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Study of the linear ablation growth rate for the
quasi-isobaric model of Euler equations with
thermal conductivity

Olivier Lafitte*

November 30, 2006

Abstract

In this paper, we study a linear system related to the 2d system of Eu-
ler equations with thermal conduction in the quasi-isobaric approximation
of Kull-Anisimov [Q] This model is used for the study of the ablation
front instability, which appears in the problem of inertial confinement fu-
sion. The heat flux Q is given by the Fourier law T~ Q proportional to
VT, where v > 1 is the thermal conduction index, and the external force
is a gravity field § = —gé,. This physical system contains a mixing region,
in which the density of the gaz varies quickly, and one denotes by Lo an
associated characteristic length. The fluid velocity in the denser region is
denoted by V.

The system of equations is linearized around a stationary solution, and
each perturbed quantity @ is written using the normal modes method

i, 2, 1) = R(a(x, k7)™ V)

in order to take into account an increasing solution in time.

The resulting linear system is a non self-adjoint fifth order system. Its
coefficients depend on x and on physical parameters «, 3, a and 3 being
two dimensionless physical constants, given by a8 = kLo and % = 9V—L2Q
(introduced in [ﬂ]) We study the existence of bounded solutions of this

system in the limit @ — 0, under the condition 3 € [fo, ﬁio , and the

assumption Ry € [0, ﬁio]’ lv] < % (regime that we studied for a simpler

model in [E]) calculating the Evans function Ev(a, 3,7) associated with
this linear system.

Using rigorous constructions of decreasing at +co solutions of systems of
ODE, we prove that, for 8 € [Bo, %]7 Ry € [0, %], v < ﬁ—107 there exists
a1 > 0 such that there is no bounded solution of the linearized system for
0<a<as.

hal-00158866, version 1 - 30 Jun 2007

*CEA/DM2S, Centre d’Etudes de Saclay, 91191 Gif sur Yvette Cedex
tUniversité de Paris XIII, LAGA, 93 430 Villetaneuse



Necessarily, for any M > 0 and o > 0 there exists a1 > 0 such that, for
0 < a<aand g € [Bo, ﬁio]’ an admissible value v(«, 3) such that there
exists a bounded solution of the linearized system satisfying |y| < M is
such that $y ¢ [0, M].
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0 Introduction

This paper is devoted to the precise calculus of the Evans function Ev(c, 3,7)
of the normal mode formulation of the linearized system of equations associated
with the quasi-isobaric (low Mach number) model. The calculus of this Evans
function is not classical, because the matrix of the differential system has sin-
gular coefficients,and because these coefficients do not behave exponentially in
the spatial variable. However, usual techniques of ordinary differential equa-
tions and introduction of a Fuchsian problem allow us to calculate this Evans
function under certain assumptions on the parameters «, 3, introduced in the
Abstract.

In this Introduction, we first describe the physical model (E), define what is
called a linear growth rate of the linearized system associated with a stationary
solution of this physical model, then finally describe the contents of each step
of the proof of the main Theorem (Theorem [I).

0.1 Physical model

We consider a compressible fluid characterized by its density p, its velocity (u,v)
and its temperature T in a gravity field § = —|g|é,;. We assume that this fluid
has the following properties:

a) when x goes to +oo, for all z we have p — pq, (u,v) — (=V,,0) and
T—-1T,.

b) the functions (p, u,v,p, T), where p is linked to the pressure in the fluid,
satisfy the system of the Euler equations in two dimensions (x, z) with thermal
conduction in the quasi-isobaric approximation for a perfect gaz:

div(CppTd + @) = 0, (1)

where C), is the calorific capacity of the fluid, the heat conduuction flux Q being

given by the Fourier law .
Q= —k(T)VT, (2)

the thermal conduction law is
k(T) = KoT", (3)

where v is the thermal conduction indice.
We introduce a characteristic length Lj associated with the thermal properties
of the fluid

K TY

Lo = . 4
AT (4)

Physical values of Lg for the case of the ICF are of order 10> meters.
Under a quasi-isobaric assumption, the system modelizing the ablation model



was given by H.J. Kull @] and appears for example in P. L. Lions [E] It states

Op + div(pil) =0

9 (pti) + div(pti @ @ + p) = pg

p_T = paTy (5)
Q= —k(I)VT

div(CppTi + @) = 0.

This model can be derived either from the low Mach approximation (Majda [[L]],
Dellacherie [d]) or the quasi-isobaric approximation (Kull [[14], Kull-Anisimov
[@], Masse . See a short analysis in Section EI A stationary laminar solution
of the system (E) is (po(x),uo(x), 0, po(x), To(x)), where we introduce a function
& such that

Pa Va Va

po(@) = pat(g )wole) = = 0y = 75(—%)’%(%) “ o) E)

and po(x) satisfies

2v2 x 2v2
po(z) + Pa’a g/ po(s)ds = po(xo) + Pa’a

po() 0 po(x)
The function £ is the solution of the differential equation
& 4
— =& (1 - 6
=eta-g (6)

such that £(0) = % Note that, in this case

v+2 9 9 1 gLo /y
Loy) = po(0) + 22 V2 — paV2 [ + )],
pO( Oy) pO( ) V+1p P [é-(y) Va2 0 &() ]

Introduce
v+1

0= Gy

The system of unknowns that we consider is

U
pu® +p
pUV
Z(p)
u— LOvaax(Z(p))

h
I

~ 2
From U, we recover p from Z(p), u = %, v = ’Z‘—uv and p = p + pu® — %.
For this choice of unknowns, we introduce Fy(U) = U. There exists three
explicit functions Fp, F» and F3 such that the system (E) is equivalent to the

system on U




A stationnary laminar solution Uy of this system depending only on z is Up(x)

such that J
%(FNUO(ZE))) = F3(Uo(2)).

The identity Fy(U) = U is the natural choice when one studies a basic solution
depending only on the variable z.

0.2 Definition of a linear growth rate

We linearize () around Uy(z). Denote by U the unknowns U — Up(x). The
linearized system writes (V1 and Va ~denotes tNhe gradient of F» with respect to
the first and second set of variables U and 9,U):

81U+VF0(Uo(z))atU+V1F2(U0(:c), 0)82U+V2F2(U0(2E>, 0)(932U = VFg(Uo(ZL'>)U
(9)

which can be rewritten M(z,d,,0.,0%,0,)U = 0. Note that its coefficients
depend on x through the stationnary solution.
We are now ready to introduce the definition of a linear growth rate for a

non linear system around a laminar solution:

Definition 1 Let M(x, 0., 0., ajz,at)U =0 be the linearized system

We call a linear growth rate of this system for the wave number k a value
of o (depending on k) such that o > 0 and there exists a non-trivial solution
U(z,k,o) of the system

d
M (z, d—,ikz, —k%,0)U(x, k,0) =0 (10)
XL

such that U is bounded and going to 0 when x goes to +oo. The function
Uz, k,o)er*et
18 called a normal mode solution of the system.

The normal mode system associated with (f]) is

% + VFo(Uo(.T))O'V + ’L'k?vng(Uo(w), O)V - kQVQFQ(UO, O)V = VF3(U0($))V

(11)
The scope of this paper is to find bounded non trivial solutions of (@), and
associated values of ¢ if any. If such a solution exist, it will lead to a normal mode
solution of the linearized system. Note that, in the set-up we described, different
physical parameters appear, namely k, Lo, V,, g. As the classical growth rate of
Rayleigh is equal to (52121 gk)? for the discontinuity model [P, and as we
proved ([{], [[Z)) that this value was the limit of the growth rate when kLg goes
to zero, we are led to introducing the following quantities

V2
= kL Fr=_2¢ 12
€ 05 r gLO ( )




and

az,/%,ﬁzx/eFT,vzﬁ. (13)

The aim of this paper is to study the existence of a growth rate v, Ry > 0, in
the limit Ly — 0 when the Froude number F'r is of order LLU, which means that

a—0,6>0.

Remark Other regimes rely on different assumptions on « and 3: we refer to
[ for the results that can be obtained for this model in the high frequency
regime k — +00. In this other regime the scaling writes
¢ large, e3Fr < C’, where C' is a constant.

In the first section, we study the physical origin of the model and derive the
properties of the stationary solution, where the associated density profile satis-
fies:

po(z) — 0 when x — —o0

po(x) — pa ~ Ce o,z — +o0

po(@)|zl — pa(L2)E, 2 — —ox.
We then derive the linearized system, which is a fifth order differential system
whose coefficients depend on pg(x) and are singular when po(x) go to zero. Note
that this is not a classical case for the study of such systems and that this leads
to rather tricky methods.
In the second section, we recall the general set-up for the calculation of the
Evans function of the linearized system, and we give the induced differential
systems in A"(K?®) for n = 2,3. Note that the field K is R for real values of
~v and K = C for complex values of 4. This Evans function is (related to) the
vectorial product of the normalized solution in A?(K®) which has the greatest
decay when x — +o00 and of the normalized solution in A3(K®) which has the
greatest decay at © — —oo.
In the third section, we identify the solutions of the system in A?(K°®) deduced
from ([[(Q) for # — +oo. In this region, we use the exponential behavior of the
profile to obtain the classical analytic expansion of the normalized solution of
the system in A?(K°). There exists & €]0, 1 (corresponding to yo € R through
&(yo) = &) such that this analytic expansion is valid for 5(%) > &, that is
x > Loyo. Note that, however, the expansion of this solution cannot be obtained
by the techniques developed in Zumbrun et al [E], because the Gap lemma as-
sumptions are not fulfilled.
A general feature in the calculation of the Evans function is to obtain an over-
lapping region of definition between the solution well behaved at +oco and the
solution well behaved at —oco. A first step to achieve this overlap is then to
prove that there exists ap > 0 and R > 0 such that, for all o < ¢ < % the
solution obtained for & > Loyo can be extended in [X.(a, (), Loyo] where

é(X*E;i’O> —abct,



This is the aim of the fifth section. The behavior of the solution in the region

[au G " ,50] when o — 0 is different from the classical analytic expansion in «
for y € [yo, +oo[ and it is the aim of Sections @ and @

Once this extension is done, an easy calculus is the calculus of a growth rate
associated with the following stationnary solution, characterized by its density
profile, for a {y such that {y < %:

pat(5), = = Xula Go)
p*(w){
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PaOWCo ( )

This calculus is an improvement of the discontinuity model of Piriz, Sanz and
Thanez 1] and it is the aim of Section [

When the profile is not constant in the region | — 0o, X, (c, (p)] (that is for the
full model), the system leads to a fuchsian problem in the region £ — —oo, and
we use the hypergeometric equation (see [@]) The solution of the system in
A3(K®) deduced from ([L]) is identified in any region of the form 1 €]—o00 *;_Uﬁ]
for every tp, which means that = €] — oo, f%] The results of the analysis of
these solutions is summarized in Theorem I

The study of the roots of the Evans function is the alm of Section E and we
summarize the method here. From the relation £(y)|y|» — v+ when y — —oo,

we deduce that —afX.(a) — B—E" > 0 when a — 0. Hence for all < 0a < g

there exists ¢y > 0 such that the regions | — oo, —<2] and [X ( )

ap
&(yo) = &o, overlap.
We then express the Evans function Fv(w, 3,7) of the system at a point of

[— Lo X*(a)]
afB’ Lo
expression in terms of r = %, 8 and ¢y > 0. As it does not depend on ty, we

study the limit when ¢y — 400, hence proving that the only positive value of r
which is admissible is » = 1. We deduce a contradiction, proving that there is
no growth rate ( of positive real part) for the system. This can be stated as

, Yo, where

The limit when a@ — 0 and ¢y small exists and we write its

Theorem Let M be given. There exists a,. > 0 such that, for 0 <
o < as, 3 € [47, M], the Evans function Ev(w, 3,7) of the system has no
root for |y| < M, Ry € [0, M].

