 = —xg—win
2 = —(2— ky — kay?® — k3y®) — Wiz (18)
= -2+ (k1 — Wy + koy?® + kay®

So, z dynamics is fully described by its single eigenvalue, here setted through k; to —1.
Finally:

) =y
) &y = z2— ky — koy® — ksy? (19)
g = I

RR n° 6101
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3.3 Trajectory generation

Injecting a measurement input in the observer (19), we get an estimation of the two state
variables #; and Z3. Since this observer is also an (forced) oscillator, we can compute its
phase. This can be easily done using the isochrones defined in section 2.1. Isochrones can
be computed, using the free nonlinear oscillator equation (12), in two different ways. The
first idea, analytical, is to write the oscillator equation in polar coordinates (R, 6), define the
phase ¢ such as it grows uniformly, and compute the lines of constant phase on the (R, 0)
plane.

The second idea is to obtain them by simulation; first, let’s assess the free oscillator
period Ty. Then, for each point x; on the phase plane which is in the vicinity of the limit
cycle, simulate its trajectory under oscillator dynamics during a time n7Tj, with n being
an integer large enough such that the distance from the point x;(n7Tp) to the limit cycle is
small. In that case, the original point x; has the same phase as x;(n7y), which is known,
since it is on the limit cycle.

Finally, let’s say that the (cyclical) trajectory we want to generate is parametrized by
its phase: we thus have a trajectory pattern T'(y), for ¢ € [0, 27].

The online computation scheme for trajectory generation is the following;:

1. inject the sensor measurement y in the adapted observer
2. from the observer state variables z;, compute the phase ¢ of the oscillator

3. provide with the command trajectory: C' = T'(¢)

and is embedded in the global scheme presented in Fig. 9:

4 TImplementation and Results

4.1 Angle estimation

We estimate the thigh inclination with a micro-sensor, developed by CEA-LETI (Grenoble,
France), which associates 3 accelerometers and 3 magnetometers in a minimal volume (see
Fig. 10). This attitude sensor is able, through the processing algorithms associated, to
rebuild the orientation in space of the segment to which it is attached [BHar, NBC*04].
Figure 11 shows an example of thigh inclination estimation during human gait, which will
be used as input in the following.

INRIA
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Figure 9: Overall schematics of our method

Figure 10: CEA-LETT attitude sensor. Left: Sensor size, compared to a coin. Board is then
embedded in a silicon-like material. Right: Final view of the sensor, with its datalogger.

4.2 Results

To validate our method, we recorded sensor measurement during humain gait, in order to
generate a synchronous command. This was achieved in a first time offline (in simulation
but using real measurements, in order to have an insight on generated trajectory). Figure
12 shows three consecutive measurement cycles, together with the reference limit cycle:

RR n° 6101
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thigh inclination (deg)

time (s)

Figure 11: Thigh inclination estimation during human gait, using the attitude sensor

although the estimated state variables of the oscillator do not always lye on the limit cycle,
they remain close to it.

speed
=
5]
I

position

Figure 12: v
Combined with the ischrones-based estimation of phase, we get a good phase estimation

(i.e. monotonous, and quasi- piecewise linear), well synchronous with the input signal.
Finally, we can generate a command parametrized by this phase variable. Without loss of

INRIA



Online Generation of Cyclic Trajectories Synchronized with Sensor Input 17

generality, this command can be the joint coordinates of a poly-articulated system. Such
a system has several Degrees Of Freedom (DOFs) which have to be well coordinated, even
more in the case of walking systems. A phase parametrization of the desired trajectory on
each joint ensures coordination of the overall movement. An example of generated trajectory
for one DOF is shown in Fig. 13.

time (s)

Generated trajectory (deg)

time (s)

Figure 13: Phase (top) and trajectory generated for one DOF (bottom)

4.3 Experiment: Robot teleoperation

By installing the sensor on the leg of a human, we observe the thigh angle and compute online
a biped robot command, such as the robot “follows” the human gait, in a synchronous way.
This is done by first generating a desired trajectory for each active DOF of the robot (in our
case: ankle, knee and hip sagittal angles on both legs), and then following this trajectory with
a PID controller. Such experiments were conducted on the BIP robot (Fig. 14, [AtBt00]),
the robot being hanged. We thus fully validated the online trajectory generation based on
sensor measurement.

5 Evaluation of the method

In this paper, we consider the use of a nonlinear oscillator in the framework of interaction
with human, through actual sensor inputs. It is therefore necessary to assess the practical
efficiency of the method. We consider in the following three important issues:

e the theoretical behavior of the modified oscillator in terms of periodic solutions

RR n°® 6101
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Figure 14: The BIP robot

e the robustness of the approach with respect to errors in parameters
e the ability of the method to track changes in the input dynamics, which allows in

particular to cope with transient walking stages

5.1 Robustness
5.1.1 Oscillator properties

We again start from eq. (12), which can be written:

t=y= fi(z,y)
y=p(l —lbx —2?)y —wiz = fa(z,y) (20)

with u, b, and w all > 0.
Fixed points can be computed:

t=0—-y=0

INRIA
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There is thus a single fixed point (z,y) = (0,0). Let’s study is stability through its

Jacobian:

of
ox

9f2
ox

which gives, in (0,0) :

of1
G 0 1
= (22)
sk p(=2z —by—wg  p(l—a®—br)
o 1
J(0,0) = (23)
—wg ok

The Jacobian trace determines the system behaviour. Here, as Tr (J(0,0)) = p > 0,
(0,0) is a repulsive point. Let’s express the eigenvalues:

N — A+ wi=0
(24)
A=p?—-4w2

And so, using the Poincaré - Bendixson Theorem [GH90]:

o if 4 < 2w then A < 0, and (0,0) is a repulsive source

e if 1 > 2w then A > 0, and (0,0) is an unstable node

In our experiements, the optimized parameters were: u = 2.03, b = 2.29, w = 5.34. We
thus had p = 2.03 < 2wy = 10.68, far from the bifurcation.

