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Abstract

Within the limits of the large–Nc approximation (with Nc the number of colors), we establish the
high–energy behaviour of the diffractive and inclusive cross–sections for deep inelastic scattering
at fixed impact parameter. We demonstrate that for sufficiently high energies and up to very large
values of Q2, well above the proton average saturation momentum 〈Q2

s〉, the cross–sections are
dominated by dense fluctuations in the target wavefunction, that is, by the relatively rare gluon
configurations which are at saturation on the resolution scale Q2 of the virtual photon. This has
important physical consequences, like the emergence of a new, diffusive, scaling, which replaces
the ‘geometric scaling’ property characteristic of the mean field approximation. To establish this,
we shall rely on a dipole version of the Good–Walker formula for diffraction (that we shall derive
here in the context of DIS), together with the high–energy estimates for the dipole scattering
amplitudes which follow from the recently established evolution equations with Pomeron loops
and include the relevant fluctuations. We also find that, as a consequence of fluctuations, the
diffractive cross–section at high energy is dominated by the elastic scattering of the quark–
antiquark component of the virtual photon, up to relatively large virtualities Q2 � 〈Q2

s〉.
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2 On leave from the Fundamental Theoretical Physics group of the University of Liège.
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1 Introduction

In this paper, we shall present the first analysis of the physical consequences of the fluc-
tuations in the high–energy evolution in QCD for the phenomenology of lepton–hadron
deep inelastic scattering (DIS). By “fluctuations” we mean in general the correlations in
the gluon distribution of an energetic hadron (the target in DIS) which are generated
through the radiative processes contributing to its evolution with increasing energy. More
precisely, we shall be interested here in the gluon–number fluctuations, which have been
recently shown [1–4] to play an essential role in the evolution of the elastic S–matrix for
dipole–hadron scattering towards the unitarity limit. The “dipole” is a quark–antiquark
pair in a colorless state, so like the qq̄ excitation through which the virtual photon couples
to the hadronic target in DIS. As demonstrated in Refs. [2–4], both the energy depen-
dence of the characteristic scale for the onset of unitarization — the target saturation

momentum Qs — and the functional form of the scattering amplitudes at high energy,
are strongly modified, and to a large extent even determined, by such fluctuations. Mo-
tivated by these observations, and by the importance played by dipole configurations for
the DIS processes at high energy, we shall provide a detailed analysis of the influence
of gluon number fluctuations on the inclusive and diffractive DIS cross–sections. As we
shall discover, the effects of fluctuations are in fact overwhelming: For sufficiently high
energy, and within a wide kinematical range around the (average) saturation momentum,
they wash out the corresponding predictions of the mean field approximation, and replace
them with a new kind of universal behaviour, which is relatively simple.

A priori, one may expect the gluon–number fluctuations not to be important for the
problem of the high–energy evolution, since the latter is characterized by a high–density
environment (especially in the saturation regime at transverse momenta below Qs), where
the gluon occupation numbers are large. And as a matter of facts, such fluctuations have
been left out by the modern approaches to non–linear evolution in QCD, namely, the
Balitsky equations for the eikonal scattering amplitudes [5] and the (functional) JIMWLK
equation [6–8] for the evolution of the ‘color glass condensate’ [8, 9]. These formalisms do
include non–trivial correlations — as obvious from the fact that they generate infinite
hierarchies of equations —, but these are purely color correlations (like the exchange of
a single gluon between two dipole amplitudes), and as such they die away when Nc → ∞
(with Nc the number of colors). In this limit, the Balitsky–JIMWLK hierarchy reduces to
a single non–linear equation 3 — the Balitsky–Kovchegov (BK) equation [5, 10] —, which
is often referred to as the mean field approximation (MFA). But in so far as the gluon–
number fluctuations of interest here are concerned, the Balitsky–JIMWLK formalism as
a whole is a kind of MFA — the generalization of the BK equation to finite Nc.

Anticipated by early studies [11] (mostly numerical) within Mueller’s “color dipole pic-
ture” [12], the importance of the gluon–number fluctuations for the high–energy evolution
in QCD has been fully appreciated only recently, over the last couple of years [1–4]. Rare
fluctuations associated with gluon splitting have been shown to control the formation of

3 More precisely, they reduce to a simplified hierarchy which is equivalent to the BK equation
for uncorrelated initial conditions, and which does not generate new correlations in the course
of the evolution; see the discussion in Ref. [4].
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higher–point correlations in the dilute tail of the gluon distribution at relatively large
transverse momenta (above Qs). Once initiated through fluctuations, such correlations
are rapidly amplified by the BFKL evolution [13], and then play a crucial role in the
growth of the gluon distribution and its eventual saturation: they are at the origin of the
saturation and unitarization effects included in the Balitsky–JIMWLK equations. Thus,
while they are correctly describing the role of the higher–point correlations in providing
saturation, the Balitsky–JIMWLK equations fail to also include the physical source for
such correlations, namely, the gluon–number fluctuations in the dilute regime.

Soon after this failure has been first realized [4], new equations have been proposed [4, 14,
15] which correct the Balitsky–JIMWLK hierarchy by including the proper source terms
(the relevant fluctuations) within the limits of the large–Nc approximation. The latter
is necessary since the dynamics leading to fluctuations in the dilute tail is described in
the framework of the dipole picture [12, 16]. There is currently an intense, ongoing, effort
aiming at generalizing these equations to finite Nc [17–24], but in spite of some interesting
discoveries — like the recognition [18, 25] of a powerful self–duality of the high–energy
evolution, and the construction of an effective Hamiltonian which is explicitly self–dual
[20, 23] —, the general evolution equations valid for arbitrary Nc are not yet known. This
is the main reason for our restriction to the large–Nc approximation in what follows.

The new equations in Refs. [4, 14] form an infinite hierarchy for the N–dipole amplitudes
〈T (N)〉 with N ≥ 1 which describe the scattering between a system of N color dipoles
and an energetic hadronic target. For reasons to be briefly mentioned in Sect. 2.1, we
shall refer to these equations as the ‘Pomeron loop equations’. They are currently under
active investigation [25–32], and although their general solutions are not known, a lot
of information is already available about their asymptotic behaviour at high energy, via
the correspondence [3, 4, 33] between high–energy QCD and statistical physics (see the
discussion below and also Sect. 3 for more details). This is the information that we shall
use in our analysis of deep inelastic scattering throughout this paper.

Previous studies of DIS at high energy [34–43], or small “Bjorken–x”, have shown that
diffractive DIS represents a privileged framework to study both gluon saturation — since
the diffractive cross–section σdiff appears to be dominated by relatively large qq̄ configu-
rations, with size r ∼ 1/Qs (Qs is the target saturation momentum, and increases with
the energy as Q2

s(x) ∼ 1/xλ) — and fluctuations — since, as known since long [44, 45],
the inelastic part of σdiff is a measure of the dispersion of the virtual photon wavefunc-
tion over its various Fock space components (like qq̄, qq̄g, etc.). Note, however, that the
“fluctuations” which appear in the standard discussion of diffraction [44, 45] refer to the
wavefunction of the projectile — in DIS, the virtual photon and its various hadronic ex-
citations —, and not to that of the target (the proton, or more generally some hadron
h). In such previous studies, the target has always been treated in the spirit of the mean

field approximation, like an optical potential or some fixed gluon distribution, off which
scatter the partonic components of the projectile. However, our main emphasis here will
be precisely on the gluon–number fluctuations in the target wavefunction, which are the
relevant fluctuations for a study of the high–energy limit, and which influence all the DIS
observables, and not only those associated with diffraction. Indeed, as we shall see in Sect.
2, the calculation of both inclusive and diffractive cross–sections in DIS at high energy

4
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Λ QCD
2

L

sQ 2

form

ln (1/x)

DS

ρ = ln (Q / )

Q 2
d

Q

saturation
(CGC)

2

Y

BFKL

DGLAP

diffusive
scaling

geometric
scaling

Y=

2
0

Y

Fig. 1. “Phases” of the hadronic wavefunction in the kinematical plane Y – ln(Q2/Q2
0). When

Y . YDS the gluon distribution scales with momentum in a ‘geometric’ way, i.e. it is a function of
Q2/Q2

s. When Y & YDS it scales in a ‘diffusive’ way, i.e. it becomes a function of ln(Q2/Q2
s)/

√
Y .

and large Nc naturally involves the amplitudes for dipole–target scattering, as determined
by the Pomeron loop equations alluded to above.

The physics of the dipole amplitudes in the presence of fluctuations is best explained with
reference to Fig. 1, which represents the phase–space for the high–energy evolution of a
hadron in the logarithmic kinematical plane Y – ρ, with Y ≡ ln(1/x) and ρ ≡ ln(Q2/Q2

0)
(Q2

0 is a fixed reference scale). In this plot, Y is the rapidity of the hadron and Q2 is the
virtuality of the photon which explores this hadron in DIS (see Fig. 2), but it can be also
assimilated to the transverse momentum of a gluon inside the target (k⊥ ∼ Q), or to the
transverse size of a dipole within the projectile (r ∼ 1/Q). The straight line denoted as
“Q2

s” represents the average saturation line in the target: 〈ρs〉Y ≡ ln(〈Q2
s〉/Q2

0) ' λY , with
λ the ‘saturation exponent’. This is an ‘average’ since, in the presence of fluctuations, the
saturation momentum becomes a random quantity: the stochastic evolution of the target
gives rise to a statistical ensemble of gluon configurations, and the value of Q2

s can vary
from one configuration to another. The dispersion σ2 ≡ 〈ρ2

s〉 − 〈ρs〉2 which characterizes
this variation will play a fundamental role in what follows. This stochastic process turns
out to be a random walk in ρs ≡ ln(Q2

s/Q
2
0), hence the dispersion rises linearly with Y

[3] : σ2(Y ) ' DfrY , with Dfr the ‘front diffusion coefficient’ (see Sect. 3). The second line
in Fig. 1, denoted as “Q2

d”, will be shortly explained.