1 Derivation of the quasi-isobaric model

1.1 The physical approximations

The general equations are the thermal hydrodynamic equations, written in a
non conservative form:

Op + div(ptl) =
O (ptl) + div(p U a ) =
p(0y + 4.V )h — (0 )



where C}, and C,, are the classical tehrmodynamic calorific capacities at constant
pressure and at constant volume, h is the enthalpy h = C,T, the pressure

and the density being given by the equation of state p = (Cp, — Cy)pT, Q=
—k(T)VT, J; = 0 (in our assumption the energy given to the system is 0). The
quasi-isobaric approximation writes

C - Yo
G —Culp 0T
C, p T
Following L. Masse [@], this relies on the two hypotheses
2

M
M? << 1, T <<L (16)
T

Hence the quasi-isobaric model relies on a low Mach hypothesis.
The equation of the energy rewrites
1 ~ O+ u.V)(ph —
divii + divg = - O FEV)ph = p)
ph ph

This equation is approximated by (EI) as we will see below. What follows is a
formal derivation of the quasi-isobaric model under a low mach hypothesis. It
is closely related to the method given by Majda [E], Dellacherie [E]

1.2 Adimensionnalization and low Mach expansion
Use the reference density p,, the reference velocity V,, and the reference pressure
ps associated with the sound velocity cs such that cig—Zpa = ps. The Mach

number is thus M = %
Write p = pap/, @ = Voii', p = psp’. The system of equations ([Lf) rewrites

Voo +div(p'@) =0
Vailat (plﬁ/) + div(p’ﬂ" QU + 7%) — %p/

a
. “1_1 _giv — — (Va '@ V)p
divad’ +V, CopT divQ = — -

If we assume that all the quantities have an asymptotic expansion in M, in
particular p’ = pj(z, z,t) + M?p(z, z,t, M) we have the following relations from
the momentum equations

9xpp = 0,0:p5 =0
hence pf, depends only on ¢. This is the same result as in the analysis of Del-
lacherie [H] In this model, we assume that the pressure pj, is constant, because
we assume that the ground state for the equations is stationnary.
Replacing the relation p'(x, z,t, M) = pf, + M?p in the energy equation we
obtain

c,—C,
Cyp(py + M?p)

V.o, + ' .V)p

divG = 2!
¢ py + M?p

divi’ + V7




Finally, using G = Ko (go+lg )1; )id V(g‘ﬁ]g )pp,, we deduce that

Q= Kol 52)" "1V 2(p) + O(M?)
P v

hence the formal analysis leads to the equation

div(V, Y’ 4+ LoV Z(p)) = O(M?)

where we used & péc = p;i deduced from the relation p = (C), — C,)pT. The
resulting equation can be written div(Cy,pT'd + Q) =0, pT = paT, hence (fI)).

Finally, in the momentum equations, rewriting {7 = M2 + p and using pj
constant, we obtain the equations

V.o (p'ud!) + div(p/d’ @ @' + pld) = %p’.

Note finally that the relation @) and the relation pT' = p,T, lead to the equation
on p:
(Or +u.V)Z(p) — (v + 1) LoVa Z(p) AZ(p) = 0. (17)

1.3 Study of the stationnary solution

The resulting system of equations that models our phenomenon is thus

Op + div(pi) =0
O (pt) + div(pt ® @ + pId) = pg (18)
div(i + LoV,VZ(p)) = 0.

A stationnary laminar solution satisfies

(50) o(x) = *pa f
(/)0(53 uo(x)* + po()) Z—Po( )g
(Uo(z)*LOV Z(po(x))) =

where the first relation is a consequence of the mass conservation equation, the
constant pougp being identified through its limit at & — +oo. Hence ug(z) =
—£aVe Jeading to the equation on po:

po(x)
Vapa de( ) 2 p+1 _
_ V vV— 1% C
po( ) Ly d ——po(z)""""pj, 0-
Asy = 7 this equation rewrites
d§ . CO v+2 v+1
dy Va5 e

If Cy = 0, the equation becomes d%(f_”) = —v, hence £7¥ = Dy — vy hence &

is not defined for y > 22, We cannot consider this solution.



If Cy > 0, & is increasing, hence if it is majorated, it has a limit [ > 0 when
y — +oo0, this limit / satisfies T+ £2]¥+2 = 0, which is impossible. We deduce
that Cy < 0, hence the equation is

g
dy

_ g _ 1l
SRR

hence from the resolution of the equation we deduce £ — I‘C/‘_(Sl’ and as £ — 1,
|Co| = V,, and the resulting equation is ().

This equation has a unique constant solution & = 1. The low Mach approxi-
mation of S. Dellacherie [E] for a bubble model uses this stationnary solution as
base solution. When we consider a non constant solution, we have the following
Lemma which gives the behavior of the solution when = goes to —oo. Introduce
v+1

and let n = [v], L5 = &,

the function hyyy such that hy,e)) = fOE o ;)

1
and Yy = ZZ:O ﬁ v=p _ h{y}(E*)
Lemma 1 There exists t, > 0 such that for 0 < t < t, there erists a unique
continuous function g(t), g(0) = 1 solution of

n

v v v v
(9(0)" = —t"g()" (hu (tg(1)) + o) + Y _t"(g(£))"~ —
p=0
The function g has a Taylor expansion at t = 0.
1. Behavior when y — —o0
Fory < —#, we have the identity
1.1 1.1
§(y) = (*V—y) 9((*V—y) )-

There exists a function r(t,e) such that

1 t.,, 1 191

E(f(—g)) = et ir(te). (19)

There exists to > 0 and g > 0 such that r(t, ) is bounded for t > to,0 <
e<e¢gg

2. Auziliary function at —oo: We introduce S(t,e) = — t+oo sV (s, €)ds.

This function satisfies S(t, E)t% uniformy bounded for t >ty and 0 < e <
€0-

3. Behavior when y — 400
We have 1 — £(y) = C(y)e™¥, with C(y) — exp(yo — L — .. — L +

v rvr—m
1 (1*77”’")6177)
0 nv=m(1-m) /-

10



The proof of this Lemma uses the following relation

pE_"+p +hy(§) =y —ys

The equality yields

n

y=—— (3 L e (hy (6) + 1))

Ve ey = p

Introduce § = tg and ¢t = (— 1y)% such that y = —V—i,,. We obtain the equality

n

Z -
v —
p=0

We introduce ¥(t,g) = " — >/ 3% S5tPg? — vt g"[hiy (tg) + yo]. We have
¥(0,1) = 0 and 94¥(0,1) = v > 0 hence by the implicit function theorem,
there exists a unique solution of ¥(t, g) = 0 in the neighborhood of (1,0).

The behavior of the solution is more classical in the neighborhood of +o0,
thanks to the equality

ptpgp —vt¥g" by (tg) + yal-

n

Ay 1 Sdp(l—nv")
(=8 =0~ 3 (v —p)e—r +/o T

p=0

hence
1—&(y) =e“Wev

with C(y) — yo — -1 (U ot fl d:V(lnq :) when y — +00. The Lemma is
proven.

The particular case v = 2.5 In this case, explicit calculations lead to the
following implicit relation

1+V¢ 2 5 )
-C=1 — 14+ =€+ 5¢87).
y N R 5€g(+3§+ %)
Hence, fory:—f andfznsg we get

2 1+e3
5(1+€57}+€5 3 —eC— J
on2 1—e5,/
We write n(e,t) = (3£)~ 3g(t,e). Considering the limit, for ¢ > 0 fixed, in the
previous equality we obtain

t =

lim._og(t,e) =1

and we construct step by step the expansion of g(¢,¢) in e.

11



1.4 Physical interpretation of the model

We insist finally on the fact that this system of equations is only a theoretical
model: the equation satisfied by pg is

dpo

oy = PV () + € (1 €)]

Fr

hence the pressure is not bounded. The total pressure writes

P(z) = (Cp — Cy)paTu + M?po(Loz)

which leading order term is constant and low order term in Mach is not bounded.
Hence a good way of calling this model could be to call it a relative isobaric
model or a relative low mach model. See Majda and Sethian [[Lg], Embid

[, or P.L. Lions [[L] for other remarks on this modelling.

Introduce the function M (y) such that M?(y) = ‘g%') , where Cs(y) is the
sound velocity at a point of the fluid given by Cy(y)? = %%, that we still
call the Mach number. We have

Lemma 2 The Mach number of the stationnary solution is bounded for v > 2
and y < —C.

2 — PaVa — PaVaZ F’aVa2
Proof As M(y) = qict; = %00ew) = C-ColrTot) A M WER T
which has a finite limit when y — —oo under the condition v > 2. More-

over, as po(y) — —oo when y — 400, there exists a point where the pressure
vanishes. There exists a constant C such that P(y) is bounded below g3 > 0 on
| = 00, —C] and —C' is a positive constant of order (%—T;)%l

The low Mach number assumption is relevant (in particular when looking at
the temperature of ablation and the density in the ablated fluid).

1.5 Linearisation of the equations

To simplify the notations of what follows, we denote by f a quantity appearing
in the Euler system of equations, by fj its stationnary leading order term, and
by f the perturbation of order 1 normalized by the physical quantity p, for the
density, p,V, for the impulsion, and p,V,;? for a pressure term. In the normal
mode study in the vicinity of a profile depending on z, it is pertinent to linearize
the variables on which acts the derivative %, that is pa, p(@)? + p and pud,
which writes

ﬁu = _paVa + paVaxl
p(@)? +p = po(x) + po(x) (uo(2))* + pa Vs (20)
pud = —ip, V23

The coupling with the equations of the energy is made through the pertur-
bation of density p. Introduce

7= — LoVaV(Z(po)) — LoVaV(Z(5) — Z(po)).

12



The thermal perturbed quantities are
- 1
x4 = Z(po) — Z(p), x5 = 7(71 + Va). (21)

With the choice of unknowns (z1,xe, xs, x4, 25) (which corresponds to the un-
knowns pu, pu® + p, puv, —Z(p), 1), denoting by Z~! the inverse function of Z,

Z7Yf) = pal(v + 1)f)ﬁ, the non linear system ([Lg) is equivalent to:

0

Vi U2 Z{p0) ~20) + pdias + 1027 (Zm) — 1) g27) =
Vo 01 + paOuta — ipa0.xs = v2 (Z7Y(Z(po) — x4)) + vz Zpo(z)
Va_lat( _1( (PO) _$4)1 1 ) paa T3

Y Z(p ) z4) pa(—z1)2
+Pa0z(22 + (fﬂz et T 7 20 —any) = O
LoOzzq + Zﬁpgz(ﬁo)lfm) - Popaz) —r5 =0
OzTs + 0, (L08Z2E4 + ille) = 0.

(22)
In the system ([l§), one needs to obtain the linearization of 4o and of p + j(7)?
in terms of x1, x2,x3. It is a consequence of

Z3

(17561)24»1’&77 Va
E+p & £+4p)

hence the approximations (dropping the terms of order 2 at least)

5— iV
=1 T4

7/3:Pa(§+p)7?3:$2*

Va

o N 2
= iVoxs,p = po + paVy (22 + =21 + L

£ &

Moreover, the identity x4 = Z(pa€) — Z(pa (€ + p)) leads to x4 = —Z'(po) pap +
O(p?), hence

2 i = o +

2
guﬁ;—Q + O(€f+4 )

T4 =
Moreover, as

T =0 —up = Va = LoVa02(Z(pa(§ + p)) = Z(paf))

one deduces
Iy = Vail(’l) - UO) - PaLoaz(Z/(/)a'f)P)-

The linearized system is

VL0p + Opy + «58 (izs)
V10 + 0, 302 — 0, (ixg) = Vz/)
V.10, (ikxs) — (’LIL‘g) + ¢t (2:E1 &p)=0
pP= _(paZI(Pag))
LOam(paZI(pag) ) + Ts5 + =P = 0
OzXs + aZ(Lan.T4 + ’L.T3) = O

(23)
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Using the new variable y such that x = Lgy, one deduces the relation

p+E(y)x iy T z1p + p?
B e ) T gy O e
Write the following normal mode expression:
X1 Zy
2 Z.
izs | =R(| izy | eFFHVIRY), (24)
T4 Ly
Ts L5
£y
Lo
Assume | iz, | e*#F7V9R i5 a solution of the linearized system. This rewrites
Ly
Ly
L Zy
Ly Lo
as a system of ordinary differential equations on| iz5 |. If | iz4 is solu-
Zy Zy
Ly Ly

tion of this linear system of ODE, then (z1,z2,ir3, 74, 75)" is solution of (@)
Note that, in this case ix3 is real.

Remark on complex growth rates Note that, if v is complex, the solution
Ly
Lo
1y | is also complex and depend on y, k,y. More precisely, introduce y;, 2;
Ly
Ly

such that z; = y; + iz;. We have thus

T4 y1coskz — zysinkz
To Yo coskz — zgsinkz
R(| izs e taVaRty o= (| —z3coskz — yssinkz
zy yacoskz — z4sinkz
Ts ys coskz — zgsinkz

and y; and z; are known through the decomposition of the initial perturbation
in the even part and the odd part in z.

Hence, from a complex solution (z, ..., z5)!(z, k,y) of the normal mode system,
one deduces a solution of the perturbation system with a known initial condition.

14



Normal modes system The equations for the normal modes associated with
the mass conservation and the momentum equation are

ayp+ 4+ aféry =0
dmz

G —afrs +ayr+ Gp=0 (25)
‘%3 —av€xs + af(ze + %xl +&)=0.