5.1.2 Parameters sensitivity

We now focus on the consequences of an error in parameters estimation. This is an impor-
tant issue, since in real experiments sensor measurements cannot be exactly the same for a
trial to another, even from a cycle to another. Practically, the estimated parameters always
are slightly different from what they should be.

Let’s so consider the case where our estimation of parameter y is different from its “true”

value: i = 1 + €. Then:
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,[L‘i’kl:* — klifﬂfl — p,+k1:71*6
Uy — ib=0 — —ib/2  — 2k — b= —eb
3k‘3—ﬂ:0 — :ﬂ/?) — 3k3—u:—6
and:
Z = (=1-e€)xg — ebr179 — €x3my — Wiy
2 = (=1=e)(z—ky — kay® — k3y?)
—eby(z — k1y — koy? — k3y?)
—ey?(z — k1y — koy? — k3y?)
—wgy
3 = 1—e(l+by+y?)] 2

[~

+ [(1+€ Vky —wo] -y

+ (1 + €)kg + €bkq] - y

+ [(1 + 6)]€3 + Eka -|— Ekl]
+ H‘Ebkg + 6]{,‘2]

+€k3 y

In the oscillator dynamics, the error can be thus expressed by:

e=ip—2,= —€e(l+by+y?) - 2
+€k’1 )
+é kg + bkq] - y?
+e€ [kg + bkz + kl] . y3
+€ [bkg —+ kg] . y4
+€k3 . y5

It thus appears that the error is linear with respect to the parameter estimation error e.
A similar demonstration can be held for each parameter.

We also tested in simulation the effects of a wrong parameter estimation. We compared
the observer output y when parameters have error with respect to the nominal output.
Figure 15 presents the error in y estimation with an estimation error on p, b, or wy.

Two remarks can be made: first, the output error is linear with respect to the parameter
error, and so, whatever the parameter is. Second, the minimum output estimation error
is found for 0% parameter error; this result was of course expected, and means that the
parameters have been well estimated.
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Figure 15: The 3 lines show the output error (in % RMSE) with respect to the 3 parameters;
solid line stands for b estimation error, dotted line for u, crossed line for w

5.2 Transitions

We simulated the effects of a quasi-step input frequency change. The results show very
good adaptation: the generated output follows frequency change without distinguishable
disturbance (see Fig. 16).

5.3 Some comments about experimental results

Let us note that in the case of a practical experiment, where the sensor is placed on a real
person’s thigh, teleoperating a robot, it is impossible to have access to the “actual” intrinsic
phase of the observed system (the human). For this reason, is it difficult to evaluate the
performance and robustness of our approach with respect to real values that are unknown.
This is why quantitative results were computed through simulation, while the presented
experimental are qualitative, since they cannot be evaluated more accurately.

6 Conclusion

In this paper, we proposed a method to synchronize a command with a given sensor mea-
surement, based on a nonlinear oscillator observer. We assessed the robustness properties
of this method, and demonstrated that it is suitable for human gait observation.

A first application we consider is hemiplegic stroke patients’ gait rehabilitation. Hemi-
plegia induces a situation where a vertical half of patient’s body sensory-motor pathways
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Figure 16: Frequency change adaptation. Top: Input signal frequency; bottom: generated
command

do not function properly. A direct consequence is that one side of patient is weak or para-
lyzed, thus severely impairing walking. Training of hemiplegia is likely to promote changes
in neural circuits based on excitability and plasticity cortical properties. Some patients re-
learn how to walk without assistance. Functional Electrical Stimulation (FES) allows for
controlling artificially movements in patients with motor disability by applying electrical
stimuli to impaired muscles through surface or implanted electrodes. FES has been shown
to be a valuable method for training stroke patients in early phase of hemiplegia to improve
recovery of walking skills. In this context, the timing of muscle stimulation sequences is
critical. Today, the existing FES systems usually provide with fixed stimulation patterns,
over 1 gait cyle, parameterized and pre-programmed off-line. The triggering of stimulation
sequences is often achieved manually by the clinician assisting the patient. If the patient
walks faster or slower than the programmed sequence, the movements on the heatlhy and
the paretic leg might not be well coordinated. A critical issue is the command of this stimu-
lation: there is a need to apply the proper stimulation amplitude at the proper moment.
This problem can be seen as a teleoperation issue: observing the healthy leg, the goal is to
apply an adapted command on the affected one. Applied to this context, our method could
be used in two different ways:

¢ for each muscle it is possible to adapt stimulation parameters (amplitude, pulse width,
frequency) according to the computed phase,

e desired joint trajectories parameterized by the phase could be generated. Using a
musculo-skeletal model and solving the inverse problem, the stimulation sequences re-
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quired to achieve such a movement could be computed.

One possible developement of our method is an extension the multidimensional case: how

to integrate several inputs in our scheme? One idea is to build an oscillator with multiple
outputs, each one them simulating one measurement, and then synthesize a single observer
with multidimensional input. Another possibility is to build as many adapted oscillators as
sensor measurements, and then fusing the several phase estimations.
Also, it would be of great interest to study the behaviour of our system in the case of uneven
terrain (slope, stairs, ...). If the input signal is too different from the original reference, it
may loose its synchronization properties. In that case, different oscillator-observers could
be prepared, each one corresponding to a given walking task; we would thus build a kind of
“filter bank”, switching from one to another if necessary.
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