The most interesting region for us here is the scaling window in between these two lines.
At lower values of Q2, to the left of the saturation line, the gluons form a color glass con-
densate with large occupation numbers ∼ 1/αs, the dipole amplitude reaches the unitarity
limit 〈T 〉 = 1, and the mean field description is well justified. At much larger Q2, on the
right of the scaling region, one finds the standard perturbative regime, where the gluon

5
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system is very dilute, the dipole amplitude shows ‘color transparency’, 〈T (r)〉 ∝ r2, and
neither saturation, nor fluctuations, do play any role. But in the scaling region at inter-
mediate Q2, the gluon occupation numbers are relatively low and the scattering is weak,
〈T 〉 � 1, yet the dynamics is generally influenced by both saturation and fluctuations, in
proportions which depend upon the actual value of Y .

Namely, the crucial scale for the present discussion is the rapidity YDS which separates
between an intermediate energy regime at Y < YDS , where σ2 � 1 and the mean–field
picture roughly applies (with some important limitations, though, as we shall discuss in
Sect. 3), and a high–energy regime at Y > YDS , where σ2 � 1 and the target expecta-
tion values are dominated by rare fluctuations up to very large values of ρ. (Parametric
estimates for YDS and the other scales which appear in Fig. 1 will be given in Sect. 3.)

Specifically, the lower part of the scaling region at Y < YDS is the window for geometric

scaling [33, 46–49]. In that region, the dipole amplitude and the gluon occupation number
‘scale’ as functions of the dimensionless variable Q2/〈Q2

s〉; e.g.,

〈T (r)〉Y ≈ (r2〈Q2
s〉)γ0 ≡ exp[−γ0(ρ− 〈ρs〉)], with γ0 ' 0.63 . (1.1)

This behaviour is particularly interesting as it may explain a similar scaling observed in
the HERA data for DIS at x ≤ 0.01 and any Q2 [46].

But in the high–energy regime at Y > YDS, the geometric scaling is progressively washed
out by fluctuations [2] and eventually replaced (when Y � YDS) by a new type of scaling
[3, 4], for which we propose the name of diffusive scaling : the dipole amplitude scales as a
function of the dimensionless variable (ρ− 〈ρs〉)/σ. This scaling extends up to very large
values of ρ, namely, it holds so long as ρ − 〈ρs〉 � σ2. The borderline of this domain at
ρd(Y ) ≡ 〈ρs〉+ σ2 ' (λ+Dfr)Y represents the upper part of the line “Q2

d” in Fig. 1. The
functional form of the dipole amplitude is known within this entire domain [4] (see Sect.
3). In particular, deeply within the scaling window in Fig. 1, this is roughly a Gaussian:

〈T (ρ)〉Y ≈ σ

ρ− 〈ρs〉
exp

{

−(ρ− 〈ρs〉)2

σ2

}

for σ � ρ− 〈ρs〉 � σ2 . (1.2)

The physics behind this asymptotic form is remarkably simple and universal (i.e., insen-
sitive to both the initial condition at low energy and the details of the evolution with
increasing energy). It relies on just two basic facts: (i) saturation exists — meaning that,
in the event–by–event description, T (ρ) = 1 for ρ smaller than some ρs, and (ii) the
saturation scale ρs is a random variable distributed according to a Gaussian law, with
expectation value 〈ρs〉 and dispersion σ2 which both increase linearly with Y . Then, the
scaling behaviour and the Gaussian shape manifest in Eq. (1.2) are a direct reflection
of the corresponding properties of the probability distribution for ρs. These properties
transmit so directly from the probability law to the average amplitude since, within the
range indicated in Eq. (1.2), the expectation value 〈T (ρ)〉 is small, 〈T (ρ)〉 � 1, yet it is
dominated by gluon configurations which are at saturation at the scale ρ of interest (i.e.,
for which ρs

>∼ ρ � 〈ρs〉, and thus T = 1) : Indeed, although relatively rare, such con-
figurations yield contributions of order one, whereas the respective contributions of the
typical configurations, for which ρs ∼ 〈ρs〉, are exponentially suppressed (cf. Eq. (1.1)).

6
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We thus arrive at the important conclusion that, even though the scattering is weak on

the average, meaning that the target looks typically dilute when probed on the scale r ∼
1/Q, the average amplitude is nevertheless controlled by “dense spots” within the target
wavefunction, i.e., by rare fluctuations with unusually large gluon density. At sufficiently
high energy and up to extremely large values of Q2 (much larger than 〈Q2

s〉), the physical
quantities are dominated by saturated gluon configurations. This conclusion will be further
substantiated by our analysis of the DIS cross–sections at high energy.

Specifically, by using estimates like that in Eq. (1.2) for the dipole amplitudes 〈T (N)〉
(the general formulae of this type will be presented in Sect. 3), together with appropriate,
‘dipole’, factorization fomualæ for the inclusive and the diffractive DIS cross–sections
(that we shall discuss in Sect. 2), we shall analytically compute in Sect. 4 the dominant
behaviour of the respective cross–sections in the high–energy regime — by which we shall
mean throughout this paper the diffusive scaling regime at σ2 � 1 and ρ−〈ρs〉 � σ2 (see
Fig. 1). The main conclusion of this analysis can be concisely formulated as follows: All
the physical properties (like the diffusive scaling or the Gaussian decrease in Eq. (1.2))
that have been previously noticed at the level of the dipole amplitudes translate literally
to the DIS cross–sections. This is so since, as we shall demonstrate in Sect. 4, the various
convolutions which relate the DIS cross–sections to the dipole amplitudes — namely, the
convolutions with the BFKL kernel which enter the high–energy evolution of the projectile,
and the convolutions with the wavefunction of the virtual photon — are dominated by
small dipole sizes r ∼ 1/Q (within the kinematic regime of interest here).

This last point is perhaps surprising, especially in relation with the diffractive sector,
where the cross–section was known to be dominated by relatively large dipoles, with
r ∼ 1/Qs [35]. (We mean here the large–Q2 regime where Q2 � Q2

s.) This standard pic-
ture is correct indeed, but at high energy it applies only in the event–by–event description,
and not also on the average. Indeed, even when Q2 � 〈Q2

s〉, the statistical ensemble repre-
senting the target will still contain gluon configurations for which Q2

s ∼ Q2 ; although rare,
such configurations will dominate the (inclusive and diffractive) cross–sections, because
the photon wavefunction strongly favors the small dipole sizes r ∼ 1/Q.

Another surprise of our analysis is that, in the high–energy regime of interest, the diffrac-
tive cross–section is dominated by its elastic component, that is, by the elastic scattering
between the onium as a whole and the hadronic target. (The ‘onium’ represents the wave-
function of the projectile at the time of scattering, as produced via the BFKL evolution
of the original qq̄ pair; see Sect. 2 for details.) This seems to contradict previous calcu-
lations based on the MFA [35, 36, 40], but, once again, there is no real contradiction —
the two calculations apply to different regions in Y . The dominance of the elastic scat-
tering at high energy has interesting consequences for the dependence of the diffractive
cross–section upon the rapidity gap Ygap : the differential cross–section per unit rapidity is
strongly peaked near Ygap = Y . Alternatively — and this is the language that we shall pre-
fer in this paper — the cross–section integrated over all the values of the rapidity gap Ygap

from a minimal value Y min
gap up to Y is independent of the lower limit Y min

gap , so long as the
latter is not too close to Y . This second language will be more convenient for us here since
the approximations that we shall employ — a “leading logarithmic approximation” with
respect to ln(1/β) ≡ Y − Ygap — will allow us to compute the integrated cross–section,

7
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but not also to control the details of the differential cross–section near β = 1.

This paper is organized as follows: In the first half of it, which covers Sects. 2 and 3, we
shall develop the formalism which is required for a calculation of the DIS cross–sections
in the high–energy regime and for large Nc, and in the second half (i.e., Sect. 4), we shall
explicitly compute these cross–sections, and compare to the respective mean–field results.

Specifically, in Sect. 2 we shall develop a factorization scheme for the diffractive dipole–
hadron scattering at high energy (the ‘dipole’ being, of course, the qq̄ pair produced
via the dissociation of the virtual photon in DIS). Our final formula turns out to be an
interesting combination between the ‘color dipole picture’ by Mueller [12] and an early
formula for hadron–hadron diffraction by Good and Walker [44]: Within the frame in
which the target rapidity coincides with the minimal rapidity gap Y min

gap , the projectile
is described as an onium — a collection of dipoles produced via the BFKL evolution
of the original qq̄ pair over a rapidity interval Y − Y min

gap —, and the diffractive cross–
section is expressed as the onium expectation value of the elastic cross–sections for all the
dipole configurations within the onium. Whereas the emergence of such a formula is not
unexpected (as the dipoles fulfill the main requirement of the analysis in Ref. [44], namely,
they are eigenstates of the S–matrix operator), our explicit derivation has the merit to
clarify the importance of properly choosing the Lorentz frame in order for this formula
to be valid. The relation to previous approaches [34, 37, 40], in particular to a non–linear
evolution equation proposed by Kovchegov and Levin [52], will be also discussed.

The aforementioned factorization formula involves the average dipole amplitudes 〈T (N)〉
evaluated at the target rapidity Ygap, which in our formalism can be arbitrarily large. In
Sect. 3 we shall describe the calculation of these amplitudes in the high–energy regime,
with the purpose of justifying expressions like Eq. (1.2) and completing the physical
picture developed before, in relation with Fig. 1. The presentation in Sect. 3 is based on
recent developments in Refs. [3, 14], but it also contains some new elements and conceptual
clarifications, like a parametric estimate for YDS and the concept of diffusive scaling.