The normal mode formulation of the linearized energy equation is

dl‘5

m +iafB(—ixs + iafry) = 0.
Let X be given by
T
T2
X = T3
T4
Ts5
The linearized system on X is
dX
d_y +M0(5505567’Y)X =0 (26)

where the matrix My is given by

0 0 aB¢ ayert? 0
ay 0 —afB %E”” 0
My (&, o, B,7) = % af —ayé  apfe” 0
I o o & 1
0 0 a  —a?p% 0

(27)

From now on, we will call this system the Kull-Anisimov system. The
cigenvalues of —Mj are given by the classical result! (see [L4], R1]), and help
us to study the solution at 4oo:

Proposition 1 e The eigenvalues of —My are

)\0(6) = 04'767 )‘a,-‘r = aﬁa )\a,— = _aﬁa )‘+(€)’ )‘— (g) (28)

where (the square Toot is chosen of positive real part)

r(@) =5+ J oyt a2 (29)

The eigenvalues Ao, Aq,+ are called the hydrodynamic modes, the eigenval-
ues Ay (€) are called the thermal modes.

1A change of unknowns (that is a general X = R(y)X) lead to a different set of eigenvalues,
however if the matrix R(y) depend only on £(y) and is a C! function of ¢ € [0,1] then the
limit of the eigenvalues when y — 400 is the same as the limit of the eigenvalues described
above.
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e For Ry > 0, one has RAg(§) > 0, ER(AL(£)) > 0, and for Ry > 0 one
has RXo(1) > 0. The matriz —Mq(§) has three eigenvalues of positive real
part, and two eigenvalues of negative real part.

e The associated eigenvectors are given by
Eo(§) = Bi — 2Biz — 7&is
Eo+(§) = =i+ (B +E)iz2 + Bis (30)
Eq,—(§) = —Bi+ (B — )iz — Bis

If we introduce

¢’ §0°€¢ = p7)
y % . 52 _ 72152 + ﬁﬁ_
R = Jé] ,T° = —£2
0 0
0 0

the eigenvectors Fy associated with Ay (§) are given by

F Ry O me, @)
L =is+aR" + + : 31

! D A PV eI
The proof of this Proposition is straightforward, except for the sign of the real
part of Ay (&). For this, we use

o & 5 ) 2
(A + 5 ) = T B% + Ry +iSy) = (A+iB)

where A > 0 (if A < 0 one uses (A +iB)? = (—A —iB)?, and A = 0 leading to
(iB)? = —B? is not possible when Ry > 0). Hence one obtains

2v
Aopr o S 2 +afRy, A>+B* = (("C— +a23 + afRy)? + a2 (39)?)

2v

4 4

AS AL(€) = —5 4 (A+iB), ROL(EN(6) = (-5 + A& — A) + B2,
and R4 (E)RA_(€) = ROL(EA_(€)) — B2 = —ae 'Ry — a3 — B2 < 0, one
obtains that the product RA; (§)RA_ (&) is strictly negative, hence the real parts
are of opposite sign, hence R\ (§) = f% + A.

This calculus also defines uniquely in the case Ry > 0 the eigenvalues A, (&)
and A_(£).

Note also Ag(a, 8,7) and By(a, 8,7) the quantities such that Ag(«, 3,7) > 0
and (Ao(a, 8,7) +iBo(a, 5,7))? = i +a?3 + ay.

Using 3—5 = ¢vHL(1 - €), we also introduce a new system of unknowns :

r1 —ayéxy

T2 — %§$4
Y=TX=| z3—afz (32)
1%5045304
x5

16



and the system on Y, equivalent to (E) is

U — ayy + afEys + a(l - €)(5? - %2)24 +aytes =0
oy~ —afys +a(l =& — g — §aa+afas =0
W+ Lyt aflys — ayéys + ol - O(F )z + afas =0
Lo ayza PG (1 — €x5) = 0

ddmy5 + aﬁi% =0,

namely

dy
d—y+aB(§,6,7)Y:0 (33)

where

Biy = —yi1 + (v — %)12 + %is + %M
Biy = Bis
Bis = iy — Bia — y&iz + Pis
. 2 . . — . .
Bi = (L=9[(3~ )i + (30— ) = D+ (3 + 75500l + i
Bis = ~&i1 + %iQ + Bis — %M-
The next section is devoted to the statement of the methods used to find the

solutions at infinity for systems of ODE which coefficients depend on y, and of
the general set-up to find solutions bounded at +oo.

2 Evans functions and application to the Kull-
Anisimov system

2.1 General framework

This section recalls results of the paper of Alexander, Gardner et Jones [{], as
well as the methods developed by K. Zumbrun [{f], D. Serre 4], S. Benzoni-
Gavage [ and other authors. Its purpose is to study solutions with a prescribed
behavior at infinity of an ordinary linear system of differential equations. It is
used in particular to identify solutions going to 0 as y — *o0.

In the general case, we consider the ordinary differential system

dy
— = A(t 34
U Aty (34)
when A is a regular matrix (for example analytic in «).

We notice that the vectorial product y; A y2 of two solutions y; and ys of (@)
is solution of a new differential system on A%(K™) which matrix is denoted by
A®) | because

d
E(yl ANy2) = (Ayr A y2 + y1 A Aya).

17



Similarily g1 Aya A... Ayy is solution of an ordinary differential system on A*(IR™)
whose matrix is denoted by A®). The matrix A®) is given by

k
A(k) (eil A Cigeee A eik) == Zeil A A Aeil AN <€ - (35)
=1

When the matrix A is diagonalizable, with eigenvalues A\; < Ag < ... < Ay then
A®) is diagonalizable and its eigenvalues are

> Ai.

iel,ic{1,...,d},Card(I)=k

The largest eigenvalue of A®) is Zﬁzl Ad+1—p, and its smallest eigenvalue is

> pmt M
Under the hypothesis that A\g—x < Agy1-k, the largest eigenvalue of Ak g
simple. Its associated eigenvector is the vectorial product of the eigenvectors
associated with (egy1—k, .-, €4)-

Recall that the space A(@) (]Rd) is of dimension 1, hence the matrix associated
with A(@ is a number, which is equal to Tr(A(t, «)). The associated differential
equation is

S A A ) = THA® ) 1 A A i)

Hence the vectorial product of d solutions of (B4) satisfies

t
Yi AY2 A Ayt o) = g1 Ay A A yalto, a)exp(/ Tr(A(s,«))ds).  (36)
to
whose solution is the Wronskian of d solutions of the system.

2.2 Notations for the Kull-Anisimov system

Remark that, when v is complex, one has to replace R by K = C but
nothing will change as what is important is that we study objects on
a field, which can be R when v is real, and which is C when 7~ is
complex.

In the set-up of this paper, the matrix —M, admits three eigenvalues of
positive real part, which may be associated with the solutions going to 0 when
y goes to 400, and has two eigenvalues of negative real part, which help to
understand the solutions going to 0 when y goes to +oo.

It is in general hard to compute the solutions associated with an eigenvalue
of the matrix —My. However, we may compute the solution for the matrix Mé2)
associated with the smallest eigenvalue A, — + A_(£), and the solution for the

matrix Mé3) associated with the largest eigenvalue Ag(§) + A (&) + A -
We introduce from now on the base vectors in A?(K®) which take into account
the role of ﬁ in B:

18



Ji =11 Nig, fo =ia Nia, fs = i3 Nia, fa =is Nis
g1 =11 N, g2 =11 Ni3, g3 =11 Nis (37)
g4 =12 N3, gs =12 N5, g6 = 13 Nis
To these vectors are associated the following vectors in A3(K?) such that f; A
fit =i1 Nig Nig Nig Nis = gj A gj, Vi, j. We have

flL:’L'Q/\’L'g/\’t'5,f2L=—’L'l/\’ig/\’t'5,f3L=Z'1/\Z'2/\Z‘5,fjZ’L'l/\’t'g/\’ig
g1 = i3 ANis Nis, g3 = —ia Nisa Nis, g3 = —ia Nig Ada
gi‘:il/\i4/\i5,gg‘:i1/\i3/\i4,gé‘:77:1/\1‘2/\1‘4.
(38)

Note that we shall use in the sequel the eigenvector of the matrix MéQ)(l)
associated with the eigenvalue —a8 + A_(1):

Wi=F_(1)NE,-(1)=Bfi+(v—=B)f2+Bfs —Bfa+ G (39)

where G belongs to the space generated by g;,7 =1..6, and W, 1 = 3, W4 2 =
v—0B, Wi 3 =0, Wi4s=—0. We also introduce u(a) = -+ 1+al® Guch that

(D)
A_(1) —af = -1+ ap(a). (40)
We notice that p(a) = —f5 — %, hence

Vo € (0,0, 8 € (B0, By '], [y < Bg ' Ry = 0, ()] < 200657 436, (41)
We construct a solution of the system

dx® @)
M x@ = 42
which belongs to the family of its most decreasing solutions when y goes to +oo.
Similarily, we construct a solution of the system

dx®
dy
belonging to the family of its most decreasing solution when y goes to —oo.

It is useful to introduce the following transformation for the study of the solution
when y — +4o00:

+MPx® =0 (43)

v — 7@ x(? (44)
where

Lemma 3 Let Y x;i; and > t;ji; be two solutions of ([§). Ve denote by X2 =
v1f1+vafotusfs +v4f4+2521 w;g; a solution of @) The associated solution
Y@ =T@X® yrites

6
V& = Zyfi + Zafo + Zafs + Zafa+ ZMjgj

j=1
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with

Z; = aﬁ%_gvj

My = F&v1 — ayua + wy
My = afv; — ay€vs + wo
M3 = ay§vs + ws

My = vy — G8vs 4wy
Ms = 58vs + ws

Mg = afvg + weg.

For the construction of the solutions when y — —oo, we use the following
transformation of the unknowns

£ = 1,24 = afzy. (45)
The system deduced from (R6) is thus
(- 8&a +afes + 32 =0
dm +ayéz1 — afrs + z§”+224 =0
ﬁf +2af21 + affzy — 0475563 +&"24=0 (46)
dzy“ +afz + &%z —afxs =0
d””" + afxs —afzs =0

Introduce
t =—afy.
We have
Lemma 4 Let Z'(t,a), Z2(t, ), Z3(t, o) be three solutions of {4d). Write

ZO(t,a) = ZY(t, ) NZ2(t, ) NZ3 (L, @) Zf] (t, « f +ng (t, « g;. (47)

The solution of @) associated with Z®) is

w®(,0) = fi-afya)fi + &) i f(-afya)f;
+a_1g[zzzlgp(7a6ya )gp +§Zp 4gp( Ozﬂy,oz)gj;].

The proof of these two lemmas is straightforward.

2.3 Construction of the Evans function for the Kull-Anisimov
system
Recall that the Evans function is characterized by the vectorial product of five

solutions of the system. As it writes X A w®), we notice that, from Lemma
E and Lemma @, we have

aBEX® Aw® = ¢(Mygy + Mags + Msgs) + €2(Maga + Msgs + Mege)
+(1 =21 (/L — 5291 — 92) + EZa(fo + F91 — 9a)

+E23(fs + 392 — $794) + EZa(fa — F93 — 5295 — g6)]-
(48)
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Let Cy be the limit of (1 — &(y))e¥ when y — +00. To ensure uniqueness for
the systems (@) and (@) and to adapt the constant in the system on Z, M, we

consider the solution wf) of the system () such that

wf)(y)e(aﬁ—/\f(l))y (49)

converges to W+S—B when y — 4-o00. Similarily, we consider the solution w(f’) of

the system (i) such that

3 t a2t —s.\d,
'w( )(—— a)e2t+ﬁjt*§( aﬁ) S _,2fli+f2i+f3l_gf_gé_2‘gé_gé_gé = S.

R Gt
(50)
Let B® be given by
BAfi=(y= 5 fa+2fs +(1—€)[(%—§—%)91
+(g + 7%{)92]
B fy = fs + Bfs +1-9[(% - Ao
+(% + 715;5)94]
BOfy =1 — Bfa+ 11— fs = Bfs +(1— OB+ F)g
+(E + 3~ )il
B@)fy = —y&fi — §f2— Bfs+1ha +1 - 9)[(8 - Z)gs
2 — 2+ L)y
+(g+ '715;6)96]
B®@g = -2 fy —v91 + B92 — 294
B®@gy = —12¢ f3 —Bgr = (1 +&)ga + Bys
+(y = 5)9a
B@gs = 2o (=Ef1+ fa) +591+ 892 — 793
+(y = 5)95 + gge’
B®g, = —B91 — vEga + Bys
B@gs =~ fo —v€g1 + Bga + Bgs
B®gg = —£% f3 —Y€9s + BEg3 — S0
—Bg5 — ¥ ge-
(51)
The system on Y?) is
%;) +aB@y® =g (52)

The Evans function that we shall use is given by:

Definition 2 Introduce

Bu(a, 8,7) = afuw® (y) A w® (y)e I @66~ Ew Ny

This function, independant of y, is called the Evans function of the problem.
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It is easy to derive the

Proposition 2 The complex number v is an instability growth rate according
to Definition E if and only if

Ev(a, 3,7) = 0.

