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Abstract

We show that longwavelength excitations of the quark-gluon plasma are de-
scribed by simple kinetic equations which represent the exact equations of motion
at leading order in g. Properties of the so-called “hard thermal loops”, i.e. the
dominant contributions to amplitudes with soft external lines, find in this approach
a natural explanation. In particular, their generating functional appears here as the

effective action describing long wavelength excitations of the plasma.
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Significant progress has been achieved recently in understanding long wavelength
excitations of a quark-gluon plasmall, 2, 3]. In equilibrum, at high temperature, such a
plasma may be viewed as a gas of weakly interacting, massless quarks and gluons. When
coupled to weak and slowly varying perturbations, this system may acquire a collective
behaviour on a length scale ~ 1/¢T, where T is the temperature and g the coupling
constant, assumed to be small. In this letter, we present a consistent and physically
intuitive description of such long wavelength phenomena, based on a set of coupled mean
field and kinetic equations, to which the exact equations of motion reduce in leading order
in g[4, 5].

The kinetic equations encompass all the so-called “hard thermal loops” and clar-
ify the nature of their remarkable properties, left largely unexplained by their original
derivation in terms of Feynman diagrams[6, 7, 2]. These hard thermal loops (HTL) are
the dominant corrections, at high temperature, to amplitudes involving soft external lines.
(Following the usual terminology, we call an energy or a momentum “soft” when it is of
order gT', and “hard” when it is of order T'; at equilibrum, most particles are hard.) As
they are of the same order of magnitude as the corresponding non-vanishing tree level

amplitudes, HTL need to be resummed consistently in higher order calculations[1, 2].

Our equations isolate consistently the dominant terms in ¢ in the hierarchy of equa-
tions which describe the response of the plasma to weak and slowly varying disturbances,
i.e. varying on a scale of order 1/¢gT. In doing so, we treat bosons and fermions on the
same footing and introduce an average fermionic field (X)) in parallel with the average
gauge field A,(X). A noteworthy feature of the present problem is that g, besides mea-
suring the interaction strength, controls the wavelength of the soft space-time variations
and, for consistency, also the strength of the mean fields. One finds for example that,
in order for the deviations away from equilibrium to stay small, the gauge field strength
tensor should be at most of order g7?%; then gA ~ ¢T is of the same order as the derivative

of a “slowly varying” quantity[4, 5].

The dominant interactions which determine the response of the plasma are those
which take place between the hard particles and the soft mean fields. In leading order, we
can neglect the direct interaction between the hard particles, which allows us to truncate
the equations at the level of the 2-point functions. The motion of a given hard particle
is only slightly perturbed by its interaction with a soft mean field. However, because the
mean fields vary over distances much larger than the interparticle distance (~ 1/T"), they
affect coherently many hard particles, giving rise to collective “polarization” phenomena.
These show up as “induced sources” which add to the external ones in determining the

properties of the mean fields.



The equations for the quark and gauge average fields are

iPxp(X) = n(X) + 0™ (X), (1)

and
[ D%, Fuu(X)]" = g (X)yut™p(X) = ji(X) + ;" *(X). (2)
Here n and j; are external sources, a = 1,..., N? — 1 are color indices for the adjoint

representation of the SU(N) gauge group, while y, v = 0,...,d—1 are space-time indices
(d = 4 throughout this work). The covariant derivative is D, = d, + z'gt“Ai and F,, =
[D,,D,]/(ig). When using a covariant gauge, one should also consider equations for
ghost mean fields. These are not written here as it turns out that they are trivial, i.e
there are no induced sources for the ghost mean fields[5]. After functional differentiation,
the induced sources yield the one particle irreducible amplitudes with soft external lines.
Thus for example the fermion self-energy is given by %(z,y) = én"4(x) /5 (y), the gluon
polarization tensor by 1% (z,y) = 5j;”da($)/5Alb’(y), etc...

v

In leading order, the induced sources can be expressed entirely in terms of 2-point
functions. For example, n""%(z) = g7"t.(A%(z)¥(x))., where the subscript ¢ indicates
a connected expectation value which, in leading order, involves only the hard particles.
The abnormal quark-gluon propagator which enters ¢ is nonvanishing only in the pres-
ence of the fermionic mean field . It vanishes in equilibrum, as does the induced color

d

current j3'*. This current receives contributions from both fermionic and bosonic par-

ticles, and accordingly may be written as j¢ = j; + j,. The quark contribution is
gt = g{tp(x)y*t.p(x)).. In an arbitrary covariant gauge, the bosonic piece involves con-
tributions from both hard gluons and hard ghosts [5]. The polarization phenomena may
be induced either by a gauge field A, or by a fermionic one, 1. Correspondingly, we set
TS —I—JE/J and jp, = j{ —I—jif. Here, for instance, j# is the color current associated to the
collective motion of hard fermions induced by the soft mean field A. It is independent of
the fermionic field 1. In contrast, we shall see that j¥ has generally a dependence on A
imposed by gauge covariance. Note also that the ghosts do not contribute to jff, as they

have no direct interaction with the fermionic mean field.