Sect. 4 is our main section, in which we establish the dominant behaviour of the DIS cross–
sections in the high–energy regime. Remarkably, it turns out that this behaviour can be
computed from the scattering amplitude 〈T (r)〉Y for a single dipole — the original qq̄
fluctuation of the virtual photon. This is a priori clear for the inclusive cross–section, but
it is true for the diffractive one (at high energy), because of the dominance of the elastic
scattering, as aforementioned. Our calculation will be organized as follows: First, we shall
consider the qq̄ component alone and compute the respective contributions to σtot and
σdiff . Then, we consider the additional contributions associated with the qq̄g component
and demonstrate that, in the regime of diffusive scaling, the inelastic contribution is
parametrically suppressed as compared to the elastic one. To better emphasize the effects
of fluctuations, we shall compare our results to the corresponding predictions of the MFA.

Sect. 5 summarizes our results and presents our conclusions and some perspectives.

8
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Ygap

Q2
}

MX

x ≡
Q2

Q2+W 2 , β ≡
Q2

Q2+M2

X

, xP = x
β

Y = ln(1/x), Ygap = ln(1/xP)

Y − Ygap = ln(1/β)

Fig. 2. Kinematics for diffractive DIS at high energy, or small Bjorken–x: Q2 is the virtuality
of γ∗; W is the center–of–mass energy of the γ∗h system (with W 2 � Q2); M2

X is the invariant
mass squared of the diffractive system.

2 A dipole picture for deep inelastic scattering at high energy

As explained in the Introduction, we would like to provide a theoretical description for
diffractive deep inelastic scattering at high energy and in the multi–color limit Nc → ∞.
By ‘diffractive events’ we shall understand the DIS events γ∗h → Xp which contain an
elastically scattered hadron h in their final state together with a ‘diffractive hadronic
state’ X which is separated by a rapidity gap Ygap from the scattered hadron. (We use
here standard notations in the context of DIS, as summarized in Fig. 2. See, e.g., Refs.
[53, 54] for review papers on the phenomenology of diffraction and more details about the
kinematics.) In the high energy regime at W 2 � Q2, M2

X , the existence of a gap Ygap '
ln[W 2/(Q2 + M2

X)] follows automatically from the condition that the proton undergoes
elastic scattering together with the relevant kinematics. We shall be mainly interested here
in the high–energy limit, defined as the limit W 2 → ∞ at fixed values for Q2 and M2

X .
This means that the total rapidity difference Y = ln(1/x) between the projectile (γ∗) and
the target (h), as well as the rapidity gap Ygap = ln(1/x� ) can increase arbitrarily large,
but such that their difference Y − Ygap = ln(1/β) remains finite, and not too large (see
Eq. (2.13) below for the precise condition). Note that our definitions for either diffraction
or its high energy limit are not the most general possible ones (e.g., one could consider
diffractive processes in which the target too breaks up after the collision), but they do
cover interesting physical situations and, besides, they are constrained by the limitations
of the subsequent theoretical developments.

As also mentioned in the Introduction, we shall directly compute the diffractive cross–
section integrated over the rapidity gap from some minimal value Y min

gap up to Y . For
convenience, from now on, we shall reserve the simpler notation Ygap for this minimal

rapidity gap, as this quantity will appear very often, and we shall measure the actual
rapidity by the corresponding β–variable, cf. Fig. 2. We have, clearly, the following relation

9
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dσγ
diff

d2b
(Y, Ygap, Q

2) =
dσγ

el

d2b
(Y,Q2) +

Y −Ygap
∫

0

d ln(1/β)
dσγ

diff

d2b d ln(1/β)
(Y, ln(1/β), Q2)

(2.1)

between the integrated quantity in the l.h.s. — that we shall explicitly compute in what
follows — and the differential cross–section per unit rapidity — which appears under
the integral sign in the r.h.s. and is the quantity usually considered in phenomenological
studies of diffraction. As also indicated by the notations in Eq. (2.1), we shall consider
cross–sections at fixed impact parameter b. The first, “elastic”, term in the r.h.s. of the
above equation is simply the boundary term for the integration at β = 1, or Ygap = Y :

dσγ
el

d2b
(Y,Q2) ≡ dσγ

diff

d2b
(Y, Y,Q2) , (2.2)

and the reason why we refer to it as “elastic” is because, within the ‘leading–logarithmic
approximation’ in ln(1/β) that we shall use, it corresponds to the elastic scattering be-
tween the dissociation products of the virtual photon and the target (see Sect. 2.1 below
for details and Appendix B for results going beyond the leading–logarithmic approxima-
tion alluded to above). Note however that the scattering is not elastic from the viewpoint
of the virtual photon itself (see the discussion at the end of Sect. 2.1 and also Fig. 7).

Let us briefly describe here the physical picture underlying our subsequent developments.
In a convenient ‘dipole’ frame in which the hadron h carries most of the total energy, the
scattering between the virtual photon γ∗ and the target proceeds as follows: Long before
the scattering (say, at time t0 → −∞), the virtual photon dissociates into a quark–
antiquark pair in a color singlet state (a ‘color dipole’), which then evolves through soft
gluon radiation until it meets the hadron (at time t = 0) and scatters off the color fields
therein. At high energy, the color dipole and the accompanying soft gluons are eigenstates
of the S–matrix operator — the collision acts merely as a color rotation on these states
—, and the original picture of diffraction by Good and Walker [44] can be taken over:
The diffractive process γ∗h → Xh consists in the elastic scattering between the various
Fock space components of the projectile and the target. More precisely, we shall argue
below that this simple picture holds only in a well–tuned frame, in which the rapidity Y0

of the target coincides with the (minimal) rapidity gap Ygap in the final state 4 . Such a
special choice of the frame is necessary in order to avoid the explicit treatment of the
final state interactions, i.e., the gluon emissions and absorptions which take place in the
wavefunction of the projectile after the time of scattering, and whose detailed description
goes beyond the dipole picture.

As implicit in the above picture, we shall restrict ourselves to the leading logarithmic

approximation at high energy, in which the evolution consists in the emission of ‘small–
x gluons’, that is, gluons which carry only a small fraction x � 1 of the longitudinal
momentum of their parent parton. So long as the energy is not too high, the evolution
remains linear and is described by the BFKL formalism [13], which leads to a rapid growth

4 In practice, the identification of Y0 with Ygap must hold within the accuracy of the leading
logarithmic approximation: Y0 and Ygap can differ by an amount dY such that ᾱsdY � 1.

10
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of the gluon occupation numbers. But for sufficiently high energy, saturation effects which
tame this growth start to be important [9, 55, 56], and introduce non–linear effects in
the evolution equations [4–8, 10, 14]. In the physical situations that we shall consider, the
projectile will be always dilute and thus evolve linearly. On the other hand, we shall allow
for arbitrarily high energies (and thus for saturation effects) on the side of the target.

The high–energy evolution will be further simplified through approximations valid at
large Nc. On the projectile side, the combination of the BFKL evolution with the large–
Nc approximation leads to Mueller’s ‘color dipole picture’ [12] : When Nc → ∞, a gluon
can be effectively replaced with a pointlike quark–antiquark pair in a color octet state,
and a soft gluon emission from a color dipole can be described as the splitting of the
original dipole into two new dipoles with a common leg. In this picture, the original qq̄
pair produced by the dissociation of the virtual photon evolves through successive dipole
splittings and becomes an onium — i.e., a collection of dipoles — at the time of scattering.
Strictly speaking, the dipole picture provides only the norm of the onium wavefunction,
that is, the probability distribution for the dipole configurations within the onium [12, 16].
But, as we shall see, this knowledge is indeed sufficient to compute diffraction within the
present formalism. On the target side, the large–Nc approximation turns out to be essential
for the successful construction of evolution equations for the amplitudes describing the
scattering between the projectile dipoles and the target gluons [4, 14, 15].

2.1 Dipole factorization for the diffractive cross–section

To develop our formalism, let us ignore for a while the electromagnetic process γ∗ → qq̄ (at
high energy, this process factorizes out [57, 58] and can be easily reintroduced later; see the
beginning of Sect. 4.2), and focus on the onium–hadron (Oh) scattering. The quantity
that we would like to compute is the probability Pdiff(x,y;Y, Ygap) for the diffractive
process Oh → Xh in which the hadron h undergoes elastic scattering while the onium
O dissociates into some arbitrary hadronic state X which is separated from the outgoing
hadron by a rapidity gap equal to, or larger than, Ygap (with Ygap ≤ Y , of course). In
this definition, x and y are the transverse coordinates of the quark and, respectively, the
antiquark in the original qq̄ pair, the one which evolves into the onium.

The probability Pdiff(x,y;Y, Ygap) is, of course, frame–independent, but in what follows
we shall derive an explicit expression for it by working in the specific frame in which
Ygap coincides with the rapidity Y0 of the target (and where the projectile has therefore a
rapidity 5 Y −Y0 = Y −Ygap). To avoid redundant notations, we shall replace everywhere
Ygap → Y0 and write, e.g., Pdiff(x,y;Y, Y0). The final formula that we shall arrive at (see
Sect. 2.2 for a derivation, and Figs. 3 and 4 for graphical representations) reads

5 Note that, within the leading logarithmic approximation w.r.t. ln(1/β) = Y −Y0, we can ignore
the difference in rapidity between the quark and the antiquark components of the original qq̄
pair produced by the dissociation of γ∗, and treat that pair as a ‘particle’ with unambiguous
rapidity Y − Y0. See also the discussion in Appendix B, where we go beyond this leading–log
approximation for the case where β is close to one.

11



D
S

M
/S

P
h

T
-T

06
/0

01
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/0

01
/ 

Fig. 3. Typical diagram contributing to the diffractive process γ∗h → Xh in the frame where the
target Y0 coincides with the rapidity gap. For the projectile, we illustrate the gluon dynamics
before and at the time of scattering. The final hadronic state X can be formed with an arbitrary
number of gluons produced via ‘final state interactions’ (see the discussion in Sect. 2.2). The
gluons in the target recombine back before the final state, so that the hadron emerges intact
from the collision. For simplicity, we exhibit only two–gluon exchanges.