The proof of Proposition f is to be found in [F.

Reduction of the Evans function We deduce from the systems (i) and
(1) that w = wf) A w® s solution of Bd). From TrMy = —ané +¢¥ =
—ay€ + % + %_5 we deduce that the derivative of w(y)e™ Jo' (@7€W) =€) dy’

is zero, hence

Lw(y)ef Jo'er€@)dy" constant.

1-¢
Using ([tg)), we obtain

Bu(e,3,7) = 1Z1(f1 = 4201 — 92) + £Z2(f2 + Lg1 — 94)

+EZ3(fs + 292 — $r94) + EZa(fa— Fgs — 5295 — 96)
+£ Migi+Msg2+Msgs (53)

+§2 M4g4+1V11i525+1V1696 ]6_ I avé(y')dy' 12(50()0) )

2.4 Statement of the principal tools for the study of the
Evans function

The aim of this paper is to compute the Evans function through the calculation?
(2) (3)
Jr .

of wy”’ and w

Theorem 1 e For all & > 0, there exists ag > 0,80 > 0 such that, for a <
g, B € [Bo, %],’y € [o, ﬁ_lo] and y such that (y) € [£o,1] there exists a unique

solution wf) of (@) satisfying (@)

w = T(Q)wf) (y) exp(—ap(@)y) — (Wi i fi + Wi o fo+ Wi sfs+Wiafa). (54)

The function W is analytic in (y,a) for E(y) € [&o, 1] and for a < ag. For all
ap > 0 and for all & €]0, 1] there exists a constant C(&, ) such that

Yy, &(y) €]o, L[, [0 (y)] < C(&o, o) (1 = &(y))-

2Note that the techniques of differential equations allow us only to compute the solution
of a differential system with non constant coefficients only when this solution is associated
with the largest eigenvalue of the matrix in the neighborhood of —oco and with the smallest
eigenvalue of the matrix in the neighborhood of +occ.
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o There exists a1 < ag and R > 0, depending only on 50, such that for (o < %,
w admits an analytic extension for y such that y € [( ) ,€o].
e For ag > 0 and By > 0 given, and for all o < ayp, ﬁ € [ﬁo, ] v € [0, Bo]

there exists to > 0 such that there exists a unique solution w y,a) of @) for
—afy € [to, +oo| satisfying (Bd). Moreover we have

_t_

w@(*%’ a) exp(— / 7 O+ alB A€W dY) — Wol)etF = O(at)
@ 0

(55)
uniformly for t € [ty, +00].

We see in this theorem the division in three regions for the computation of the
solutions of (fd) and of (). The first region &(y) € [€, 1[ is the aim of Section
B, the second region (which extends the result of [£, 1]) is studied in Section B.3,
and the solution in the neighborhood of —oo is characterized in Section E In
the next paragraph, we describe the systems that we shall use in what follows.
One of the main problems is that the problem to solve is not a Cauchy problem,
but we have informations at +oo for the solution of (f) that we want to study.
Let us say a word on this system. As £ goes to 0 when y goes to —oo, we notice
that the matrix My is singular when y goes to —oo.
Moreover, the term % prevents us to have a result which is uniform when 3 goes
to 0. A possible choice to overcome this difficulty is the choice 8 € [Bo, %]
Finally, even if we remove the singularity of My at y — —oo by whatever
method, another problem is induced by the behavior of ¢ when y goes to —oo
because € goes to 0 as |y|~». This will lead to a fuchsian problem (Section
Note that in the theorem [ we defined unique solutions of the problems (ftg)
and (@) with the prescribed behavior at infinity.
The behavior of the solutions induced by the theorem ﬂ lead to another expres-
sion of the Evans function of relation (53).
Assume that y < 0 and denote by t = —afy. We introduce the functions
L,(t,a), R;j(t, o) given by the equalities

gp(t,a)eQH% Jip €= Vi — Ly(t,a),1<p<6
t 4 ’
Fit,a)e? 7 5“57){“ t=% = R;(t,a),1 < j < 4.

2t (= yqe
The corrective factor e2%7 /i $(7am) =55 ig induced by the relation (@)
Similarily, we introduce

2y, @) = Zj(y, a)e™ Y my(y, a) = My(y, a)e” V. (57)
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We obtain the relation

u(a)

Ev(a,B,7) = e~ (+5s tzv eXp fo a7§ dy')
[21(R; — B - ) £zo(Ra + WL1 L4)
+8z3(Rs + 7L2 grla) + 524(34 —3Ls— S Ls— L) (58)
§m1L1+m2L2+m3Ls
1-¢
52 malatmsLs +m6L6] 1-£(0)
1-¢ £(0) -

In what follows we shall describe the functions R, L, and z, m.

3 Calculus of the solution in the overdense re-
gion

The aim of this section is to obtain wf), which is the unique solution of the
system ([iJ) under the condition (i) in the region [y, +oc[ for all yo. The
first idea would be to try to apply the Gap Lemma. However, the eigenvalue of
smallest real partof 7M52)(1) is Amin = A—(1) — af, and the next eigenvalue
is A* = A_(1) + ay. As X — A\pin = a(y + (), the difference between two
eigenvalues of M0(2)(1) is not uniformly bounded below for a €]0, ag[. Hence
the hypotheseses of the Gap lemma theorem are not fulfilled.

Remark As the coefficients of the differential system behave as 1 —e~¥ when
y goes to 400, one may obtain Y(?) through a Volterra expansion as

vy () (y) = Ae(A-M=af)y ey, a, 3,7)

r being a remainder term. We prove that the result that we obtain is analytic
in « for B, v in a certain compact set. Once we know that, we identify w( )
(deduced from Y(? and obtained also through a Volterra expansion) and we
express it with an expansion in powers of «, which is bounded by a geometric
series for £(y) € [€o, 1].

We then plug this developement in the differential system and we identify the
terms. We check that the coefficient of o/ in the expansion in « of the solution is
of the form #X (&), the radius of convergence of the series depends on £(yo).
The aim of the explicit calculus is to deduce a new region of convergence of the
series using the behavior in E"O;%X ;(&). In this new region of convergence, we
have a converging series, which coincides with the original one for £ € [{(yo, 1].
Hence it is the extension of our solution in the new region of convergence. This
is an important feature, because it helps to have an overlapping region between
the most decreasing solution at —oco and the most decreasing solution at +oc.
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We introduce z; and m,, through

4 6
T (y) = aB(3 2if; + Y mpgy)e
j=1 p=1

where pu(a) has been given in ([i]). We recall that z; — W, ; and m; — 0 when
Yy — +00.

The following Theorem summarizes the results of this section. Let us introduce
& > 0.

Theorem 2 1. The functions z; and m; have a normally convergent expan-
sion in powers of a of the form:

21y, ) =354 gwald( )+ Win

2 (y, @) = E]>1 5v:+1ak,3( O+ Wi k=234

ml(yva):2J>1 gu+1 15(6):1=1,2,3

mp(y, @) = i1 gw+2b i(§),p=4,5,6.
We mtmduceélzo, 52:(53:54:d1:d2:d3:1, d4:d5:d6:2.
Let K be a compact subset of R} x R. There exists R > 0 and o1(&o)
such that for B,y in K and o < a1(&) we have for £ € [&, 1]

(&) R7
|d_§(gffidk )| S EVjtdp+1
lak,; (§)] < R (1 —5)
| (bu(f))|

de\gvits )| = 1/]+Sl+1?

Ibz,g( )< R](l —¢).

Assume this theorem is proven. We show that, for all &y, there exists (&)
such that, for v < a(§p) the power series is convergent for £ € [£p, 1]. Consider

now &R < 1and §M < 1. The power series )~ ap,; (f)fﬁ—igp defines an
analytm function Wthh is the analytic extension of the sum of the normally
convergent series .-, E,,?—idcam- €3 for a < ai(&) and £ € [£o,1]. A similar

result holds for the series 3., bi,;(§) &7 = S

The proof of item 1) of the theorem is in Annex ﬂ We calculate in the first
subsection of the present section the first order terms of z and m.
In the second subsection, we prove by recurrence the structure of the j—th term
of the expansion of z and m, which is a consequence of the structure of the
system. We deduce the precise estimates wich help us to extend the expansion.

3.1 A new formulation of the system

We introduce Z;,1 < j <4 and my, 1 < p <6 given by
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4 6

1 2 2 au(a

Tl w.0) =P w0 szﬁz oo = NS Y mygy).
j=1 p=1

(59)
The relation wf)eyef‘l“(a)y — F_(1) AN Eq—(1) = W, imply that z; — Wy ;

because ﬁ — 1 when y — +00. The system on Z, M writes
L+ 2IoZ +aB()Z + %% (LO +EL)M =0 (60)
L+ ¢ KoM + aD(§)M + a1 =C(6)Z =0.
that is
Ldny Bz — ez, — B2 =
é%ﬁL (v — —)Zl + ’YZQ - 5Z3 - BZ4 - 7ﬁ(Miir§MS) =0
St D Bty (1-§Zs — 2.~ PEREER =0
L dzs —ﬁZg+’7Z4+ =0

édﬂyﬁ —yM; — 5M2+5M3+§( 6M477M5)
- - - D2+ 52 2] 0

LA g0y — (1 +€)M2+ﬁM3—7€Ms
1= (3 + 71521 + T2 Zs]*o

L4l +5M2—7M3+55M6+(1—€) EV Z4=0

L4 *?MlJr( *l)M2*7§M4+5M5*%M6
+1 =23+ + Zs(L + % - )] =0

LAy )My 4 BM, - BMs -+ (- Zi(~2 + 30— 1) =0

e +§M3+5M5*’Y§M6+(1*§)Z4(%+7%) 0.
(61)
This system writes
1dU
ady TAErL),HU =0 (62)

where Ut = (71,29, Z3, Z4,m1, M2, m3, mg, M5, mg). The system on (z,m) is
deduced from (f3) by replacing the matrix 8K (r,&(y)) by BK (r,&(y)) + p(a)l.
We verify that m, — 0 when y — +o00. In what follows, we describe the analytic
expansion of the solution in @ when « is in a neighborhood of 0.

3.2 First terms of the expansion in «

From
Z5 — WJﬁj,mj — 0 (63)
we obtain z§ = W, ;,m) =0, that is 20 = 3,29 =~ — 3,23 = 3,20 = —3. We

replace in the system these relations to obtain the system on the term zjl and

m} . We get
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Bz — 4E2) =0

(= 3)d +728 — Bf — §28 =0
20+ 828 +7(1- )28 — 820 =0
3

As p(0) = — — v we deduce

L _BB+Y(1-€)=0
L2 pe—1=0
1 2
T4 BL 4 9B(1-¢) =0
dz}
Si =0
dy
T (-0l - F - DB+ 5T (r-B)) =0
dy, g T
Gt + (1= Ol + g8+ 556 =0
(1= 920 =0 2
M (1= Oy~ AL+ +BE + 3 — ) =0
dm
= BL-O(-F+F(r—F) =0
dm, _
ot~ 1=+ =0
We obtain vy
A4 =BB+75
z%:fugul
v 2 4 _ v+l
231:7611,551» +,,B+115:+1
2}=0

[

and the following system on m;:

<

D+ (- 36— B + 5 (v - B)e =0

Wi 4 e +1801—€) + (1 — B2)E =0

W A (B = %) =0

o+ el = B)(5 +901-9) + (7 + 36 —170) =0
7~ (- —5) =0

o — E=(E+78(1-€) =0
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Hence we obtain the expansion of the solution for £ > &,

2= B 2 (1— €)B(5 + ) + 0(0?)
zp=7—p- “(1—5”)+0( ?)
=B+ et £u+1 21—t + ey YB(1 =€) 4+ O(a?)
=—f+0(a?)

The next subsection is dedicated to the precise study of the behavior of wf),

which depends on inverse powers of ¢ and cannot be extended directly to & — 0.

3.3 Uniform estimates of the solution wf) for ¢ € [C—‘i, 1]
We write
2=Wyafi+Wiafo+Wisfs+Wiafs+u. (64

We introduce the constant matrices Jy, Lo and K such that J = Jo+£B(§), L =
Lo+ £L1, K = Ko + £D(€). The system ([]) yields

~—

(65)

Z—Z—i—a,u( )z—l—o‘Jz—l—o‘BLm—O
‘Z—’;Jrau( )m+ Km+a £Cz=0

The aim of this paragraph is to find a sunpler formulation for the unique
solution of this system.

As the solution going to 0 at infinity of ﬁ = ; is f(y 1

v 1 5'*1
direct estimates of the behavior in £ of a coefﬁment u; or mJ of (| lead to a
multiplying factor of the form

[0
€V+1.

