

TTA solvation kinetics in the ionic liquid $\operatorname{Bumim} Tf_2N$

I. Billard, S. Mekki, A. Ouadi, C. Gaillard, D. Trubert, G. Moutiers

► To cite this version:

I. Billard, S. Mekki, A. Ouadi, C. Gaillard, D. Trubert, et al.. TTA solvation kinetics in the ionic liquid Bumim Tf_2N . Comptes Rendus Chimie, Elsevier Masson, 2007, 10, pp.1117-1121. <10.1016/j.crci.2007.04.007>. <in2p3-00153112>

HAL Id: in2p3-00153112 http://hal.in2p3.fr/in2p3-00153112

Submitted on 8 Jun 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TTA solvation kinetics in the ionic liquid $BumimTf_2N$ Cinétique de solvatation de la TTA dans le liquide ionique $BumimTf_2N$

Isabelle Billard^{*}, Soufiane Mekki, Ali Ouadi, Clotilde Gaillard, *IPHC/DRS, Chimie Nucléaire, BP. 28, 67037 Strasbourg cedex 2, France*Didier Trubert, *IPNO, Bât. 100, 91140, Orsay cedex, France*Gilles Moutiers, *CEA-Saclay, DEN/DANS/DPC, Service de Chimie-Physique, Bât. 467, 91191 Gif-sur-Yvette, France*

mots-clefs : liquides ioniques, cinétique, TTA key-words: ionic liquids, kinetics,TTA

Résumé

Le comportement de la TTA, complexant généraliste des cations métalliques, a été étudié par spectroscopie UV-vis. dans le liquide ionique (LI) 1-méthyl-3-butyl-imidazolium bistriflimide (BumimTf₂N). Selon la teneur en eau du LI, la TTA, introduite sous forme céto-hydrate, présente une cinétique d'équilibre hydrate/énol s'étalant sur plus d'une dizaine d'heures. La modélisation par une cinétique homogène classique s'avère insatisfaisante et laisse supposer l'existence de phénomènes non homogènes dans ces solutions, probablement liés à l'état de l'eau dans ce milieu.

Abstract

TTA, a classical complexing agent of metallic cations, has been studied by UV-vis. in the ionic liquid (IL) 1-methyl-3-butyl-imidazolium bistriflimide (BumimTf₂N), in the presence of variable amounts of water. Depending on the water content, the keto-hydrate/enol equilibrium kinetics can last up to tenths of hours. Modelling by use of classical homogeneous kinetic equations appears unsatisfactory, which pledges for the existence of non homogeneous phenomena in such solutions, most probably related to the state of water in ILs.

1. Introduction

Ionic liquids (ILs), although known for a long time, have appeared only recently as potential "green" solvents in all fields of chemistry, in replacement of those traditional organic phases for which generation of volatile organic compounds is nowadays considered as a critical issue [1]. They display tunable properties, as a consequence of their variable chemical structure and some ILs properties can be very different from those of usual organic solvents. In particular, ILs possess the almost unique advantage to dissolve both neutral and charged entities, allowing rather uncommon chemistry to occur. So far, the understanding of solvation mechanism in ILs is still in its infancy, which in turn limits their use. In the field of radiochemistry, ILs have already demonstrated their potential as An/Ln organic extracting phases [2-5] and as practical electrodeposition media [6-8]. Many papers have highlighted some of the very specific properties of ILs, that may open new routes for separation/partitioning of An/Ln but very few works have focussed yet on the problems that can arise from the relatively high viscosity most of them display. Actually, large viscosity is usually associated with slow kinetics, that would hamper the development of ILs as solvents. In the present work, we take advantage of the keto-hydrate/enol equilibrium kinetics of thenoyltrifluoroacetone (TTA) dissolved in 1-butyl-3-methyl-imidazolium bistriflimide (BumimTf₂N), to demonstrate that although viscous, BumimTf₂N displays kinetics that is faster than can be observed in cyclohexane, a more common solvent. These experiments give some insights into the state of water in such media.