Pdiff(x,y;Y, Y0) =
∞
∑

N=1

∫

dΓN PN ({zi};Y − Y0)
∣

∣

∣

〈

1 − S(1)S(2) · · ·S(N)
〉

Y0

∣

∣

∣

2
, (2.3)

with notations to be explained now:

i) PN({zi};Y − Y0) is the probability density to produce a given configuration of N
dipoles after a rapidity evolution Y − Y0 starting with an original dipole (x,y). The
configuration is specified by N − 1 transverse coordinates {zi} = {z1, z2, ...zN−1}, which
physically represents the coordinates of the N − 1 emitted gluons, and in terms of which
the coordinates of the N dipoles are (z0, z1), (z1, z2),...,(zN−1, zN), with z0 ≡ x and
zN ≡ y. Also,

∑

N

∫

dΓN with dΓN = d2z1d
2z2 . . .d

2zN−1 represents the sum over all
the configurations. The dipole probabilities are obtained by solving appropriate evolution
equations (see below) with the following initial conditions :

P1(Y = 0) = 1, PN>1(Y = 0) = 0. (2.4)

The evolution of the probabilities is such that the correct normalization condition

∞
∑

N=1

∫

dΓN PN({zi};Y ) = 1 (2.5)

is satisfied at any Y .

ii) S(i) ≡ S(zi−1, zi) is the S–matrix for the scattering between the ith dipole in the
projectile and a given configuration of color fields in the target. (Recall that, in the

12
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Fig. 4. The same as in Fig. 3 but in the large–Nc limit. Each gluon in the wavefunction of the
virtual photon has been replaced with a pointlike quark–antiquark pair in a color octet state. The
gluons inside the target wavefunction are not shown explicitly anymore. The relative simplicity
of the qq̄ representation allows us to also exhibit some multiple gluon exchanges, corresponding
to unitarity corrections.

high–energy scattering, a dipole is an eigenstate of the interaction [57, 58] and the in-
ternal configuration of the target is frozen during the duration of the collision; see also
Eqs. (2.16)–(2.17) below.) We shall also need the scattering amplitude corresponding to
a single dipole, defined as T (i) ≡ 1 − S(i). Then:

SN ≡
N
∏

i=1

S(i) and AN ≡ 1 − SN = 1 −
N
∏

i=1

[1 − T (i)] , (2.6)

are respectively the S–matrix and the scattering amplitude for a given configuration
of N dipoles. The brackets in 〈AN〉Y0

denote the target average, that is, the average
over the ensemble of color fields in the target. The target wavefunction, and thus the
corresponding expectation values, depend upon the rapidity interval Y0 available for its
internal evolution. Note that, in a given event (i.e., for a given configuration of the color
fields in the target), the N dipoles scatter independently from each other — the total
S–matrix SN is simply the product of N factors corresponding to the individual dipoles
—, but correlations are generally introduced by the average over the target (because the
color fields there have non–trivial correlations). Thus, the expectation value 〈SN〉Y0

is not

factorizing anymore. Such target correlations will play an important role in the subsequent
discussion in this paper.

iii) The quantity |〈1 − S(1)S(2) · · ·S(N)〉Y0
|2 ≡ |〈AN〉Y0

|2 is recognized as the proba-
bility for the elastic scattering between a given set of N dipoles and the target. Thus, as
anticipated, the diffractive probability (2.3) represents the projectile average of the elastic
probabilities for all the possible (dipole) configurations in the projectile. Thus defined,
the diffraction includes, but it does not reduces to, the truly elastic collision, in which
the onium as a whole scatters elastically off the target. The difference appears because,
whereas the individual dipoles (or gluons) are eigenstates of the interaction, this is not
true also for their superposition (the onium), since the various states in this superposition

13
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interact differently with the target.

The elastic probability Pel for onium–target scattering is rather computed as

Pel(x,y;Y ) = |1 − S(x,y;Y )|2 ≡ |A(x,y;Y )|2 , (2.7)

where S(x,y;Y ) is the diagonal S–matrix element, S ≡ 〈Ψin|S|Ψin〉 = 〈Ψin|Ψout〉, which
measures the overlap between the final state emerging from the collision and the initial
state prior to it. Therefore, Psurvival ≡ |S|2 is the probability that the original state (for
the ensemble target+projectile) survives intact after the collision, whereas

Pinel(x,y;Y ) ≡ 1 − |S(x,y;Y )|2 , (2.8)

is the probability for some inelastic process to occur. In what follows, the amplitude
A ≡ 1−S for the elastic scattering will be succinctly referred to as the forward amplitude.
Within the present framework, this quantity can be computed as

A(x,y;Y ) =
∞
∑

N=1

∫

dΓN PN({zi};Y − Y0)
〈

1 − S(1)S(2) · · ·S(N)
〉

Y0

, (2.9)

which is perhaps a more familiar formula (various versions of it can be found in the
literature [10, 30, 59]), and will be also derived below.

As indicated by its notation, the forward amplitude A is independent of the rapidity
divider Y0. This is a priori true on physical grounds — since, in the computation of A,
Y0 plays no dynamical role, but merely specifies the Lorentz frame — and is also verified
by our explicit formula (2.9), within its accuracy limits (see the discussion below). In
particular, one can choose to compute A in the frame where Y0 ' Y . In that frame, the
projectile is just an elementary dipole (x,y), without additional gluons, and therefore
A(x,y;Y ) = 1 − 〈S(x,y)〉Y ≡ 〈T (x,y)〉Y , in agreement with Eqs. (2.9) and (2.4). Simi-
larly, the elastic probability (2.7) can be computed as the elastic scattering of the qq̄ pair
alone: according to Eqs. (2.3), (2.7), and (2.9) we can write

Pel(x,y;Y ) = |〈T (x,y)〉Y |2 = Pdiff(x,y;Y, Y ) , (2.10)

where the second equality reflects the physically obvious fact that an elastic scattering is
the same as a diffractive event having Y0 = Y . This explains the identification performed
in Eq. (2.2).

Via the optical theorem, the forward amplitude (2.9) also determines the total (or ‘inclu-
sive’) cross–section 6 :

Ptot(x,y;Y ) = 2 ReA(x,y;Y ) = Pel + Pinel . (2.11)

At this point, a word of caution is necessary, concerning a slight abuse in our termi-
nology: The various “probabilities” introduced so far are strictly speaking differential

cross–sections for onium–hadron scattering at fixed impact parameter; e.g.,

6 Note that our definitions for the scattering amplitudes T and A differ by a factor of i from the
usual definitions in the textbooks. With our conventions, these amplitudes are predominantly
real at high energy.
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dσtot

d2b
(r, b, Y ) = Ptot(x,y;Y ),

dσdiff

d2b
(r, b, Y, Y0) = Pdiff(x,y;Y, Y0), (2.12)

(r ≡ x − y and b ≡ (x + y)/2 are the transverse size and the impact parameter of the
original qq̄ pair). As such, these quantities are certainly proportional to the corresponding
scattering probabilities, but they are not necessarily bound to be smaller than one. Rather,
they are constrained by the unitarity of the S–matrix, which in the high energy regime
(where the scattering amplitudes are predominantly real) requires 0 ≤ 〈AN〉 ≤ 1 for
any N . This condition, together with the above formulæ, implies the standard inequality
Pdiff ≤ 1

2
Ptot [45], together with a series of upper bounds like A ≤ 1, Pdiff ≤ 1, and

Ptot ≤ 2. Within the formalism that we shall use below to compute the dipole amplitudes,
all these constraints are correctly respected, and the various upper bounds are saturated

in the high–energy limit.

Before we turn to a derivation of Eqs. (2.3) and (2.9) in the next subsection, let us specify
their range of validity in rapidity, and explain how to compute the dipole probabilities
PN (Y − Y0) and the target–averaged matrix elements 〈AN〉Y0

which enter these formulæ.

The rapidity Y − Y0 of the projectile should be small enough for the saturation effects to
remain negligible. This in turn requires [12, 16]

Y − Y0 � 1

ᾱs
ln
N2

c

ᾱ2
s

(2.13)

where ᾱs ≡ αsNc/π should be treated as a fixed quantity in the large–Nc limit. (Re-
call that the typical rapidity interval necessary for the emission of one small–x gluon is
dY ∼ 1/ᾱs.) For rapidities satisfying this constraint, the probabilities PN(Y − Y0) can be
obtained by solving a ‘Master equation’ [16], actually, a set of coupled, linear, equations
for the evolution with Y , whose structure makes it clear that the dipole evolution in the
dilute regime is a Markovian stochastic process (see also Refs. [4, 60]). Alternatively, the
generating functional for PN , to be introduced in Eq. (2.35) below, obey the non–linear
evolution equation (2.36), originally derived by Mueller [12]. For latter convenience, let
us display here the expressions for PN generated after only one step in the evolution, that
is, for Y − Y0 = dY and to linear order in the small quantity ᾱsdY :

P1(dY ) = 1 − dY
ᾱs

2π

∫

dz M(x,y, z),

P2(z|dY ) = dY
ᾱs

2π
M(x,y, z), (2.14)

and PN(dY ) = 0 for N ≥ 3. In these equations,

M(x,y, z) ≡ (x − y)2

(x − z)2(y − z)2
, (2.15)

is known as the ‘dipole kernel’ [12] : (ᾱs/2π)M(x,y, z) is the differential probability for
an elementary dipole (x,y) to split into two dipoles (x, z) and (z,y) per unit rapidity.
Note that the integral over z in the formula for P1 has logarithmic singularities at z = x

and z = y. Such singularities are expected at the level of the dipole probabilities, but they
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cancel out in the calculation of physical quantities, as it can be checked on the examples
of Eqs. (2.3) and (2.9).