The behavior of o/l w41 or of @/ m, 1 in £ is then given by EWH)J for the

next coefficient. However, the structure of the system allows us to obtain a
lower inverse power of £” in the expansion in «. For this purpose, we introduce
the new unknowns a, j, by,; such that

2= Wan+ Y0 &a1j(€) + 27 (e, )
2 =Wip+ Zjv L 55rap () + 2 (a,6),p = 2,3,4
my = Zjv 1 gw+1 bi;(€) + mN+1( £),k=1,2,3
mp = Y0 erbii () +m) T (0, €)1 =4,5,6
The previous quick analysis would suggest that a, ;11 is of order 1 when every

ar,j, by ; is bounded when ¢ goes to 0. This is not the case, and the crucial
equality states as follows. We introduce the diagonal matrix 7" such that

(66)
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as & tay
as & lag
a4 5_1a4
by _ filbl
e |7 e
b3 £ thg
by 6_254
bs £2bs
bs £ 2bg
There exists a matrix C’(&, B,7), polynomial in &, such that
7 £1 .
( éc 1;;{ T=TC. (67)
13 3

We shall make use of the following fundamental Lemma, noting that at each
step we solve an equation of the form

a _AQA=¢)

dy £

where a =vj+d, d=0,1,2.

Lemma 5 The unique solution going to 0 when & goes to 1 of
& AQL-9)
dy £

is f(y) = fgl nffﬂldn. We have the estimate

1—
£0)] < el Al

Proof From U;Ha = i(

1 1
dE (

ol — W)), we deduce

d, 1 1 1 — gra

1
I IMIle [ g (= ) = Il g

The equality 5V§j1_1 = fol(l/ +a)(1 +t(& —1))*To~1dt implies
€ =1l < (v +a)(1 = §). (68)

hence the lemma. The indices defined in Theorem E will express the weight of
each coordinate of the vector U defined in (@)

1 a; a‘p%jﬁ
T|=—( 77 ﬂ = 7.
wa < b; o
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In the system (B(), write

()= (% ) ez ()

we get, for the term in a7 *!:

i( 1 T ajt1 )i W, I ! ,Uj—lT al TC 0
dy v+ b1 Hj 0 < IZ gyj bj .

This system of equations becomes, for j > 2:

j v bj
(olmitt ) 4 (g map ;18" +(Cria;+Ciat2))p

d
dy \gSpFrGFD i +pj— Wi p =0 (69)
l( bpi+1 )+ (Zl oMby j—1)+C21(1=§)a; +Ca2b;) -0
dy gdp+l'(1+1) §5p+V(J+1)
and the equality for j =1
g €YY (Cprai4+Cpa i
di(gasij(tin) + (i map,; lfga)pt(ujllaJJr 127°¢ o + (1 B §)hp -0 (70)
b J_ by 1) +Ca1(1—€)a;+Cazb;j
di(gdpii(tirl)) + (2 fg tibpg 513p+,j;£1) $)aj+Cazb;) +(1- Ehayp =0.

We have the identity C12(1)0}(1) = h;(1) + pj—1Wy j, which is necessary to
obtain that the source term in the equation on a, ;41 vanishes at § = 1.
3.4 Behavior of the terms of the expansion

The regularity of the quantities ay, j, by ; is given by the following proposition,
which gives precise estimates on the functions provided that G and v stay in a
compact set:

Proposition 3 Assume that 3, are in a compact set K of R} x C, namely

50<5<ﬁ |7|<6

Assume that & €]0,1[ is given and that there exists ag(€p) such that the analytic
expansion of the solution of ([63) is valid for a < a(&) and £(y) € [&o,1].
There exists R and M depending only of cg and By such that, forall p =
2,3,4, forall g =1, ...,6, for all j > 1 we have the estimates

lapi(€)] < R7(1-¢)

|bg,5(€) < R7(1—€)

If we introduce aj = a;(0) and B; = b;(0) we have
|a; (&) —a;(1 = &)| < MIE(1 —¢€)
[b;(6) = B;(1 = )] < MPE(1 — €).

, Ry > 0.
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From this proposition we deduce the

Proposition 4 Under the same hypothesis as the proposition E,
i) there exists a1 (&o) such that, for a < a1(&), the functions

Ap(C ) = Zfil ap,j((%)f)@
By(C o) = 37721 be,i ((3)”

are analytic for ( < %.
2) Fory such that
1 1
abRY <g(y) <1

the functions

(0% (0%

(&)~ &)’

are solution of the system (@) and extend the gap lemma solution.
3) Introduce

up(y, a) = Wy p + fiapAp( a),vq(y, a) = fiquq( @)

Ayl a) =3 Can (7)) = aps(1= (2))¢
BylG @) = 30 b (5)7) = us (1= (£)9)¢,

The functions [lp and Bq are analytic for ¢ < ﬁ, and we have the inequalities
for ¢ < ﬁ

5 a ¢

A < (S
3 as ¢ (w
|Bq(<7a)| S (Z)V 1 _MC = av 1 _MC.

We deduce, for a < a;(&) and ¢ < 7, the equalities

Ui(Ga) = Wi + 352, 3¢+ av Ra((, @)

arUp(C,a) = (¥ 3252 0y + av Ry(C o), p = 2,3,4
arVy(Ca) =Cv 352 BeiCP +avSy(Ca),q=1,2,3
aFVy(Ca) =¥ 3252 By i¢l + avSy(C ), q =4,5,6
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Proof of Proposition § Let & €]0,1[ be given. There exists ag(&) such
that, for a < ap(&), the solution satisfies the conclusions of the gap lemma
(which means that the solution of the system (F§) is analytic in the region
a < ag(&o) for € € [€o, 1)

Moreover, from proposition E, for all £y there exists R depending only on Gy
such that for ¢ < % the functions A,(¢, o) and the functions By(¢, ) given in
PropositionE are analytic through their expansion in « for { < I%

Introduce a1 (&) = min(ag(&o), %) For o < a1(§) and ( < £, £ = (%)5 > &.
This means that

¢\ %
a) ’
is solution of the system (p8) for o < ap(&o) when y is given by £(y) = (?)% by
construction of the analytic solution given by the gap lemma.

By uniqueness of the solution which is analytic in «, we check that this func-
tion is also solution of the system () for o < a1(&) and &(y) € [(aR)¥, &),
because the analytic expansion defining the solution in the set-up of the gap
lemma can be rearranged and the remainder term is regular enough (and uni-
formly bounded), and because the two solutions are equal at the point § such
that £(§) = 8.

Hence we extended the solution for £ in the interval [(aR)¥,1]. Proposition
is thus a consequence of Proposition .

(Wt p + (

Proof of Proposition f| We prove by recurrence the inequalities (71), (F3),

(F3) below:

d i RI
7 i) < v (1)
d by RI
d_g(gdqqfuj” = grititd, (72)
d, by d by Ri(1—-
TGO - V] < G- (73)

We assume that (8,7) € K C [fo, 5:] ¥ {7, [7] < 65", Ry > 0}.

First step: From the identity

a ,(6) pt+vj ¢ d Ap,j
T = [ G 0 s

and from the same identity on b;, relying on the fact that a; and b; are 0 at
¢ =1 we deduce the inequality

_ ot 1-¢)d
o0 (©)) < W [ et
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We use () to obtain

|api(€)] < R1(1-¢),

or
22| < o (71)
2 < o (75)
and of course Db d b
Lo ] = |2 ()] < R (76)

We assume that (F1)), (72), (73) are true for I < j. We deduce the inequalities

(D, @, [@d).

The equation on a, j+1 rewrites

(1 - 6)#‘2(55553&11)) + gjisp [C11(8)a; (&) + oo m€ ap i
HCrostte 1 OV ()]

Recall that we have the equality

v+ apf’
14+ /1 +4aly +aB?)

hence for (3,7) in the compact K, the function p(a) admits a DSE at o = 0,
of radius of convergence greater than 6y = min(1, %) Moreover, denoting by
Co = 3120 [0k, we have

—le) =B +2

Z|Hl|9l < Cp.
1=0

Using the norm of the matrices C11 + pol, Cra, C21 and Cos + pol (with 0 <
£ < 1) and the inequalities (f4), (F3), ([7d) we obtain

p ; e 2(~|243 .
gt (aiemm)| £ ooy (i mB e "+ (3] + 68 + 225 4 Bl Ro)
i 2
< s [Co + 3ly| + 68+ 20542 4 ]

as soon as

R™! < min(1, %) (77)

We have the same type of estimates for by jy1:

d ( bq7j+1

’ 22 +3 . ||
de * £datv(G+1) )< v D+1+dg [ —+ =

Co+ 3|y +68+ 3 32
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Hence there exists a constant D((y) depending only on the compact set K, such
that for R satisfying (7) and assuming (1), (73), (F3) at the order j, we obtain
the estimates

|i( Ap,j+1 )| R]D(BO)
de g0t /| = D HIHS,

i( bq,j+1 >| RJD(ﬁO)
d£ €dq+u(j+1 — é‘u (J+1)+1+dq

The last estimate that we need is based on the difference of derivatives and we
use the identity

)

G 1 T

T R

for f(1) =0 and f € C'. Assume the inequalities |f/(¢) — f/(1)] < C(glﬁf1 and
|f'(1)] < C. We obtain

/O (f'(1) = f'(1+s(§—1)))ds —

f(&)
(1-9)
We apply this estimate for f(§) = % anda=v+1(8=dy,+v(j—1) to
obtain the inequality

(1-9C1+a)
goz-i-ﬁ ’

| + (D] <

bp.i—1 1 RI7H(1 — ¢vU=D+dp)

—¢
(1 —E)E”“*”*dﬁ”ﬁb” (W= g (v(j —1) + dp)&i=D+ds

+RI~ l(y—|-1) Za .

We thus deduce the estimate

) (6) - Sty < TR,

de * gdatv(tt T dE gdatr (D) v +1+d,
We use the estimate for j = 1, for which there exists a constant D1 () such
that
d 4 (L Di(Bo) | d 4 )| < D1 (o)
dé‘ &6 +v — §u+1+6 ’ dé‘ gd +1/ — §V+1+d
d bg1 yioy A bga < DiBo)(1 = §)

@O — a0 < =t

It is then enough to consider

R = max(1,

ﬁ D(Bo), D1(fo))

to obtain the inequalities (1), (F2), ([7d) for all j. We write each term a,, ; =
opj +E&cpj, bgj = Bq; + &cq, and we have similar inequalities for the terms
cp; and dg ;, with a coefficient M depending only on the compact set K. To
obtain the estimate of the rest (versus the leading order term), we denote by
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¢; and d; the functions such that a;, (&) = (1 — &)(aj,p + £¢p(§)), be;(§) =
(1 —¢&)(Bj,q +&dg,;(£)). We prove in a similar fashion the inequalities

icpyj(g) < M7

|d§(€6p+vj)| — gujJrzSp (78)
d d; MI
(et < (79)
d d; MI(1—
2Ly e) + a0 < HEZE (30)

This ends the proof of Proposition E

4 The simplest discontinuity model

Before studying the coupling between the hypergeometric region and the over-
dense region, we shall in this section study a simple model where the profile of
density is

£(y),y €lyo, +ool.

It is a slightly better model than the discontinuity model (see [@]) for two
reasons:

i) we assume that the density profile is continuous,

ii) it corresponds to a simple form of the energy equation.

The stationary associated quantities p, and w, are solution of:

§(y> _ { €(y0)ay 6] - OO,yo]

(x uy(z) = —paVa
(p*(x) «(x)? + pu(z)) = —p.(2)g
L (u0(2) ~ LoVare (Z(pa(2)))) = ~VaZ'(paC0)pa€’ (40)0s oo

coming from
Op + div(pi) =0
Oi(pti) + div(pt @ €@ + pId) = pg (81)
div(i@ + LoVaVZ(p)) = Va g0 yo L,

It is easy to see that the stationary solution is thus given by

v
__aay e] - OoayO]

U, = Y
0(9) { —%,ye]yo,—i—oo[

V2
{ _pfoa - pagé—oLO(y - yo)ay e] — 00, yo]
— Lt — pag [ E(5)ds.y € [yo, +o0]
‘We have
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Proposition 5 The linear growth rate associated with the system ) in the
case Yo fizxed independant of o in the regime o — 0 and 3,7 fized is

= 1-&% B
1+&% &
_ Pa — PO
=/ gk———— — EVhiowoff-
7 g pa+p0 . ul

We recall that for all &.:

which corresponds to

Eo(§c)NEa 4 (§)ANF1 (&) _ EoNEa, .+ . PO o?
=S&-5 N (4 +aR7 + M*MEC)

Ec—B
= —B(Eg + g + Eegt +01) — (6. + 20)g8
+al(€Z + ) fit + (&2 + (B+1E)) f1 — Br€2(fa + f)]
e (e + Bfi +&efih) + (67 =€) (—Ec(vée + B) f1- + B(fiH +E(fs + f3)))]

Note that the leading order term in « comes from the coefficient of i, and of
T°. As the leading order term in o of the solution in the region [yo, +o0[ in
the case where yq is independant of « is given by the leading order term of
f-(1) ANE, (1), we find iy A E, (1) = W, as leading order term. The Evans
function is

Ev(0, 8,7, &) = B(3 —mﬁm@ ST TY) + (26 + (6o + 1)TY)
0
hence
Bu(0. 5.7 &) = (B ~ 160 e 651~ &) — (1 + 60)(3 +160)°]
0

The theorem E is proven.