2. Experimental

1-methyl-3-butyl-imidazolium bistriflimide (thereafter denoted as BumimTf₂N, Tf₂N⁻ standing for (CF₃SO₂)₂N⁻) is purchased from Solvionic (Verniolle, France). BumimTf₂N was not fully dry and the amount of water in this solvent was measured both by IR and Karl-Fischer titration, leading to a value of 2.44×10^{-2} M (310 ppm). For all the solutions of this work, the water amount was adjusted by a rigorous degassing procedure, according to a previously published protocol [9], followed by addition of the required amount of ultra pure water, which was dissolved in the IL. The water amount in the BumimTf₂N solutions of this work was measured taking advantage of the work of Tran and co-workers [10], extending the range up to 1 M of added H₂O. We have established and used all throughout this work a linear calibration curve relating the water amount in BumimTf₂N as determined by Karl-Fischer titration to the surface area in the range [5085 – 5385] cm⁻¹ of the IR spectrum. A regression coefficient above 0.996 was obtained.

Cyclohexane was purchase from Aldrich (99.9%) and used as received. The water content was checked by means of Karl-Fischer titration (≈ 20 ppm).

TTA, purchased from ACROS Organics (99.5%), was contacted with deionized water in slight excess for about one week in the dark and at room temperature. The solid obtained, after drying, was recrystallized from diethylether, and the white powder, characteristic of the hydrated keto form of TTA [11], was stored at 8 °C in the dark. The presence of TTA, under the predominant keto-hydrate form, was confirmed by spectrophotometric measurements (strong adsorption between 275-300 nm) [11-13]. A kinetic study has shown that the product is stable over several months when stored in the above conditions.

The TTA concentration in BumimTf₂N was in the range of $4x10^{-5}$ M and equal to $8x10^{-6}$ M in cyclohexane. All samples were protected from daylight, in order to avoid photodegradation.

The UV-vis. spectra were recorded in the range 200 - 450 nm on a Cary 100. All measurements were performed at room temperature.

3. Results

TTA has been introduced in aliquots of BumimTf₂N of known water contents. The TTA concentration ranged from 3.5×10^{-5} M to 4.25×10^{-5} M, so that the water amount added with the TTA was less than 6 ppm. UV-vis. spectra were recorded as a function of time. Table I summarises the water amount in the various BumimTf₂N solutions of this work, together with the values of the isobestic points observed for BumimTf₂N and cyclohexane. Figs. 1 and 2 display some of the UV-vis. spectra recorded as a function of time for [H₂O] = 860 ppm and [H₂O] = 8650 ppm as typical examples of the kinetics observed. Fig. 3 represents the absorbance variation obtained as a function of time at the two absorption maxima $\lambda = 265$ nm and 325 nm, for the same water amounts while fig. 4 displays the corresponding variations in cyclohexane ([H₂O] ≈ 20 ppm), for which the maxima are located at $\lambda = 260$ nm and 317 nm.

4. Discussion

The keto-hydrate TTA form (further denoted as TTA-H₂O) can release one H₂O entity to turn to the enol chemical structure, further denoted as TTA. Such a chemical equilibrium is illustrated by the presence of an isobestic point in figures 1 and 2. As already mentioned in literature, one of the parameters driving the keto/enol equilibrium is the polarity of the solvent [14]. In addition, obviously, the enol/hydrate equilibrium depends on the total water amount in the solvent in which TTA is dissolved. Our data show that the higher the water amount in BumimTf₂N, the faster the equilibrium is reached. The keto-hydrate/enol kinetics has been studied in C₆H₆ for example [11] by UV-vis., taking advantage of the two very distinct absorption spectra these two forms display. By comparison of the literature UV-vis spectra, the absorption spectrum obtained in the present work at short time is characteristic of the