Consider now the matrix elements for dipole–target scattering: At high energy, the S–
matrix S(x,y) corresponding to a single dipole (x,y) can be computed in the eikonal
approximation as

S(x,y) =
1

Nc
tr
(

V †(x)V (y)
)

, V †(x) = P exp
{

ig
∫

dx−A+
a (x−,x) ta

}

, (2.16)

where the Wilson lines V †(x) and V (y) represent the color rotations suffered by the quark
and, respectively, the antiquark after their scattering off the color field A+

a in the target.
(The ta’s are the generators of the SU(Nc) algebra in the fundamental representation and
the symbol P denotes path–ordering in x−.) Note that, in our conventions, the projectile
propagates in the negative z (or positive x−) direction, so it couples to the A+ component
of the color field in the target. At high energy and in a suitable gauge, this is the only non–
trivial component, and the average over the target wavefunction amounts to a functional
average over A+ (the ‘color glass’ average [8, 9]) :

〈S(x,y)〉Y0
=
∫

D[A+] WY0
[A+]

1

Nc
tr
(

V †(x)V (y)
)

, (2.17)

where the ‘color glass weight function’ WY0
[A+] (a functional probability density) can be

interpreted as the squared wavefunction of the target and depends upon the respective
rapidity Y0. The expectation value 〈SN〉Y0

for the scattering of N dipoles is defined simi-
larly. Note that, physically, the non–linear effects in A+ included via the Wilson lines in
Eqs. (2.16)–(2.17) describe multiple scattering to all orders.

In the high–gluon density regime where the gluon–number fluctuations become negligible,
the evolution of the weight function WY0

with increasing Y0 is described by the JIMWLK
equation [6–8] — a functional, non–linear, equation of the Fokker–Plank type. Via equa-
tions like (2.17), the JIMWLK equation generates an hierarchy of ordinary evolution
equations for the dipole amplitudes 〈SN 〉Y0

, originally derived by Balitsky [5]. The non–
linear effects encoded in the JIMWLK equation describe gluon saturation in the target
wavefunction and translate into unitarity corrections in the Balitsky equations.

However, as pointed out in the Introduction, the gluon–number fluctuations missed by the
Balitsky–JIMWLK equations are in fact essential for the physics at high energy, in that
they represent the source for the higher–point correlations responsible for saturation. So
far, the combined effects of fluctuations and saturation on the dipole scattering at high
energy have been taken into account only in the large–Nc limit [2–4, 15], where a new set
of evolution equations has been derived [4, 14] — the ‘Pomeron loop equations’ alluded to
in the Introduction (see also Refs. [25, 26, 61]). In what follows, we shall assume that the
dipole amplitudes 〈SN〉Y0

obey these new equations, which within the limits of the large–
Nc approximation are valid up to arbitrarily high energy. In addition to the standard
BFKL terms [13], these equations include non–linear terms — which correspond to gluon
saturation in the target and ensure the unitarization of the scattering amplitudes at high
energy — and source terms — which correspond to dipole splitting in the dilute part
of the target wavefunction and encode the relevant, gluon–number, fluctuations at large

16
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Fig. 5. Pomeron loops in the forward amplitude for onium-hadron scattering.

Nc. The perturbation theory for these equations can be organized in terms of “BFKL
pomerons” (the Green’s function for the BFKL equation [13]) which interact via “triple
Pomeron vertices” [61–63] for Pomeron splitting and merging. Accordingly, the solutions
to these equations naturally encompass the Pomeron loops. In Fig. 5, we illustrate some
Pomeron loops effects in the calculation of the forward scattering amplitude (2.9).

To summarize, all the ingredients appearing in Eqs. (2.3) and (2.9) can be computed, at
least in principle, by solving evolution equations which are explicitly known. These equa-
tions are valid for large Nc and up to rapidities Y and Y0 which can be arbitrarily large,
but such that their difference Y − Y0 obeys the condition (2.13). Within this condition,
the expression (2.9) for the forward amplitude is independent of the rapidity divider Y0,
as it should. Indeed, it has been demonstrated in Refs. [30, 59] that the Y0–dependence in
the r.h.s. of Eq. (2.9) cancels out exactly when using the Master equation for the dipole
probabilities PN (Y − Y0) together with the (large–Nc version of the) Balitsky–JIMWLK
equations for the dipole amplitudes 〈SN〉Y0

. Now, as argued before, the correct equa-
tions at high energy are not the Balitsky–JIMWLK equations, but rather the Pomeron
loop equations of Refs. [4, 14]. The latter include the effects of gluon number fluctuations,
which are additional sources of Y0–dependence. In a more general calculation of A(x,y;Y )
which would be valid in any frame, such additional dependencies would be compensated
by recombination effects in the wavefunction of the projectile. However, in any ‘dipole
frame’ which satisfies the condition (2.13) such recombination effects are truly negligible,
so Eq. (2.9) is indeed independent of Y0, up to higher–order corrections 7 . Incidentally,
the above argument also shows that our formula for the diffractive probability, Eq. (2.3),

7 This does not mean that the physical consequences of the gluon–number fluctuations are also
negligible (these will be discussed in the next sections). It is only the induced Y0–dependence
which is small indeed.
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is not independent of Y0, as expected on physical grounds.

For later convenience, let us also introduce here the inelastic diffraction, a process which,
as shown in Ref. [45] in the context of hadron–hadron collisions, is a direct probe of
‘parton’ (here, dipole) fluctuations in the wavefunction of the projectile. The corresponding
probability is obtained by simply subtracting out the (totally) elastic component (2.7)
from the diffractive probability (2.3):

P inel
diff (x,y;Y, Y0) = Pdiff(x,y;Y, Y0) − Pel(x,y;Y ) . (2.18)

This formula takes on a particularly suggestive form after noticing that Eqs. (2.3) and
(2.9) can be rewritten as (with simplified notations)

Pdiff(x,y;Y, Y0) =
〈
∣

∣

∣〈A 〉target
∣

∣

∣

2〉

proj
, A(x,y;Y ) =

〈

〈A 〉target
〉

proj
. (2.19)

In these formulæ, the target–averaged amplitude Atarget ≡ 〈A 〉target is still an ‘operator’
from the point of view of the projectile, in the sense of depending upon a fixed configu-
ration of dipoles. Also, at high energy, the amplitude is predominantly real, so one can
ignore the modulus sign in the previous equations. We thus finally arrive at [45]

P inel
diff (x,y;Y, Y0) =

〈

A2
target

〉

proj
−
〈

Atarget

〉2

proj
, (2.20)

which clearly exhibits the fact that P inel
diff is a measure of the dispersion of the dipole

distribution within the wavefunction of the projectile. The dipole picture that we employ
here provides an explicit realization for the projectile, and thus allows one to compute this
dispersion and any other quantity pertinent to the distribution of dipoles. However, our
main emphasis in what follows will be not on the effects of fluctuations in the projectile

(these are already well understood within the dipole picture; see, e.g., Refs. [4, 11, 12,
16, 59, 60]), but rather on the physical consequences of the gluon number fluctuations
in the target, as encoded in the evolution equations with Pomeron loops [4, 14]. These
fluctuations affect separately all the quantities introduced above (A, Pdiff , Ptot, etc.),
because of their influence on the dipole scattering amplitudes 〈SN〉Y0

which enter the
corresponding formulæ.

Let us conclude this subsection with a warning against the abusive interpretation of the
notion of ‘inelastic diffraction’ in the context of deep inelastic scattering. As we shall see
at the beginning of Sect. 4, the diffractive probability (2.3) determines the ‘integrated’
cross–section for DIS diffraction, i.e., the quantity in the l.h.s. of Eq. (2.1). In view of
this, and of the identification in Eq. (2.10), it becomes clear that the separation of σdiff in
between an ‘elastic’ plus an ‘integral’ piece, as shown in the r.h.s. of Eq. (2.1), corresponds
to the decomposition of Pdiff in between its elastic and inelastic components, cf. Eq. (2.18):
Pdiff = Pel + P inel

diff . However, in DIS, and unlike in hadron–hadron collisions, these two
pieces of σdiff cannot be separately measured. Indeed, even a process in which the onium
scatters elastically (see Fig. 7) still appears as inelastic at the level of the DIS experiment,
because the elastically scattered qq̄ pair does not recombine back into a virtual photon
in the final state, but rather emerges as a hadronic state. Hence, the only experimentally
relevant quantity is the ‘total’ diffractive cross–section, as determined by Pdiff .
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2.2 Justifying the dipole factorization

To justify the above formulæ for dipole factorization (in particular, those pertinent to
diffraction), we shall use the light–cone wavefunction formalism, as developed in the light–
cone gauge A−

a = 0 (which is best suited for a study of the eikonal scattering of the
projectile within our conventions). Our presentation will be rather sketchy, as similar
techniques and manipulations can be widely found in the literature, and it will focus on
the non–trivial aspects of the argument only.

Let us denote by |Ψ(−∞)〉, |Ψ(0−)〉, |Ψ(0+)〉, and |Ψ(∞)〉 the wavefunction of the com-
plete system target plus projectile (including their hadronic descendants in the case of
the final state) at times 8 t = −∞ (long before the scattering), t = 0− (just before the
scattering), t = 0+ (immediately after the scattering), and, respectively, t = ∞ (the final
hadronic state which is measured by the detector). We have:

|Ψ(0−)〉 = |O(Y − Y0)〉 ⊗ |h(Y0)〉 , (2.21)

where the two factors in the r.h.s. are the states of the projectile and, respectively, the
target as produced after a rapidity evolution Y − Y0 and, respectively, Y0.