Remark This result is somewhat surprising: in fact when £y — 0 the limit of
the growth rate disappears because it becomes negative: in the previous equality
&o must verify

&+ (F-1D&+p2>0

to obtain a positive growth rate. It is easy to check that this is never satisfied
if 3% > maxe,eo,1) (53;—22) and is satisfied only in a region &_(83),&4(8) for

62 < maXEOG]OJ] (6811—22)
We may thus conclude that this model is not relevant according to the phys-
ical results.
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5 Solution in the hypergeometric region

In this section, we identify the solution when y goes to —co. We show a result for
t < tq finite. As the coefficients behave as |y|_%, we call this problem a Fuchsian
problem, and, as the leading term of the equation leads to a hypergeometrical
equation, we call this the hypergeometrical set-up. We introduce

£(=2p5) 1Y
n(t) = ——<—,p(t) = av Zn(t). (82)
av B
Let .
v ﬁ k, k—1 ﬁ l/ v—1 ﬁ
h(p) = — — h 83
(p) ;llfk(y))p V(v) [ {u}( 2y + yol. (83)
Note that h is a complex valued function because p is complex, but as py~' and
~h(p) are real, ph(p) is also real. From lemma El, we deduce
(n®)” _ 1
=—(1 h(p)). 84
3 (L4 ph(p)) (84)
21
x2
The system of equations on Z = | z3 | obtained from () is
Z4
T5
0 et b g -
d:b2 +p2’1 1'3+Oé' ﬁz’/] :0
d” + 221 + x5 — pr3 + 1]—24 =0 (85)

dz4+2’1+1]—2’471'5—0
dz5+l‘3 24:0

Introduce the matrices

00 1 0 o0 21
p 0 -1 0 0 0
Moyp)=[ 2 1 —p 0 O JNZ = | 24
1 0 O 0 -1 24
o0 1 -1 0 0
Using the equalities
Bt T 267 h(p)(1+ ph(p))®
Lgvtt v 1,1
av il = (V:;H%(l + ph(p))ttvpv 1
21 v42 _p, 2ot
arpzi ¥4 T8



there exists a regular matrix M (p, §,~) such that (@) rewrites

1

av
WT%M(Z%@V)Z = 0.

2 M) Z+ N7+
di 0P v

It is then natural to introduce
We associate with the system (BH) the model system

dz S

— =My(0)Z+—=NZ 86
7 0(0)Z + i (86)
and the model system of the vectorial product of three solutions of ()

A | X
2 = My(0)®Z 4+ NG 7. 87
dt 0(0)2 + vt (87)

We need the following
Lemma 6 The matriz My(p) has three eigenvalues —p,1,—1. The eigenvector
asociated with A\o(p) = —p is eo(p) = (1,—2,—p,0,1). The eigenvectors as-
sociated with the eigenvalue of multiplicity 2 A\_ = —1 are e_(p) = (1,—1 —

p,—1,0,1) and f_ = %(O, 0,0,1,1). The eigenvectors associated with the eigen-
value of multiplicity 2 1 =1 arees(p) = (1,p—1,1,0,1) and f4 = %(0, 0,0,1,—1).

‘We notice that

Neo(p) = Ney(p) = Ne_(p) = i1 = e4(p) + e—(p) —eo(p) + f+ — /-
and

Nfy = Ni- = g(is+is) = 1(e-() — ex (b)) + 5(fs + f-).

We also introduce the function

bolt) = %a% [ n(s)is. (88)

which is the integral of p and corresponds to the eigenvalue of largest real part

of fMés). This eigenvalue is associated with the eigenvector P(p) such that
eo(p) Ne—(p) N f- = 1;—’)P(p) and we find

Pp)=Q2+p)fi +f +fi —9i —95 —(2+p)gs —95 —95-  (89)
The aim of this section is to prove the

Theorem 3 1) There ezists a unique solution Uy(t, ) of the system (B4) and
to > 0 such that there exists C > 0 such that, for all t > ty we have

U (t, @)t +Pot)| < Otav,
limy— 1 oo Uo (1, @)e* Tt =35 = P(0), (90)
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the vector P(0) being given by @) Note that this condition is equivalent to

Ed)-

2) There ezists a unique solution of the system @) such that

Z(t)e* 't 2 — P(0)

when t — 400.
3) For all tg > 0, there exists C(tg) > 0 such that for t > ty the estimate

1
v

|Z(t)e2 ™20 — Up(t, )2 TPt =5 | < C(to)arv. (91)

In a first paragraph, me make a reduction of the system to simplify its
resolution.

5.1 Reduction of the system
The system (83) rewrites

az 1
= = My(p)Z + —NZ+art"""vR(p)Z (92)
dt vt
where My (p) are analytic functions of p for p < pg and N is a constant matrix.

The system satisfied by the vectorial product of three solutions of (@) is

dz® 3) 73 L L N3 3 L 11 d p(3) (3)

to which we associate its model system ([87).
Introduce the eigenvalue of smallest real part of My (p)®), (which is A (p) =
—2 — p). Consider the matrix

A(p) = Mo(p)® — Mi(p)T

as well as the unknown Y, (t) = Y®e™ Jio 1 @P(N4s e obtain the system
dY, 1 1 q_1
=AY, + —NOY. + avt™ v R(P)PY,  (GS) (94)
associated with the model system
d o o 5oty L3y o2t
E(Ye ) =A0)(Ye*) + EN (Ye™) (MS) (95)

The aim of what follows is to identify the family of solutions of (GS) such that
Y. (t) ~ ct™ Ey when t — +o0, where M = % and Ej is the eigenvector asso-
ciated with Aq(p).
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Remark The result that we obtain here depends heavily on the fact that the
non zero eigenvalues of A(p) denoted by \;(p) satisfy

¢
(1nt)_1/ Ai(p)ds — +00,t — +o0.
to
The first transformation uses A(p) = (P(p))~'D(p)P(p), where P(p) is
a transfer matrix and D(p) is the matrix of eigenvalues of A(p), such that
Dii(p) = Ai(p), Ai(p) < Aig1(p) and all the eigenvalues are positive. We in-
troduce U(t,«) = P(p)Yi. The system is

du 1 a1 _1dP, dp -
— =D —P(p)[N® —)vR(p)® — P(p) t—wt—=)]P(p)!
I PV + - PR)IN' + ()" R(p) (p) i = Pp) 0,
and using the relation
dp i —1-1 7 B 1+1
N v 1—5Zp)(1 v
o = —ar () 51_%( 7p)( + ph(p))
we end-up with the system
du 1
— =D —M(t .
= D) + - M(t,0)U (96)

where the matrix M writes

M(t,a) = N® + R(t,a)avt™ 7,

with the following estimate on R:

1
ElaOaTO > Ovvﬂ S [505 %],V'}/,%’y Z 05 |7| S 6(;17 |R(t,0{)| S C(BO)

On each eigenspace of D(p) we assume that N is diagonal.
We denote by FE; the eigenspaces of D(p), 1 <i < m, E; and E,, being of

dimension 1. The unknowns U are written U; € K dimm;
The aim of the next paragraph is to construct iteratively the solution of the
system (Pg). We use the methods of Levinson and Hartmann [[L1]

5.2 Formal solution of the system

It is necessary to begin with the computation of U,,, solution of

W = X (P) Ui + 2 (Nom + @t~ Ry ) Uy
-1
g ey MiiU;.
We consider the differential equation

dU,, 1 1,1
Y = Am m — (Nmm viT v Ry )Um —
o (P)Up + ut( +a Ry U — f

40



As we want to obtain a bounded solution of (06), if we introduce ¢,,(t) =

fti Am (p(s))ds, this differential equation becomes

d
— (U (t)e= 9Dt~
7 (Um(t)e

Nmm 1 1 1
v

)= Ea;tiszm(Um(t)eﬂ%(t)t* N )= f(t)e om By N

If the function U,, (1&)6_‘1’"1'(’5)15_Nme goes to a non zero finite limit when ¢ goes to
+00, then Uy, (t) goes to infinity when ¢ goes to infinity under the sufficient
condition %}m — +oo for ¢ — +oo, which is contradictory with the fact
that we seek a bounded solution. Hence it is necessary (but not sufficient) that
U (£)e=¢m O =%™ goes to 0 when ¢ goes to infinity.

The system rewrites

di(Um(t)e_d’m(t)t_ Hmm el ™ avs %Rmm(s)ds) _ _f(t)e—qsm(t)t— Nmm ol ars %RWLm,(S)dS.
t

We introduce the operator

(m) _ bm %5717 % Rynm (s)ds e —pm(s) —Nmm [0 0T T ImT R ()l
TOM(F)(t) = e Fls)emom g8 el .
t

(97)
We verify

LT (1)) = AT () (N 0 E By T () = (1) (98)

Hence the equation on U, leads to the necessary relation

m—

Un(t) = =T [~ Z

which rewrites

0.0 - L3 1w, )

with
T (U;) = ytT(m)( - My Uj).

We replace this equality in the system satisfied by (U;)1<j<m. We obtain

1<j<m-—1 @—A»()JrimlM“(U) (100)
=J= a W ] k
where
(1) 1 (m)
M) (U) = My (U) + — My T (Ur)- (101)



Of course, we notice that
1 m i, _1
MG (U) = iU = (Mjr, — Njg)Us + ;Ma‘mT;ﬁ J(Ur) = O(a¥t™%) (102)

hence its contribution is a regularizing operator.
The scheme of the proof is the same for all the terms of the vector U. At
each stage, we obtain the system

m—e

. duU; 1 .
L<j<m—e — L= XU+ 3 M (U (103)
k=1
where )
M) = M0 U) + M2 T ). (104)

The operator T(™~¢) of the following step is given by the solution T("=¢)(f)
going to 0 at +o0o of the equation

% = Am—e(P)Um—e(t) + %Mﬁfiﬂ%e(Um_e)(t) — f)

and the operators T,Smfe), 1<k<m-—e—1are given by

m—e m—e 1 e
T U) = =T M (U) (105)

The construction of the formal solution is done. We end up with the remain-
ing equation on Uj, to which we cannot apply the previous method because the
associated eigenvalue is 0. This system writes

d Ni1 1 _ N1t m—
(7 U) =~ Y = N, (106)

We deduce that there exists a constant A such that

N1 N1y tee g _ Ny (m—1)
Ul(t) — AtV = —tv / —S v (Mll - Nll)(Ul)(S)dS. (107)
t

Vs

5.3 Proof of the convergence of the previous Volterra se-
ries

The resolution ends up with the construction of the solution of ([[07). For this

construction, it is necessary to study the regularity of all the operators 7(m—¢)

(and of all the induced operators T,Em_e) and M J(z))

For a given function 1, such that (t) is increasing, going to +oo at +oo,
we introduce

Al (to) = {f € C=([to, +00]), 3C, |f(8)] < CKe¥ B},
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We say that ¢ € L:°__(to) if we have

Y € C™([to, +00]), ' (t) =R, (t) < —e0 < 0,t > to, %1 (t)| bounded on [tg, +o0].

These notations being introduced, we consider the operator
+oo
1 _
KO(f) = 6% [ s B ™ = N (s,
t
The equation that we intend to solve is

Ni1 N

Uy — At =t KO(W).

N1
v

We notice that s~ (MY — Ny(f) € LY([to, +00]) as soon as f €
A%, (to). Moreover, for t§ given, there exists a constant Cy such that

1 _ Ny m— 1 _q_1 _Nna
=5 V(M = Nu)(f) < Coads™ P maiegs 4oel (F (DL

).