keto-hydrate observed in H₂O, with an absorption maximum at $\lambda = 265$ nm, while the limiting spectrum obtained for $[H_2O] = 50$ ppm and long time (t > 1000 min) corresponds closely to the enol form observed in benzene [11], with an absorption maximum located at $\lambda = 327$ nm and a shoulder around 360 nm. At equilibrium, the keto form is dominating the speciation for $[H_2O] = 11900$ ppm, while the enol is the major component for $[H_2O] = 50$ ppm. It has been shown that the enol form predominates in water-saturated carbon tetrachloride [14], a phenomenon previously noticed for other non polar organic solvents. In this respect, BumimTf₂N behaves as a classical organic solvent, with the additional feature that the ratio enol/hydrate can be tuned by monitoring the water amount. In classical liquid/liquid extraction studies with ILs, owing to its hygroscopic properties, BumimTf₂N is actually water-saturated so that [H₂O] is fixed at its maximum value, but in the case of the lesscommon supercritical CO₂/LI extraction technique [15, 16], such an aspect may have some interesting features. The keto-hydrate/enol equilibrium also occurs in cyclohexane, for which only one series at $[H_2O] \approx 20$ ppm has been measured. At equilibrium, the enol form dominates, with absorption spectra at short and long times very similar to those observed in BumimTf₂N.

In a first attempt to fit the data, we adopted the following chemical model:

TTA-H₂O
$$\overleftarrow{k_1}$$
 TTA + H₂O

where k_1 and k_2 are the kinetic constants of the equilibrium. Such a chemical scheme can easily be derived into an analytical expression, using classical homogeneous kinetic laws, provided that [H₂O] is considered constant as a function of time. This assumption is valid in our case for a given series (i.e. at a given fixed water amount), but is questionable for the lowest water amount used (see table I). At a given wavelength, the total absorption A(t) is the weighted average of the molar absorption coefficients ε_1 and ε_2 of TTA-H₂O and TTA, respectively.

 $A(t) = \varepsilon_1 [TTA - H_2 O](t) + \varepsilon_2 [TTA](t)$

The initial conditions are:

$$[TTA - H_2O](0) = [TTA - H_2O]_0$$

[TTA](0) = 0

where $[TTA-H_2O]_0$ is the initial concentration of the ligand in its keto-hydrate form. The chemical scheme above can be derived into the following differential equations:

$$\frac{d[TTA - H_2O]}{dt} = -k_1[TTA - H_2O] + k_2[H_2O][TTA]$$
$$\frac{d[TTA]}{dt} = k_1[TTA - H_2O] - k_2[H_2O][TTA]$$

The mathematical treatment (performed using the Maple facilities) leads to:

$$A(t) = \varepsilon_1 \left(\left[TTA - H_2 O \right]_0 - \frac{k_1 \left[TTA - H_2 O \right]_0}{(k_1 + k_2 [H_2 O])} + \frac{k_1 \left[TTA - H_2 O \right]_0}{(k_1 + k_2 [H_2 O])} \exp[-(k_1 + k_2 [H_2 O])t] \right)$$

$$+ \varepsilon_2 \left(\frac{k_1 \left[TTA - H_2 O \right]_0}{(k_1 + k_2 [H_2 O])} + \frac{k_1 \left[TTA - H_2 O \right]_0}{(k_1 + k_2 [H_2 O])} \exp[-(k_1 + k_2 [H_2 O])t] \right)$$
(eq. 1)