In the case of the projectile, the initial state for this evolution is the elementary color
dipole (x,y) produced by the dissociation of the virtual photon: |O(0)〉 = |(x,y)〉 (the
color indices are kept implicit; see, e.g., Refs. [37, 41] for details). The evolved state at
t = 0− is then a superposition of partonic states containing the original qq̄ pair (x,y)
together with an arbitrary number of soft gluons in a given spatial and color configuration.
The detailed structure of such individual Fock states turns out not to be necessary for
the present purposes. Rather, we shall simply denote by |N〉 a generic state containing
the qq̄ pair (x,y) together with N − 1 small–x gluons. We thus write, quite generically:

|O(Y − Y0)〉 =
∑

N

cN(Y − Y0) |N〉 , (2.22)

where the sum over N should be really understood as a sum over the number of gluons,
an integral over their transverse coordinates, and a sum over their polarizations and color
configurations (we refer again to Refs. [37, 41] for more precise notations).

Concerning the target, its precise initial state at t = −∞ is unimportant here. Rather,
all that we need to assume is that at the time of scattering the target can be described as
a superposition of states with a given color field (eigenstates of the gauge field operator
A ≡ A+) with coefficients Φ[A] which depend upon the rapidity Y0 :

|h(Y0)〉 =
∫

D[A] Φ[A](Y0) |A〉 . (2.23)

Consider now the onium–hadron collision which takes place at time t = 0. As anticipated,

8 Strictly speaking, the role of the ‘time variables’ in the present formalism is played by the
light–cone coordinates — x− in the case of the projectile and, respectively, x+ in the case of the
target; for simplicity, we shall use the more intuitive notation t.
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at high energy the partonic Fock–space states composing the onium are eigenstates of the
collision operator: the transverse positions and the spins, or polarizations, of the ‘partons’
(quarks and gluons) are not changed by the scattering, while their color orientations un-
dergo a field–dependent precession described by Wilson lines. We can write, schematically,

|Ψ(0+)〉 =
∫

D[A] Φ[A](Y0)
∑

N

cN(Y − Y0)
(

N
∏

i=1

Si[A]
)

|N〉 ⊗ |A〉 , (2.24)

where Si[A] is the S–matrix for the individual parton i, and is a Wilson line (with generally
open color indices).

For all the processes that we are interested in, the hadronic target emerges intact from
the collision, i.e., it undergoes elastic scattering, so we need only the projection of the
outgoing state on the target state prior to the collision:

|Ψdiff(0+)〉 ≡ |h(Y0)〉 〈h(Y0)|Ψ(0+)〉

=
∫

D[A]
∣

∣

∣Φ[A](Y0)
∣

∣

∣

2 ∑

N

cN (Y − Y0)
(

N
∏

i=1

Si[A]
)

|N〉 ⊗ |h(Y0)〉

≡
∑

N

cN(Y − Y0)
〈

N
∏

i=1

Si[A]
〉

Y0

|N〉 ⊗ |h(Y0)〉 , (2.25)

where the brackets in the third line refer to the average over the target wavefunction.
With the identification WY0

[A] ≡ |Φ[A](Y0)|2, this target averaging is recognized as the
color glass averaging in Eq. (2.17).

Eq. (2.25) makes it manifest that, in the calculation of diffractive processes, the average
over the target wavefunction is to be performed already at the level of the amplitude

[64], rather than at the level of the squared amplitude (which is the quantity defining a
probability; see Eq. (2.28) below). This peculiarity is, of course, related to our restriction to
processes in which the target undergoes elastic scattering, and would not be true anymore
for more general, diffractive, processes in which the target too is allowed to break up after
the collision (see also the discussion at the end of this subsection).

Note also that the target averaging in Eq. (2.25) automatically implies a color projection
of the outgoing projectile onto color singlet states: Since the post–collisional state of the
target (which is the same as its initial state |h(Y0)〉) is a color singlet, so must be also the
corresponding state of the projectile. In mathematical terms, the weight function WY0

[A]
must be gauge–invariant, so the operation of averaging

∏N
i=1 Si[A] with this weight function

must close all the Wilson lines into gauge–invariant color traces. Under this average and
for large Nc, the product

∏N
i=1 Si[A] naturally reduces to the product of N dipolar factors,

where is each of them is like the one appearing in Eq. (2.16).

The final state at the time of detection is obtained by letting the ‘diffractive’ state in
Eq. (2.25) evolve from t = 0 up to t = ∞ under the action of the unitary evolution
operator U(∞, 0) :

|Ψdiff(∞)〉 = U(∞, 0) |Ψdiff(0+)〉 . (2.26)
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Fig. 6. A particular diagram contributing to the diffractive process γ∗h → Xh at large Nc.
The dashed vertical line at t = ∞ indicates the final (partonic) state. In the direct amplitude,
a three–gluon state (together with the original qq̄ pair) describes a component of the virtual
photon wavefunction which interacts with the target hadron (not shown here) at time t = 0.
After the scattering, final state interactions (gluon recombination) occur and at t = ∞ only
two gluons are “measured”. Similarly, in the complex conjugate amplitude, the wavefunction
contains two soft gluons at the time of scattering; after the collision, these gluons recombine
with each other, and finally an additional soft gluon is emitted before the time of measurement.
The rapidity gap associated with this particular process is larger than Y0.

It is this late time evolution which is responsible for the ‘final state interactions’ alluded to
in the previous subsection: under the action of U(∞, 0), some of the soft gluons contained
in the diffractive state at t = 0+ may recombine with each other, so that the ensuing
rapidity gap in a given event (that is, for a given final state) may be actually larger
than Y0. (See Fig. 6 for an example.) In fact, the largest allowed gap is equal to Y and
corresponds to elastic scattering 9 , i.e., to the situation where all the gluons (or dipoles)
in the final state recombine back before their detection into the original dipole (x,y).
This is depicted in Fig. 7.

On the other hand, within the present assumptions, the final gap can clearly not be smaller

than Y0: This is so because of our restriction to processes in which the target undergoes
elastic scattering, so that none of the virtual quanta initially contained within the target
wavefunction (and which are distributed in rapidity from 0 to Y0) can be released in the
final state. Since, on the other hand, there is no activity in the projectile wavefunction
at rapidities smaller than Y0, it is clear that all the hadrons emerging in the final states
and coming from the dissociation of the virtual photon must have a rapidity equal, or
superior, to Y0. Therefore, the minimal rapidity gap is indeed Y0. (See Fig. 8.)

In principle, it should be possible to compute the probability Pdiff(x,y;Y, Ygap) for any
given value for the minimal rapidity gap Ygap within the range Y ≥ Ygap ≥ Y0. To that
aim, one should explicitly follow the evolution of the outgoing state after the collision,
as indicated in Eq. (2.26), and then project |Ψdiff(∞)〉 onto final states in which the
hadrons released through the fragmentation of the projectile have rapidities Y ≥ Ygap.

9 This is consistent with the fact that, for Y0 = Y , the diffractive probability (2.3) reduces to
the corresponding elastic one, Eq. (2.7) : that is, P inel

diff (Y = Y0) = 0.

21



D
S

M
/S

P
h

T
-T

06
/0

01
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/0

01
/ 

Fig. 7. Another diagram contributing to the diffractive process γ∗h → Xh. Both the ampli-
tude and the c.c. amplitude correspond to contributions to the forward amplitude (2.9) for
dipole–hadron scattering. Hence, this diagram is also an illustration of elastic dipole–hadron
scattering, Eq. (2.7). (Notice that this is not an elastic scattering for γ ∗ as well, since the virtual
photon does not appear in the final state.) Here the rapidity gap takes its maximum value Y .

Fig. 8. A final example for the diffractive process γ∗h → Xh. Here there are no final state
interactions at all and the rapidity gap in this case is equal to its minimum value Y0.

This procedure would select those states within |Ψdiff(0+)〉 in which all the projectile
gluons with rapidities between Y0 and Ygap have recombined back in the evolution from
t = 0+ up to t = ∞. Very recently, a more general formalism has been proposed [65],
which in principle allows one to achieve this goal, and thus to compute the diffractive
scattering in a generic frame (and for generic values of Nc). It would be interesting to see
how our present factorization emerges from that formalism.

However, our main point here is precisely that the calculation of Pdiff(x,y;Y, Ygap) can be
drastically simplified by conveniently choosing the Lorentz frame — namely, by choosing
Y0 = Ygap —, since with this particular choice one does not need to worry about the final
state interactions. Indeed, the condition that the gap be bigger than, or equal to, Y0 is
automatically satisfied within this kinematics, and it does not introduce any constraint
on the final state of the projectile. Hence, the probability for such a diffractive event
is measured by the norm 〈Ψdiff(∞)|Ψdiff(∞)〉 of the final state, which is the same as the
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norm of the state |Ψdiff(0+)〉 immediately after the collision, because of the unitarity of the
operator U(∞, 0). One sometimes says that ‘the final state interactions cancel between the
direct amplitude and the complex conjugate one’, but in the present case this cancelation
is an almost trivial consequence of our choice for the frame (see, e.g., Refs. [52, 66, 67] for
less trivial cancelations of this type).

More precisely, in computing Pdiff one needs to consider the deviation between the out-
going diffractive state and the incoming state |Ψ(0−)〉 (indeed, the final state must be
different from the initial one in order to have a real scattering). Thus, if one defines:

|δΨdiff(0+)〉 ≡ |Ψdiff(0+)〉 − |Ψ(0−)〉 , (2.27)

then in this particular frame one can write

Pdiff(x,y;Y, Y0) = 〈δΨdiff(0+)|δΨdiff(0+)〉

=
∑

N

|cN(Y − Y0)|2
∣

∣

∣

∣

〈

N
∏

i=1

Si[A] − 1
〉

Y0

∣

∣

∣

∣

2

, (2.28)

where in writing the second line we have used the fact that the partonic states |N〉 form
an orthonormal basis. At large Nc, the norm |cN(Y −Y0)|2 of the state |N〉 (summed over
polarizations and color indices) can be identified with the probability PN(Y − Y0) for a
N–dipole configuration in the dipole picture. With this identification, Eq. (2.28) is finally
recognized as our originally proposed expression, Eq. (2.3).