In order to implement the condition that the average fields are slowly varying, it is

convenient to use the Wigner transform of the 2-point functions, such as

Sk, X) = [ d'se™ (Ty(X + 2)d(X = 2))., 3)

for the quark propagator. Note that, in contrast to other authors, we do not insist on

defining manifestly gauge covariant Wigner functions [8]. Covariance will be recovered
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later, when calculating physical quantities. The induced sources are then integrals over k

of Wigner functions, which we refer to as k-space densities. For example:

1) = g [ et K X, ()

where K2 (k, X) is the Wigner transform of the quark-gluon propagator KZ(z,y) =

(T(x)A%(y))e. Thus K(k,X) = t*K*(k, X) = t"v*K*(k, X) is the k-space density for
n"*(X). The densities for the induced currents are denoted by J¢, (k, X) and jfipb(k, X).
For example, the fermionic density is J;,(k, X) = Try,1*S(k, X), where the trace refers

to both spin and color indices.

At leading order in the coupling g, the equations for the densities of the induced

sources read[5]

(k- Dx) Kk, X) = =5 (d = 2)C5 (A(K) + A(k) i (X), (5)
k- Dx, Ji(k, X)|" =29 Ny by ko F2,0"A(k), (6)

k- D, Tk, X)| = gk, {$(X) 1" K(k, X) = H(k, X) 1" (X))}
— gk RO R, X) =R, X) (X)), ()

ke Dy, Tk, X)|" = gl £ {0(X) PR, X) = (R, X) 2 0(X)p, (8)

[k Dy, F,(k, X)|" = g N(d — 2) b, K" F2,0" A(k). (9)

In these equations, H(k, X) = KT(k,X)1", C; = (N? — 1)/2N is the quark Casimir,

abc

Ny is the number of quark flavors and f*° denote the structure constants of SU(N).
Furthermore, A(k) = po(k)N (ko) and A(k) = po(k)n(ko), where po(k) = 2me(ko)d(k?) is
the spectral function for free massless particles, and N(kg) and n(kg) denote respectively
boson and fermion occupation factors. The factor (d — 2) in Eqgs. (5) and (9) reflects the

fact that only the transverse gluons effectively contribute to the densities.

Egs. (5-9) have a number of interesting properties: i) They are independent of the
gauge fixing parameter A which enters calculations in general covariant gauges [4, 5]. ii)
In their right hand sides, all possible vacuum contributions cancel. iii) They transform
covariantly under a local gauge transformation of the mean fields A,, 1 and . The

densities jfw, jbw and I involve Wigner transforms which are gauge covariant in leading
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order. The current induced by a gauge field involves k-space densities, 7/ and 2, which
are derived from non covariant Wigner functions. However, these densities are defined
up to a total derivative with respect to & which does not contribute to the integrated
current. We have used this freedom in order to make the densities explicitly covariant
[4, 5]. iv) The symmetry between Eqs. (6) and (9) reflects the fact that hard quarks and
gluons respond similarly to a soft gauge field. The same symmetry is apparent in Eq. (5)
expressing the effect of the fermionic mean field on the hard particles. v) Note finally the
presence of the factor §(k?) in the r.h.s of these equations. This reflects the elementary
dynamics of the hard particles: they remain on their unperturbed mass shell and only

undergo essentially forward scattering on the mean fields.

As these remarks strongly suggest, the motion of the hard particles described by
Eqgs. (5-9) exhibits many features of classical dynamics. This becomes more transparent
if one makes explicit the structure of the various densities implied by these equations. For

instance, Eq. (6) implies
Ti(ky X) = 2k, Ny 1°(2m6 (k) [0(°)dn (, X) + 6(—k)on” (=, X)|,  (10)
where dny = dngt* are fluctuations in the quark color densities induced by the gauge

field. These fluctuations satisfy (with ¢, = |E|)

— a = —;a d
v+ Dx,bns(k, X)|" = Fgi- B*(X) 7;(:). (11)

In the abelian case, this equation coincides with the linearized Vlasov equation. Here,
the color electric field not only modifies the motion of the particle, but also induces a
“precession” of the densities in color space. The other equations may be given similar
interpretation. Thus, Eq. (5) for the quark-gluon Wigner function I describes fluctuations
where, under the action of a soft fermionic mean field, quarks are converted into gluons

and vice-versa.