In this expression, the unknown parameters are ϵ_1 , ϵ_2 , k_1 and k_2 , the latter two being independent of the wavelength, while ε_1 and ε_2 depend on it. For each [H₂O] value, equation 1 has been fitted (least square fit) to the experimental data with the help of a fortran procedure, for the two wavelengths: $\lambda = 265$ nm and 327 nm independently. The quality of the fit is excellent in all cases, as illustrated in figure 3: at any given H₂O content, equation 1 leads to a very good agreement between calculated and experimental values. This is also the case for the single series in cyclohexane (see fig. 4). However, a close examination of the fitted parameter values for the nine experimental series in $BumimTf_2N$ shows that the k_1 and k_2 values are not consistent from one series to the other, while ε_1 and ε_2 appear to be reasonably constant. The progressive shift of the isobestic point (see table I) as a function of the water amount may be indicative of a change in the global solvent properties, as water is added to the solution up to the solubility limit. Actually, it has been shown in literature that ILs' properties are heavily affected by water solubilisation [17-21] and so is the viscosity η [21], displaying a rough 30% decrease from dry to water-saturated BumimTf₂N. In our model, this should have some impact onto the k₂ value while k₁ corresponds to a real mono-molecular reaction so that, in principle, its value should not be dependent on the viscosity. In an attempt to reconcile the fitted values for all the experimental series of this work, the nine series in BumimTf₂N have thus been tentatively fitted together, imposing k_2 to vary as a function of $1/\eta$, keeping ε_1 , ε_2 and k₁ constant from one series to another, at a given wavelength. To this aim, the recent literature data of Widegren and co-workers on the η variation in BumimTf₂N as a function of [H₂O] have been used, for this work covers a range of variation in keeping with our experimental conditions [21]. Interpolation of the experimental η values has been made through a linear law (regression coefficient: 0.99). However, this does not improve significantly the quality of the global fit, which is poor. Furthermore, the kinetics is much longer in cyclohexane as in BumimTf₂N (see fig. 4). This is unexpected, because the higher

viscosity in BumimTf₂N as compared to cyclohexane (even for $[H_2O] = 11900$ ppm) would pledge for a slower kinetics in the former solvent, which is not experimentally verified. Clearly, although the mathematical form of equation 1 appears to be in agreement with the experimental variation observed, and although the chemical model itself makes sense, as a whole, the process leading to the enol/keto-hydrate equilibrium is complex and is not only governed by macro viscosity.

At present, we can not propose a definitive explanation for the experimentals, but we can suggest various possible tracks that would deserve further work in order to quantify their contribution to the observed trend. First, it is possible that, in cyclohexane, the activation energy of k_2 is much higher than in BumimTf₂N (possibly in the range of ca. 1 eV). Second, in cyclohexane, the rather low viscosity (as compared to BumimTf₂N) most probably favors de-correlation of the H₂O---TTA pairs formed through k_1 readily after the keto-hydrate has dissociated, so that although viscosity is low, the overall equilibrium needs time to be reached in cyclohexane. Finally, it has been repeatedly mentioned by various authors that water may exist as clusters or nanodomains in ILs [10, 17, 22]. In such a case, the effective (i.e. efficient) H₂O concentration would be decreased by a factor corresponding roughly to the aggregation number of such clusters. Depending on this value, homogeneous kinetics may not apply anymore in BumimTf₂N but the formation of clusters would have a rather negligible effect onto the overall kinetics, which would be mostly governed by the reaction of the correlated pairs instead, leading to a faster equilibrium to be reached in BumimTf₂N as compared to cyclohexane.

5. Conclusion

We have investigated some of the features of TTA solvation and enolisation in $BumimTf_2N$. The slow kinetics evidenced during the course of this work is most likely a general feature of ILs, providing another topics to be studied in those liquids. Insights into the state of water in $BumimTf_2N$ have been suggested, that would require additional experiments to be validated.

Acknowledgement. This work has been performed with the financial help of GDR PARIS, which is greatly acknowledged.

Fig. 1: absorption of TTA in BumimTf₂N as a function of time in the range 15 min – 1435 min; $[H_2O]$ = 850 ppm (see text).

Fig. 2: absorption of TTA in BumimTf₂N as a function of time in the range 15 min – 1080 min; $[H_2O]$ = 8650 ppm (see text).

Fig. 3: Variation of the absorbance of TTA in $BumimTf_2N$ recorded as a function of time for two H_2O contents and at two wavelengths. Solid lines: fits of the individual series (see text).

Fig. 4: Variation of the absorbance of TTA in cyclohexane recorded as a function of time for $[H_2O] \approx 20$ ppm contents and at two wavelengths. Symbols: experimental values; solid lines: fits of the individual series (see text).