The expression (2.9) for the forward scattering amplitude can be similarly obtained : By
definition, A ≡ 1 − S with S the forward S–matrix element, computed as

S(x,y;Y ) = 〈Ψ(0−)|Ψ(0+)〉

=
∑

N

|cN(Y − Y0)|2
∫

D[A]
∣

∣

∣Φ[A](Y0)
∣

∣

∣

2
N
∏

i=1

Si[A] , (2.29)

which immediately leads to Eq. (2.9), as anticipated.

The previous discussion also explains our limitation to diffractive processes in which the
hadronic target emerges intact from the collision. Of course, it would be very interesting
(especially in view of applications to the phenomenology) to be able to describe the
more general processes γ∗h → XY in which the hadron dissociates into some low–mass
hadronic system Y separated by a rapidity gap Ygap from the diffractive state X. But to
that aim, one cannot avoid a detailed study of the final state interactions, which in the
case of the target requires moreover a model for the hadronic structure.

It is finally interesting to compare our formula (2.3) for the diffractive probability to
related results in the literature. In the next subsection we shall show that, under an
additional, mean field, approximation, our expression for Pdiff obeys a non–linear equation
originally proposed by Kovchegov and Levin [52]. But before that we would like to point
out that Eq. (2.3) also encompasses other results from the previous literature. When
the target is not too dense so that multiple scattering is negligible, Eq. (2.3) reduces to
the expression employed by Bialas and Peschanski [34]. Namely, in the single scattering
approximation, we have AN ≈ ∑N

i=1 T (i) (c.f., Eq. (2.6)), and then Eq. (2.3) becomes
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Pdiff(x,y;Y, Y0) ≈
∫

�
i , � i

n(2)(x1,y1; x2,y2;Y − Y0)〈T (x1,y1)〉Y0
〈T (x2,y2)〉∗Y0

, (2.30)

where n(2) is the dipole pair density in the projectile (see, e.g., Eq. (5.10) Ref. [4] for a
precise definition) and the amplitude 〈T 〉Y0

obeys the BFKL equation, as appropriate for a
dilute target. Hence, Eq. (2.30) gives the BFKL approximation to our present formalism.

On the other hand, for a generic, dense, target but a relatively small rapidity for the
projectile, such that ᾱs(Y − Y0) � 1, one can restrict oneself to onium configurations
which contain only two dipoles at the time of scattering. In that case, Eq. (2.3) reduces
to results previously obtained by Kovner and Wiedemann [37] and by Munier and Shoshi
[40]. The corresponding expressions will be presented in Sect. 4.2, where their high–energy
limit will be also investigated.

Let us emphasize here, however, some important differences in our treatment of the tar-
get expectation values as compared to Refs. [37, 40]. (i) In Ref. [40], the target averages
have been estimated in a mean field approximation (cf. Sect. 2.3) which neglects the cor-
relations induced by gluon–number fluctuations; such an approximation is reasonable at
intermediate energies, but it eventually fails at sufficiently high energies (see the discus-
sion in Sect. 3). (ii) In an attempt to relax the restriction to elastic scattering on the
target side, the authors of Ref. [37] have suggested to replace the target averaging at the
level of the amplitude with an averaging at the level of the (diffractive) probability. With
our present notations, their suggestion amounts to the following replacement

∣

∣

∣〈A 〉Y0

∣

∣

∣

2 −→ 〈APsing A∗〉Y0
(2.31)

within the r.h.s. of Eq. (2.3). Here, Psing is the projector onto color singlet states for the
projectile wavefunction, and it has been introduced to ensure that A involves only gauge–
invariant operators; e.g., PsingA = AN , cf. Eq. (2.6), for a N–dipole state. (In our previous
developments, such a projection was automatically ensured by the target averaging at the
level of the amplitude, cf. Eq. (2.25).) However, with this new prescription, the target
averaging is tantamount to summing over all the possible gauge–invariant final states for
the target, without any restriction on their distribution in rapidity. But prior to scattering,
the target wavefunction had developed virtual excitations at all the rapidities y ranging
from y = 0 up to y = Y0, and in the absence of any rapidity veto on the final state,
there is no reason why these quanta should not materialize into hadrons occupying this
whole rapidity interval. In other terms, with the target expectations values evaluated as
in Ref. [37], one is actually including processes which have no rapidity gap whatsoever.
Such processes do not qualify as “diffractive” according to the usual terminology, and will
be not considered in what follows.

2.3 Evolution equations in the mean field approximation

Although our main focus in this paper will be on the effects of fluctuations (i.e., of the
deviations from the mean field behaviour) in so far as the target expectation values are
concerned, it is nevertheless interesting at this level to slightly deviate from the main
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stream of the presentation and discuss the mean–field version of our precedent results.
This is useful for, at least, two reasons: First, it will allow us to make contact with a
non–linear equation for the diffractive probability previously proposed by Kovchegov and
Levin [52], and thus clarify the conditions for the validity of the latter. Second, the mean

field approximation (MFA) that we shall introduce here will later serve us as a term of
comparison, to better emphasize the consequences of the fluctuations at high energy.

Specifically, the MFA consists in the following factorization assumption

〈S(1)S(2) · · ·S(N)〉Y0
≈ 〈S(1)〉Y0

〈S(2)〉Y0
· · · 〈S(N)〉Y0

, (2.32)

which neglects the correlations among the dipoles induced by their scattering off the
target. Ultimately, this is an assumption about the absence of correlations in the target
gluon distribution. (For instance, such a factorization holds indeed, at large Nc, within
the framework of the McLerran–Venugopalan model [9] for the gluon distribution of a
large nucleus. More generally, it amounts to use a Gaussian approximation for the CGC
weight function in Eq. (2.17) [68].) In what follows we shall demonstrate that, with this
additional assumption, our formula (2.3) for the diffractive probability obeys indeed to the
Kovchegov–Levin (KL) equation of Ref. [52]. During this procedure, and under similar
assumptions, we shall also provide a rapid derivation of the Balitsky–Kovchegov (BK)
equation for the forward amplitude [5, 10].

For more clarity, we shall denote with a bar quantities computed in the mean field ap-
proximation. For instance:

P̄diff(x,y;Y, Y0) =
∞
∑

N=1

∫

dΓN PN({zi};Y − Y0)
∣

∣

∣1 − s1s2 · · · sn

∣

∣

∣

2
, (2.33)

and similarly

S̄(x,y;Y ) =
∞
∑

N=1

∫

dΓN PN({zi};Y − Y0) s1s2 · · · sn . (2.34)

In these formulæ, si is a simplified notation for 〈S(zi−1, zi)〉Y0
, which in the present context

is of course the same as S̄(zi−1, zi;Y0).

In what follows, we shall exploit the evolution of the probabilities PN(Y − Y0) within the
dipole picture in order to deduce a set of non–linear evolution equations for the quantities
defined in Eqs. (2.33)–(2.34). To that aim, it is more convenient to use the original version
of the equations for PN , due to Mueller [12]. Specifically, Mueller has derived an equation
for the following generating functional

Z � � [Y, u] =
∞
∑

N=1

∫

dΓN PN(z1...zN−1;Y ) u1u2 · · ·uN , (2.35)

where ui ≡ u(zi−1, zi) is an arbitrary ‘source’ field, and (x,y) = (z0, zN), as usual. The
dipole probabilities PN(Y ) can be deduced from Z � � [Y, u] by functionally differentiating

25



D
S

M
/S

P
h

T
-T

06
/0

01
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/0

01
/ 

with respect to u and then letting u→ 0. The evolution equation satisfied by Z � � reads

∂Z � �

∂Y
=
ᾱs

2π

∫

�

M(x,y, z) (−Z � � + Z ��� Z � � ) , (2.36)

to be solved with the following initial condition, which follows from Eq. (2.4) :

Z � � [0, u] = u � � . (2.37)

As demonstrated in Ref. [60], this non–linear equation is equivalent with the infinite
hierarchy of linear, master, equations for the probability densities PN [16], although the
respective pictures of the evolution are quite different: According to Eq. (2.36), the one–
step evolution consists in the splitting of the original, high–rapidity, dipole into two child
dipoles, which then separately evolve and produce their own distribution of dipoles. By
contrast, the master equations of Ref. [16] focus on the splitting of the low–rapidity dipoles
produced in the previous steps of the evolution.

Eq. (2.36) looks formally similar to the BK equation for the S–matrix [10], and indeed
the latter can be easily derived from the former, as we show now: Eqs. (2.34) and (2.35)
imply S̄(x,y;Y ) = Z � � [Y, s], which together with Eq. (2.36) immediately leads to (with
the simplified notation S̄ � � ≡ S̄(x,y;Y ))

∂S̄ � �

∂Y
=
ᾱs

2π

∫

�

M(x,y, z)
(

−S̄ � � + S̄ ��� S̄ � �

)

, (2.38)

which is the BK equation [5, 10], as anticipated. It is more customary to write this equation
in terms of the scattering amplitude T̄ � � ≡ 1 − S̄ � � , in which case it reads:

∂T̄ � �

∂Y
=
ᾱs

2π

∫

�

M(x,y, z)
(

T̄ ��� + T̄ � � − T̄ � � − T̄ ��� T̄ � �

)

. (2.39)

The evolution of the diffractive probability (2.33) can be similarly addressed. Eqs. (2.33)
and (2.35) imply (the dependence upon the rapidity gap Y0 is kept implicit, since this
variable is fixed in the following manipulations)

P̄ diff� � (Y ) = 1 − 2S̄ � � (Y ) + Z � � [Y, s2]

= −1 + 2T̄ � � (Y ) + Z � � [Y, s2], (2.40)

where we have assumed that s is real, as appropriate at high energy. This rewriting of
P̄ diff� � together with the previous equations (2.36) and (2.39) then imply
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∂P̄ diff� �

∂Y
= 2

ᾱs

2π

∫

�

M (x,y, z)
(

T̄ ��� + T̄ � � − T̄ � � − T̄ � � T̄ � �

)

− ᾱs

2π

∫

�

M(x,y, z)
(

Z � � [s2] − Z � � [s2]Z � � [s2]
)

=
ᾱs

2π

∫

�

M(x,y, z)
(

2T̄ ��� + 2T̄ � � − 2T̄ � � − 2T̄ ��� T̄ � �

−(P̄ diff� � + 1 − 2T̄ � � ) + (P̄ diff��� + 1 − 2T̄ � � )(P̄ diff
� � + 1 − 2T̄ � � )

)

(2.41)

After some simple manipulations, the expression in the r.h.s. can be recast into the form

∂P̄ diff� �

∂Y
=
ᾱs

2π

∫

�

M(x,y, z)
(

P̄ diff��� + P̄ diff
� � − P̄ diff� � + P̄ diff��� P̄ diff

� �

−2T̄ ��� P̄ diff
� � − 2P̄ diff� � T̄ � � + 2T̄ ��� T̄ � �

)

, (2.42)

which is recognized, as anticipated, as the equation proposed by Kovchegov and Levin
[52]. It is interesting to notice that, in Ref. [52], this equation has been obtained by
working in the target rest frame, which required a more intricate analysis of the final
state interactions.