Hence we get the inequality

N1

—+o0
AT KD (A7) = |[KD )] ga%co/ sT1"vds = Copavt v,
t

Assume a < o given. There exists a value of t9, given by

t° = max(to, (2Cov)" o)

such that for ¢ > t° we have

KD < %tNu“.
Hence, by induction, we get that
Ni1 1 Ny
(KDY @) < ot =0t >80 (108)
from which we deduce the convergence of the series > (K M)® (¢ Nuu) and its
bound by 2"+ More precisely, we have, for all a < ag
11 1 11
((KODE)] < S () e =80 (109)
2 (o7))

hence the behavior when o« — 0.
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6 The instability growth rate

This section relies on the relation @) that we obtained in the third section.
The scope of the present section is to derive a limit, when o — 0 of the Evans
function Ev(a, 8,7). As the right hand side of (@) depends on ¢, and the left
hand side of (bg) is independant of ¢, we will study, for a given (suitable) ¢ > 0,
the limit when o — 0 of the right hand side of (5§). This corresponds to the
calculus of the limit when o — 0 of the functions z1,{(y)zp (p = 2, 3,4), £(y)mu,
(1=1,2,3), &(y)my, | = 4,5,6 and R;(t, ), Li(t, ) for y = faiﬁ. Recall that
we restrict ourselves to the regime o — 0, 3, v in a fixed compact set.

In all what follows, we introduce

(110)

T =

2.
B
6.1 Calculus in the overlapping region

Introduce ¢, > 0 given such that

4 _ t _ a
We introduce C(t, O[) = C(g(ia_ﬁ)’ Oé) = m ‘We have

¢(t,0) = —. (111)
Hence we get (and it is the same for all other quantities)

nmwozl(fa—tﬁ, a) = ((t,0)A,(C(£,0),0).

We have, moreover

1o to

eap(— /O 7 ne(y)dy') = eaplo 2

hence the limit when o — 0 of this quantity is 1.
For (y given and & = %, we identify ag such that, for @ < ap and ¢ < %,
the asymptotic series defining z;,m, converges to an analytic function. As

¢(ty,0) = ”é*, if one chooses 0 < ”;* < %2, that is 0 < t, < there exists

a1 > 0 such that, for a < aq, ((ts,a) < % < %.

Fort € [%,t.],and o < a1, ((t, @) < 7=, hence the functions («E(—aﬁﬁ))%zp(—a—%)

N

(s, ) ds)

B
2UvR?

and (f(—aiﬁ))qumq(—aLﬁ) are well defined through the expansion of section
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B Moreover, for t > L there exists C(%) such that (PI) holds. Hence for
t € [%,t.] we have the limit of the functions R, and Lj when o — 0. We are
now ready to prove our main Theorem:

Theorem 4 Let M be given. There exists a > 0 such that, for 0 < a < as,
B €[4, M] and |y| < M, Ry > 0, the Evans function of the system Ev(«, 3,7)
does not vanish.

Proof Recall that we proved that

Ev(a, B,7) = Bv(8,7) + av Buy (8,7, ).

The value of Evg(3,7) (which is expressed through ([12), ([L14)) does not de-
pend on ¢,. Letting the leading order term of Evy(8,v) go to 0 when ¢, — +o0
(which gives, of course, the value of Euvg(3,7) because it does not depend on
t.) yields = 1 as only possible positive solution for Ev(0, 8,7) = 0 (see ([124)).
However, for r = 1 the remaining leading order term in ¢, of Ev(0,3,7) is not
zero (see ([[27)), hence a contradiction.

The system of Kull-Anisimov has no bounded complex growth rate
when Fr = O(1) in the limit ¢ — 0. To be more precise, recall that

Bv(a,B,7) = e CH 5 )tt% exp(— o ™ avé(y)dy')x
[Zl(Rl 52 L2) + 622(1’32 + %Ll — L4)
+§Z3(R3 + %Lg — %Lél)
+§Z4(R4 —5Ls— LLE) — Lg)
+1 - (m1Ly +maLo + m3L3) + 1

(m4L4 + msLs + meLg)].

(112)
We introduce A, (¢, a), By(¢,a), 1 <p <4, 1< q<6 the functions given by
BCAL(C ) = Ap(C, @), BCB, (¢, ) = By (G, a). (113)

We proved in Section [] that the solution w? of (1) which behaves as e*- 1) —aB)y

when y — +o0, satisfying the condition @) is given through the relation (E)
2?21 zifj +22:1 Mpgp = e‘o‘“(a)yT(Q)wf), where (z;, m,) are given by Propo-
sition {| through

= B+ BCAL(C )
2 =7 =B+ BEAs(( )
2= 0+ B As(¢, @)
2 =B+ BEAs(( )

mi = <B1 )
5532(2 ; (114)
B§B3 Ca )

m4*5 > By(, a)

ms = 55%35(C5 Oé)
me = 55%36(C5 Oé).

45



Equality (5§) for a ¢ such that ((t,a) < %, along with &€ = av ((t, )~ yields

Bolenfi) = E e anelyiy) L0
[(1+ AN (R = $ L — L2)+(£(r— 1) + ¢A2)(Rz + 3 L1 — La)
(5 + gAg,)(Rg + 1L2 52L4) + (=€ + CAg)(Ry — 3Ls — $: Ls — L)
[31L1 + Bsz + BsL3 + ByLy + BsLs + B6L6]

We proved in Section [] that the unique solution Up(t, @) of the system (BF)
satisfying the uniqueness condition ()is

4

6
= Z It O‘)f;_ + qu(tv O‘)Qq
qg=1

and the functions R; and L, given by (E) satisfy the estimates

4 6

Y IRj(t,a) = RYO| + D |Ly(t, ) = Ly(1)] < Clto)a? ¢ = to.

j=1 p=1

Note that the limit of the quantities R} (as well as R; when ¢ — +00) is known.
We now consider the equality on Ev(a, 8,7) when o — 0. The right hand side
is independant of ¢ because the left hand side is independant of ¢. Hence its
value can be considered at t.. Once t, is fixed, we get the limit by taking a = 0,
hence, using “(O) =—r—1

Bo(0,f,) = eVt Ll
[(1+ CAYQ)(RY(t) — L(t.)) + CAS (RS + LY — L) (115)
+CAY(RY + rLO) + CAJ(RY — rL§ — Lg) )
+¢[BYLY + BYLY + BJL3 + BgL + BJLE + BYLY]]
where the relations are written at ¢t = ¢, and at ¢ = ((¢«,0) = VTE*
Let A, ; and By ; being given through

BCAY(Q) = B (BC) A, BCBY(C) = B (8¢) By, (116)
Jj=1 j=1

By keeping only the leading order term in &(y) for each equation in the system
(b1)) (which means that we consider the order of each quantity Z, and M,), we
obtain the recurrence system ([L17):
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] + 1)A1 g+ = Agyj — TA41j — Bgyj
(I/(] + 1) + 1)142 j+1 = TAQJ — Agﬁj — Bl,j — B57j
(W +1)+ 1A 41 = Arj+ Az + 743, — Asj — Baj — By
(v(j+1) +1)Asj41 = —As; + 1A, + B
(I/(] + 1) + 1)31 J+1 = 77’317]' — BQJ' — B41j — TB57]' — Al,j + (T2 — 1)A27j
(I/(] + 1) + 1)32 1 = Blyj — TBQJ' + Bgyj — TB(;J + TAll,j + (T2 — 1)A37j
(I/(] + 1) + 1)33 1 = BQJ' — TBgﬁj + BGJ' + (1 — 7’2)1441]'
(G +1)+2)Bajir = =B+ Bsj + 1Az, + Az
(v(j +1) +2)Bsj41 = Ba; — Bej — Aa;
(v(j +1) +2)Bsj41 = Bsj + Bsj +rAa;.

(117)
It is easy from this system to deduce that, under the hypothesis Ir| < M~2,
there exists a constant C' > 0 such that Zp 11Ap |+ Zq LBgsl < (£)7 ]1,,
hence ensuring that the analytic expansions defining Ag and Bg are extendible

for all (. The study of this recurrence system is the aim of the next paragraph.

6.2 Behavior of the equivalent solution

In what follows, we study the recurrence system.
Consider B°(&,r) given by

(&, r)ir = —rit + giz +ia
(& )iz =13
BO(E,T)'L’?, = f’il — 19 + 15
(f )’i4 =7riy + (1 — T2)i1 — %'L’Q + %’Lg
) .

associated with the differential equation < T = Bo(&, 7)Y, Tt is easy to check

that 382) is associated with the system (), obtained from @I) by taking into
account the behavior of Z,, and M, that we obtained in Section H:

P = €23 — 167y — EM;

2 =17y — Z3 — (M1 + EMs)

L =71+ Zo+ 773 — Za — (Ma + EMs)

s — —Z5+1Zy + M

il = —rMy — My — §(My +rMs) — &) 21+ (r? =1)2s

DLy My — My + My — r€Mg + 220 + (17 — 1)Zs (118)
s = My —rMs + EMs + (1 — 1) 24

L — — 3 My + M5 + £ 75 + £ 73

s = My — Mg — %Z4

dle — eMs + Ms + £ 2.

We introduce

Foly) = =2 it g k). (19)
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We have

Lemma 7 Let H be the unique solution going to zero when y — 0 of
_.g® d
3y~ =B €W, Hy) +eq-(Foly))

The coefficients Ap j, By, ;j are the coefficients in the expansion in €(&(y))™" of
H, where {(y)~" = vy. The vector (C[lg, CBS) is equal to H(f—g) for¢=¢&(y)™"

We need to obtain the relation with the asymptotic expansion in af of
Section E For this purpose, we introduce ¢t = €y. We consider the following
function, which will be tentatively a solution of ([L18)

Zi(y) =372, A’l,ﬁj_(é(y)) v
Zp(y) = X 51 45 ;€7 (€)™ 1,1’* 2,3,4 (120)
My(y) = Zj>1 ( (y)) aq = 17253
(y) Zgzl Bl,_] ( ( )) 7556'
Consider for example the first equation of ([[2(). It rewrites
S d .., oy
ZEJA/ ,Jd €3 ]) = E(Z(Ag,j - TAZ;,J‘ - Bé,j)f Tel)
=1 i>1
hence
d§ . j —v(j — j —vj
o S DAL ) I = 3T ) (A =B ).
Jj=0 Jj=21

If we want to obtain (4}, ;, By ;) independant on §(y), it is a natural choice to
write

€ _ o1
_ — v 121
Tt (121)
and, up to a change of origin in y, we obtain
E(y)™" =vy. (122)

Even with this equation, there will still be an additional term in the relation,
related with j = 0. The resulting equation on Z;(y) given in ([L2() is

di’y[zmy) A (E()) ) = €25 — 174 — €M,

With these two relations, we obtain the recurrence relation

v(j+1)A] 1 = (A3, — 1A} ; — B3 ;),j > 1.
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The same method applies to all the equations.
If we impose the initial conditions:

All,lz ’I‘+1 A/I_A41—O Agl—m, (123)
Bi,l = u+1’Bé 1= u+1’B§ 1= Bz/;,l = Bg,l = Bflj,l =0

which corresponds to the source term Fy(y) given by ([[19), we have the identity

A/

P,J p,J> Bg; = qJ’

A Vj>1,¥p=1,2,34VYq=1,23,4,56

where (A; s B’ ) are the coefficients of the expansion in ¢ of the solution of

([18) with the source term ([19) whereas (A4, ;, B,;) are the coefficients of the
expansion in ¢ of (Ag, Bg). Lemma [{ is proven.

Reduction of the problem Let us study the matrix By. Its eigenvalues are
0,1, and —1 and that associated eigenvectors are

1
€0 = (6) _250305 1)361 = (1 -, _ana 150)3F1 = (6) _15 1305 1)3

1
€-1= (T+ 15 _ana _150)3F—1 = (5, _1, —1,0, 1)

The inverse matrix is given by

21 =e1+e_1 + %(F1 + F_1 — 2e)

2i2 = F1 + F_1 - 260

2i3 = F1 — F_1

2i4 = (1 + 7’)61 + (7’ — 1)671 + %(Fl + F,1 — 260)
2is=F1+F_1—§(e1+e_1).

We rewrite a solution V' of % =eByV as

V =Voeo +Vier + Wi Fy +V_je_1 + W_1F_;.