The total current induced by a gauge field A is 54 = j# + ji*. Its k-space density,
T4 = T4+ T2, satisfies

k- Dx, Tk, X)| =g kuk- F(X)- 09 (2N;A(k) + N(d = 2)A(k)) . (12)

This equation generalizes the Vlasov equation to nonabelian plasmas. Previous attempts
to derive such an equation led to more intricate results. However, they were based on
different approximation schemes which mix leading and non leading contributions in g and,
as such, are not entirely consistent[8]. One can also combine Eqgs. (7) and (8) into a single
equation for the total current density induced by the fermionic fields, 79 = jfw + jﬁ/’,

e Dy, Tk, X)] = ighy t* (GO0 € K6 X) =k X) 00} (19
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This equation is similar to the corresponding one in the abelian case [4]. In doing the
sum of Egs. (7) and (8), the typical non-abelian effects cancel; these are contained for
example in the second braces in Eq. (7), and involve the 3-gluon vertex leading to gauge
field insertions on the hard gluon lines. This kind of cancellation was first noted by Taylor
and Wong [9] in relation with the HTL’s for amplitudes involving one pair of quarks and

any number of soft gluons (albeit their proof is only explicit up to three external gluons).

We have thus reduced the set of equations (5-9) to three fundamental equations,
namely Eqgs. (5), (12) and (13) for the densities of the induced sources. From the gauge-
covariant character of these equations, it follows that, under local gauge transformations,
n"? transforms like 1, while ;¢ transforms like F,,. Provided the external sources are
chosen so as to satisfy the same property, the mean fields equations (1) and (2) are then

gauge covariant, as are the classical equations of motion derived from the QCD action.

Egs. (5,12,13) contain all the information on the generalized polarizability of the
plasma. After solving Eq. (5), we compute the fermionic induced source according to
Eq. (4) and obtain

(X)) = —iwé/aﬁ/o dulU (X, X —vu)p(X — vu)

= / PY ST A(X, Y )(Y), (14)

with wg = C(¢g*T?*/8) and v* = (1, ¥), ¥ = E/ek The angular integral runs over all
directions of v, and U(z,y) is the parallel transporter along a straight line joining = and
y[4]. The kernel §¥ 4 is the self energy of a soft fermion propagating in a background
gauge field. The current induced by fermionic mean fields results from Eq. (13):

d$) 0 0
) . 2,a e
I (X) = guwgt / 47Tv#vl,/0 dt/o ds
P(X — o)y U(X —ot, X)t"U(X, X —vs)p(X — vs)
= gt* [ @B (X Vi, Va)0(Ya), (15)

The correction 6T'4 to the quark-gluon vertex may be easily read out from this equation.

Finally, the current induced by soft gauge fields is determined from Eq. (12) to be

e |
JA(X) = 3%3/5%/0 duU(X, X — vu) Fo;(X — vu)o’ U(X — vu, X). (16)

2 —
2=

entiation with respect to A of Eq. (16) we derive corrections to the equilibrum amplitudes

Here w (¢*T?*/9)(N + N;/2) is the plasma frequency. By successive functional differ-

for soft gluon fields. All the amplitudes obtained in this way, as well as those contained

in X4 and in 6T'4, coincide with the HTL’s of the diagrammatic approach.

w
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Egs. (14-16) imply the following covariant conservation laws for the induced currents[5]:
D+, ji] =0, (17)

and
[D*, jt] =gt (ptoy™® — i) (18)

By differentiating these equations with respect to the fields, one obtains relations between
HTL refered as “QED-like Ward identities” in Ref.[7, 2]. Finally, by using these relations,
together with the Jacobi identity [D*,[D", F,,]] = 0, we see that the external sources

must satisfy
(D, 4] = igt (9t — %) (19)
in order for the mean fields equations (1,2) to be consistent.

By eliminating the induced sources from Egs. (1,2), using their explicit expressions
(14-16), one obtains nonlinear equations of motion which generalize the Maxwell equations
in a polarizable medium. In particular, for vanishing external sources, these equations
describe the normal modes of the plasma. Note that in general, as a consequence of gauge

covariance, quark and gluon modes mix.

These non linear equations for the mean fields can be generated by the minimal
action principle applied to an effective action S.ry = So + Sing. Here Sy is the classical
QCD action, while S;,; contains the effects of the interactions between the soft fields and
the hard particles of the plasma. It follows that S;,; must satify §S;,4/8%(X) = " (X)
and §.5;,q/0A*(X) = jl”d“(X). These conditions are satisfied by Si,q =S¢+ S,, with [5]

S; = —@'wg/%/d‘*)( /OOO dud(X)BU (X, X — vu)p(X — vu), (20)

and

3 5, rdQ 4 o <y
S, = 2wp/47r/dX/o du/u du

tr {v" Fn (X) U(X, X — vou') v, PPN (X — o) U(X —vu/, X)}, (21)

where the trace acts on color indices only. This gauge invariant action coincides with the
generating functional for HTL’s derived in [9] on the basis of gauge invariance. Here S, ¢/
has a different, more physical, interpretation: it is the classical action describing long

wavelength excitations in the hot quark-gluon plasma, at leading order in the coupling g.
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