Table I: Values of the water amount, TTA initial concentration (in its keto-hydrate form) and position of the isobestic points detected (see text).

solvent	[H ₂ O] (ppm / M)	$[TTA]_0 (10^{-5} M)$	isobestic point (nm)
BumimTf ₂ N	50 / 3.9x10 ⁻³	3.5	293
	860 / 6.8x10 ⁻²	4.25	293
	1600 / 1.3x10 ⁻¹	3.8	294
	2150 / 1.7x10 ⁻¹	4.1	294
	3000 / 2.4x10 ⁻¹	3.8	294
	5900 / 4.6x10 ⁻¹	3.95	294
	7100 / 5.6x10 ⁻¹	4.25	296
	8650 / 6.8x10 ⁻¹	4.25	n. d.
	11900 / 9.4x10 ⁻¹	4.25	301
cyclohexane	≈ 20	0.8	293

n. d.: not determined.

[1] P. Wasserscheid, T. Welton (Eds), Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003,

- [2] K. Nakashima, F. Kubota, T. Maruyama, M. Goto, Anal. Sci. 19 (2003) 1097.
- [3] A. E. Visser, R. D. Rogers, J. Solid State Chem. 171 (2003) 109.
- [4] A. Ouadi, B. Gadenne, P. Hesemann, J. J. E. Moreau, I. Billard, C. Gaillard, S. Mekki, G. Moutiers, Chem. Eur. J. 12 (2006) 3074.
- [5] M. P. Jensen, J. Neuefeind, J. V. Beitz, S. Skanthakumar, L. Soderholm, J. Am. Chem. Soc. 125 (2003) 15466.
- [6] A. E. Bradley, C. Hardacre, M. Nieuwenhuyzen, W. R. Pitner, D. Sanders, K. R. Seddon, R. C. Thied, Inorg. Chem. 43 (2004) 2503.
- [7] S. I. Nikitenko, C. Cannes, C. Le Naour, P. Moisy, D. Trubert, Inorg. Chem. 44 (2005) 9497.
- [8] A. I. Bhatt, I. May, V. A. Volkovich, M. E. Hetherington, B. Lewin, R. C. Thied, N. Ertok, J. Chem. Soc., Dalton Trans. (2002) 4532.
- [9] C. Gaillard, I. Billard, A. Chaumont, S. Mekki, A. Ouadi, M. Denecke, G. Moutiers, G. Wipff, Inorg. Chem. 44 (2005) 8355.
- [10] C. D. Tran, S. H. De Paoli Lacerda, D. Oliveira, Appl. Spectrosc. 57 (2003) 152.
- [11] E. L. King, W. H. Reas, J. Am. Chem. Soc. 73 (1951) 1806.
- [12] N. Suzuki, K. Akiba, T. Kanno, T. Wakahayashi, J. Inorg. Nucl. Chem. 30 (1968) 2251.
- [13] N. Suzuki, K. Akiba, T. Kanno, Anal. Chim. Acta 43 (1968) 311.
- [14] T. Sekine, A. Hokura, I. Tanaka, Anal. Sci. 12 (1996) 747.
- [15] S. Mekki, C. M. Wai, I. Billard, G. Moutiers, C. H. Yen, J. S. Wang, A. Ouadi, C. Gaillard, P. Hesemann, Green Chem. 7 (2005) 421.
- [16] S. Mekki, C. M. Wai, I. Billard, G. Moutiers, J. Burt, C. H. Yen, J. S. Wang, C. Gaillard, A. Ouadi, P. Hesemann, Chem. Eur. J. 12 (2006) 1760.
- [17] U. Schröder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez, C. S. Consorti, R. F. de Souza, J. Dupont, New J. Chem. 24 (2000) 1009.
- [18] S. N. Baker, G. A. Baker, F. V. Bright, Green Chem. 4 (2002) 165.
- [19] S. L. I. Toh, J. McFarlane, C. Tsouris, D. W. DePaoli, H. Luo, S. Dai, Solv. Extr. Ion Exch. 24 (2006) 33.
- [20] S. Pandey, K. A. Fletcher, S. N. Baker, G. A. Baker, Analyst 129 (2004) 569.
- [21] J. A. Widegren, A. Laesecke, J. W. Magee, Chem. Commun. (2005) 1610.
- [22] L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 3 (2001) 5192.