We obtain
av dV A% dwy dv_,q dW_ d¢ d¢
—_— = — _ 1+ (Vo+Wi+W_q)—=
ay dyeo dyel ay fi+ a0 e_1+ f1+( o+Wi+ )dl—f- £
hence the associated system is
Lo — L[ (Vo + Wi+ Wor) +E72(Vi+ V)]
dd%—&‘vl EQdy(%+W1+W_1)
dVVZl =Wy — e S (Vo + Wi+ Woy) +672(Vi + Vo) (124)
dm}’ =—V_4 —Elgg V0+W1+W_1)
d@'—%Wlf%fK(%+W}H%ﬂ+€%%+um-
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From the relation

4(A1 fr + Ao fo + Asfs + Aafa + Big1 + Baga + Bsgs + Baga + Bsgs + Bsgs)

= A1(€1 +e_1+ %Ro) A\ (61 — 6_1) + (TAQ — Bl)RO A\ (61 + 6_1) + AsRg A (61 — 6_1)
+(rds — Ba)(F1 — F_1) A (ex +e—1 + %Ro) + Az(F1 — Fo1) A (e1 —e—1)+

(rAs + Bs)(er +e—1 + %Ro) A(Fy —F_1 —&(e1 +e-1))

+As(er +e1) AN(FL + F_1 —&(e1 +e_1))

+BysRo N (F1 — F_1) + BsRo AN (Fy + F_1 —&(e1 +e-1))

+B6(F1 - Ffl) A (F1 + F,1 - &(61 + 6,1)).

we deduce a new basis of AQ(]RE’) in which the coefficients are Ay, rAs — By, As,
TAg — BQ, A3, 7"A4 + B3, A4, B4, B5, B6. The source term () in the basis of
A%(R®) associated with eg,ex1, Fir1 we find

Fo(y) = —%1'57'/%[(61 +e_1)A(er —e—q) — %(61 —e_1) A (F1+ F_1 — 2ep)]
+(V+1)€7V71[(F1 — F_l) A\ (61 — 6_1) — %(61 + 6_1) A (F1 +F 4 — 260)].
(125)

End of the proof The coefficient of e; A F} in the source term is thus

The theory of Fuchsian systems (see Hartmann [[L1]) shows that there ex-
ists a constant «, such that the projection of H(y) on e; A F; behaves as
—ita* 62’5(% — wlrl Je1 A Fi. The leading order term in ¢, of the Evans func-
tions Fv(0, 8, ) writes

Bo(0,0,7) = e+ g 12800
[(RY — L9) + ((t., 0)[AY(RY — LY) + AY(RS + rLY — LY)
+AJ(RS + rLY) + AY(R) — rL§ — L) i
+BYLY + BYLS + BYLY + BYL} + BYLY + BYLg]|

where AD(t.) = AD(((t«,0))e 7%, BY(t.) = BJ(((t«,0))e™*"t;*. Hence,
as

—esrNFr==¢(fi+fo—fa+ fatrg+(1—7)(0 +93)—1(94+95)

3
and the limit of (R), LJ) when t. — 400 is given by (bd), the limit of
&, 1=€0) oy
Ev(0, 5, 7)(e" D 272 g
(0.8, = 26)
s +1 1
”
—1)(= . 126
R [ S (126)
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As we seek positive values of r, the factor e(" Dt goes to infinity when t, —
400, hence this limit is necessarily 0. The two possible values of r are thus
rzlandr:—ﬁ,hencerzl.

We also check that, for r = 1, the projection of Fy(y) on the space associated

with the eigenvalue +1 of BéQ), space generated by e; A eg and Fj A eg, is
(Lev=1+ Q(%H)f*”’?)el A eg. We have the relations

et NegANS=0,F1 ANegANS =0

because e A\eg = —€f1+2f2+f4+g1—%95 and FiAeg = —§g1—Eg2+294+95+7e-
The leading order term of the projection on this space is 0. We get ey Ae_1 AS =
741'1 AN i2 A i3 A i4 A i5 because epNe_1 = 72f1 + %fg + %gl, and smnlarlly
et NF_ 1ANS=0,e_ 1 NFINS=-=2iy NigNigNigNis, i NF_1 NS =0. As
the vector Fy(y) has the following projection on the eigenspace associated with
the eigenvalue 0

PT(Fo(y)) :721V§7V(261/\671+%671 /\F1 7%61/\F,1)

+ﬁ(671 ANFy + %671 N Fy + (1 — %)61 AN F,1)

(127)

the associated leading order term gives a non-zero contribution, hence a contra-
diction. The main theorem is proven.

7 Annex: Volterra type expansions of solutions
of differential systems

We consider a solution of (BJ) associated with the growth rate A_(1) — a8,

which is the eigenvalue of smallest real part —MO(Q)(—l—oo). We recall that there
exists a regular function u(a) such that

A_(1) —af = -1+ ap(a). (128)

We will prove that there exists a unique solution wf) of (B3) satisfying ([{1]). In

2)

order to prove the existence and uniqueness of wsr we prove the following

Proposition 6 Let U be the solution going to (1,0,...,0) at +00 of the model
system:

aUu; :
d—yj = NUj+ (1 =&)Y Nin(EW)Un(), 1 < j < d
=1

where the properties of the complex numbers \; and of the functions Ny are the
following

[Nk (€)] < Mo, &> &
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0=X\ < %/\2 < %/\dfl, Ngq = 0.
The function U is given by

Note that, in the hypothesis, Ngjq = 0 is only there for simplicity purposes

and is obtained by considering in the last equation (in which we should have

(1—&)Ngq=¢ g‘ﬂ ) the conjugation by the exponential of the primitive of giﬁ .

Construction by recurrence of the Volterra operators We prove Propo-
sition E by recurrence. Consider the last equation (line d of the previous system).
We have

U, d—1
oy et > (1 =€) NarUs ()-
k=1
This equation is equivalent to
d d—1
d—y(UdefAdy) =) e V(1 —&(y)) NarUj(y).
k=1

As Uy is bounded, the limit of Uze™*¢¥ is zero, otherwise Uy would not be
bounded. Integrating from y to yo and letting yo go to infinity, we have

d—1

+oo
Udly) = 3 v / (E(5) — 1)Nan(£(s))e U, (s)ds,
k=1 Y

and defining Klg;) through

+oo
KQ(U) = (1-¢(y) 't / (€(s) = DNy (E(s)e U (s)ds  (129)

we obtain

U

-1

Ualy) = (1 - €)Y K U;)(w). (130)

b
Il

Let us study the properties of Ké;).
Consider U such that, for £ > & (and yo such that & = £(yo)) we have the
estimate

AN, C, Yy > yo, |[U(y)] < C(1 = E(y)N. (131)
We obtain easily the estimate (thanks to Ag—, > 0)

M€ (1 — g™,

Yy > yo, |KWD(U)(y)] € —————
Y > yo, [ K g ( )(y)|_(N+1)O

52



Replacing () in the d — 1 first equations of the differential system of Propo-
sition E, we obtain

du; o
1<j<d—1,—2 =)\U;+(1—-¢ N,
j n + Z

where X 1
N;k)(UH :Njk-Uk+deKlgj). (132)

We get the estimate, under the assumption ([131]) on U

Mo o)1~ )"

(1)
> N (U < MoC(1+

This rewrites .
y > yo, ING(U) ()] < MiO(1 — ()Y

where M7 = My(1 + W) The procedure proceeds as follows:
Let p be an element of 0..d — 2. We write the sequence of operators Kc(l}: 4;1}2,
1<k<d-—p-1, andN;,fH),jgd—p—l, k < d—p—1 such that
d—p—1
1
Uap(y) = ) D KU (133)
k=1
d—p—1
dUu;
2L =AU+ (=) 3 NI () (134)

where

NI (W) = NP (U) + (1 - €)' NS (1 - oKD UR)  (135)

and the operators K ép_ 4;112 are constructed as follows using the auxiliary problem
av
gy = MoV (= E@INE, (V) + . (136)

Bounded solutions when y — +o00 of () are obtained, for d — p > 2, through
+oo —+o0

V(y)e—/\d—py — / (£(s)—1)e —Aa— psN(P)pd p(V)(S)dS—/ f(s)e—kdfdeS-

y y

This can be written, using g(y) = V(y)e~*-#¥, under the form

+oo
9= Kislo) =~ [ 1(s)e s (137)

Y
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Hence we may write, for f satisfying ()

0= S K ([ f(s)erds)
1=0 too

which defines Ty, through

V= Tusy(f). (138)
Replacing f by (1—-£(y)) ZZ;’; Ng(lzi)p,k(Uk)(y), we obtain the expression of Ug—,,
in function of U, 1 < k<d—p—1 as

Usp(y) = Tap((1 =€) Y N, 1 (UK))
k<d—p

hence
(1 — EW)EPT (U) = Tup((1 = ONT L (UL). (139)

Construction of the solution The last step of this recurrence is to construct
the solution U;. The equation on U; writes then

dUy d—1

5y = (=N V), (140)
where N 1('11_1) satisfy the relations of Proposition ﬂ This is equivalent to

Ui(o) ~ Urlo) = [ "1~ £(s)) N0 (s)ds.

Yo
Using the limit Uy (yo) — 1 when yo — 400, we obtain
y

Ur(y) =1+ / (1 - &) NG (W) (s)ds.

+oo

We introduce the operator K* such that U; = 1+ K;(U;). For g satisfying the
estimate (|[131f), a consequence of proposition ﬂ is that

MC

K! <—F/——7——(1— N+l
K (9)(y)| < TN+ 1)( £(y))
Introduce UY(y) = 1, and the sequence U = K'(UN™1). Tt is straightforward
to show the inequality for y > yq

M 1
U0 < () 31 = €0
hence as the series Z?ZO(%)N%O —&(y))Y is normally convergent for y >
v .

Yo, the series Y7 U{¥(y) is normally convergent and is the only solution going
to 1 as y goes to +o00 of ([40). We have the estimate

M
[U1(y)] < exp(—7)-
0

which is of the form ([[31) for N = 0.
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End of the construction As U satisfies an estimate of the form () for

;D+)

= 0, from the definition of the operators K, ( we deduce that

Ua(y) = (1 = &(y))w2(y)

where |wa(y)| < M exp( u+1) Replacing in the equality (133) for p = d — 3 the

inequality on U; and on Ug we deduce that

Us(y) < M(1 - £(y)) exp(—ar).
0

By recurrence on p we obtain the inequalities on U; for j # 1, which proves
Proposition E

Estimates We prove in this Section the following

Proposition 7 The operators N(p) and K(p+ ,2 satisfy the following estimates
for g satisfying (.)

CM

y)| < m(l —&)Y.

This is a consequence of the more precise proposition

Proposition 8 Under the assumption g satisfy the estimate ), the opera-
tors N;If) satisfy the estimate

INP (9)(y)] < CM(1 - E(y)N
where Mpy1 = M,(1+ ,,+1 exp( u+1)) and
Tu ()W) < gﬂl exp(—a )(1 — £(y))Y
0

We prove the second proposition by recurrence. The first estimate that we have

to deduce from the recurrence assumption on N, J(,f) is the estimate on Kép ;112

To obtain this result, we have to study the behavior of Ky4_, through the esti-
mate on NV, ;Z)- We have, for f satisfying ([L31) for all N, the inequality

[Ka—p(f) ()] S/ (1 — £(s))N 1 MePa-r =9 gs.
Yy
As N+1>1, weusey—s<0and A\g—p, > 0 to obtain

M
Yy > yo, | K <M | (1—¢gs)NHlds < ——— (1 — £(y))N T
vz Ka s W< [ < g )
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Note that we increase the power of (1 — £(y)) in the result.
The second estimate is based on the expression of T;;_, obtained through ()
For N > 1 and f satisfying ([[3])), we have

The estimate on K4_,, deduced from the recurrence hypothesis is

|Kd,p</°°f<s>e*w5ds>|sc /wa—s(s))N“Mpds 2{5(1 £V,

Hence we obtain

X e ey My (L= gV 1
l Na—ps Xd—p P\l L
) ([ o) < Comoorv g By
hence the series Zl>0 e—rY (K y_ —p) f f(s)e~*4-r3ds) is normally convergent.

It defines the function Ty, (f) and we have
N M,
Ta—p(N) W) < CA—=EW)" exp(37)-
0

Finally, using this estimate on T;;_,, as well as the relation (), for f satisfying
(L31]) we have

(1= N EP] < C1 - ely) N+ exp<%>

which gives

KPS (1) < C(1 - ) exp(oat).

0

Using the estimate on IV J(Z)_p we obtain

(=& INEL (1K ()] < MC(1 - £<y>>Nexp<%>

hence

INT () w)] < C(M, + M, exp<§M N - Ew)™.
0

If we introduce Mp41 = M,(1 + ,,+1 eXp( u+1 )), we thus deduce

INTD () ()] < CMpia(1— €)Y,

The proposition E is proven. As we used the assumption that ®As_, > 0 to
ensure that a solution of ([[3) is given through
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d

el —Ad—p¥Y\ — ,—Ad—p _ (p)
Ve — M1 ()N

d—p,d—p

(V) + femhemrt

hence

V(y)e M=V (y,)e e = / LM (N, 4 (VI F ()

Y=

If Ve 4-»¥ has a limit, then this is in contradiction with the fact that V is
bounded for ®As—, > 0, and this argument is no longer valid if A\y—, = 0.
Hence this proves that the recurrence stops at p such that Aq_, = 0 hence
p = d — 1. The estimates of Proposition ﬂ are valid for N;gﬂ), hence the
recurrence proceeds till RAq—, > 0. This recurrence processus stops for A\g_, =
0 because we cannot assert that the equation () has bounded solutions going
to a constant for y — 4o0.
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