The non—linear terms in Eqs. (2.39) and (2.42) describe (incoherent) multiple scattering
between the dipoles in the projectile and the color fields in the target and are responsible
for unitarization: In the high energy limit, the solutions T̄ (Y ) and P̄diff(Y, Y0) approach
the ‘black–disk’ fixed points T̄ = P̄diff = 1, in agreement with the corresponding properties
of the more general formulæ (2.3) and (2.9).

But although they do respect the unitarity bounds, Eqs. (2.39) and (2.42) cannot be
used in a study of the high–energy limit, because of the mean field approximation (2.32)
inherent in their derivation and which fails at high energy [1, 2]. To properly include the
relevant fluctuations, one must replace the BK equation with the hierarchy of Pomeron
loop equations [4, 14] for the N–dipole amplitudes 〈S(1)S(2) · · ·S(N)〉Y . Once these am-
plitudes are thus computed, they can be used to evaluate the diffractive probability ac-
cording to Eq. (2.3), which replaces the solution to the KL equation for sufficiently high
energy. Although the general solution to the Pomeron loop equations is not known, the
correspondence between high–energy QCD and problems in statistical physics [3, 33] has
allowed one to deduce valuable information about the behaviour of the dipole amplitudes
in the high–energy limit [2–4]. This will be explained in the next section.

3 Dipole amplitudes at high energy: Fluctuations & Diffusive scaling

The essential ingredient required by a calculation of the various scattering probabilities
introduced in the previous section are the N–dipole amplitudes 〈T (N)〉Y which describe the
scattering between the target and a system of dipoles. In this section, we shall describe the
calculation of these amplitudes in the high–energy regime where the MFA breaks down,
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because of the strong influence of gluon–number fluctuations [2–4].

Most of the results to be presented below have already appeared in Refs. [2–4], but
since these are recent developments and, moreover, are of utmost importance for the
present analysis, our respective discussion here will be quite complete. In doing so, we
shall also clarify some points which have not been addressed in the previous studies,
like the borderline between the intermediate–energy regime, where the BK equation is
a reasonable approximation and geometric scaling applies, and the high–energy regime,
where the evolution is dominated by fluctuations leading to diffusive scaling.

The subsequent picture will be given in a frame in which all of the energy is carried
by the hadronic target, so the projectile is a bare dipole, or a set of few such dipoles.
To compute a target–averaged amplitude like 〈T (N)〉Y , one needs to (i) evaluate the
scattering amplitude TY (x,y) for a single dipole and in a single event (meaning, for a
given configuration of the gluon fields in the target, as generated through a single evolution
from y = 0 up to y = Y ) and (ii) average the result over the ensemble of events (that
is, over all the possible target evolutions from y = 0 to y = Y ). It turns out that, for
sufficiently large values of Y , both these operations become relatively simple and their
results are universal (i.e., independent of the initial conditions at low energy), as they are
fully determined by the quantum evolution with Y [2–4]. In fact, this universality is even
stronger, in the sense that the details of the evolution matter for a couple of parameters
which enter the final results (namely, the coefficients λ and Dfr which appeared in the
Introduction), but not for the functional form of the average amplitudes [4].

3.1 The event–by–event dipole amplitude

From now on, we shall neglect any non–trivial dynamics in the impact parameter space,
that is, we shall assume that the evolution with increasing energy is quasi–local in b and we
shall often omit the b–argument from the amplitudes. This is a reasonable approximation
so long as one is interested (as we are here) in the high–energy limit of the DIS cross–
sections at fixed impact parameter. Then, the dipole amplitude in a single event can be
written as

TY (x,y) ≡ TY (r) ≡ TY (ρ) (3.1)

where r = |x − y| is the dipole size and ρ represents r in logarithmic units, like in Fig.
1 : ρ ≡ ln(1/r2Q2

0), with Q0 a scale of reference introduced by the initial conditions at
low energy. Note that large ρ corresponds to small dipole sizes, or to large transverse
momenta (ρ ∼ ln k2

⊥) after a Fourier transform.

For sufficiently high energy, the amplitude takes the form of a traveling wave [33] :

TY (ρ) ' T (ρ− ρs(Y )) . (3.2)

This is a front which interpolates between a strong scattering regime at ρ < ρs(Y ), where
the unitarity bound T = 1 has been saturated, and a weak scattering regime at ρ > ρs(Y ),
where TY � 1, and which propagates towards larger values of ρ when increasing Y . Here,
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ρs(Y ) is the position of the front — conventionally defined as the dipole size ρ for which
T (ρ) = 1/2 — and it increases linearly with Y : ρs(Y ) ' λᾱsY . The position of the front
also serves as a definition for the target saturation momentum :

ρs(Y ) ≡ ln
(

Q2
s(Y )/Q2

0

)

=⇒ Q2
s(Y ) ' Q2

0 eλᾱsY . (3.3)

Accordingly, λ will be alternatively referred to as the saturation exponent, or the front

velocity. The BK equation (2.39) predicts λ = λ0 ≈ 4.88 [47, 48], but this result is signif-
icantly lowered by gluon number fluctuations [2, 3] (see below) and also by the next–to–
leading order corrections in perturbative QCD [49].

We shall also need later some analytic control over the shape of an individual front. As
indicated in Eq. (3.2), this depends only upon the difference ρ − ρs(Y ), meaning that
the front propagates without distortion: in a co–moving frame, the shape of the front
is independent of Y . This property has been first noticed within the framework of the
mean field approximation, that is, for the solution to the BK equation [33, 47, 48, 69–73],
but for the individual fronts this remains true also in the presence of fluctuations [3, 50].
Since ρ − ρs = ln(1/r2Q2

s), we deduce that the dipole amplitude TY (r) depends upon
its two kinematical variables r and Y only trough the dimensionless product r2Q2

s(Y ) —
the property usually referred to as geometric scaling [33, 46–49]. This property has far
reaching physical consequences, as it provides a natural explanation [47] for a new scaling
behaviour observed in the small–x data at HERA [46] and plays also an essential role in
understanding the particle production in deuteron–gold collisions at RHIC [74, 75]. Note,
however, that the quantity which matters for the calculation of physical observables is
the target–averaged dipole amplitude 〈T (ρ)〉Y and, as we shall later explain, the geomet-
ric scaling property characteristic of a single event does not necessarily translate to the
average quantities, because of fluctuations [2–4].

The fluctuations are inherent in the evolution with increasing energy, because the instan-
taneous configuration of the gluons in the target (as probed by the external dipole) can
abruptly change from one rapidity step to another via the emission of new gluons. At
high energy, the fluctuations are relatively important only in the dilute regime at large
transverse momenta (k⊥ � Qs), where the gluon occupation numbers are small. Since the
high–k⊥ gluons scatter preponderantly with small dipoles, of size r ∼ 1/k⊥, we deduce
that the fluctuations should significantly affect only the tail of the dipole amplitude TY (ρ)
at large values of ρ. Simple physical considerations [3, 50] (see also below) show that the
fluctuations have a relatively small effect on the overall shape of an individual front —
they modify only the foremost part of the front, where T is very small: T ∼ α2

s —, but
they strongly influence the dynamics of the front, thus considerably reducing its velocity
λ with respect to the mean field prediction λ0. This behaviour, which is confirmed by
numerical simulations within both QCD and statistical physics (see, e.g., [28, 29, 50, 76]),
reflects the pulled nature of the saturation front: the propagation is entirely driven by the
dynamics in the tail of the front at ρ � ρs(Y ), and thus is very sensitive to even small
changes in this tail due to fluctuations.

Returning to a discussion of the shape of the front, it is important to stress here (in
anticipation of Sect. 3.2) that, in order to compute the average amplitudes at high energy,
one needs only a very limited information about the shape of the individual fronts: it
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is in fact enough to know that TY (ρ) = 1 for ρ < ρs(Y ) [4]. But precisely in order to
develop the corresponding argument in Sect. 3.2, and also in view of numerical tests in
the forthcoming sections, we shall need to know a little bit more about the function
TY (ρ). Specifically, the following piecewise approximation, which can be inferred from the
relevant literature [3, 50, 51], will be sufficient for our purposes:

T (z) =























1 for z < 0

A e−γ0z for 1 < z < L

B e−z for L� z.

(3.4)

Here, z ≡ ρ− ρs is the scaling variable, A and B are undetermined normalization factors,
γ0 ≈ 0.63, and L is the ‘width of the front’, namely, the distance ρ − ρs over which the
amplitude falls off from its saturation value T = 1 to a value of order α2

s, where the
fluctuations become important. This condition immediately yields:

L ' 1

γ0

ln
1

α2
s

+ O(1) . (3.5)

Note that the physical regions in which the solution is approximately given have no overlap
with each other, so, not surprisingly, the expressions shown in Eq. (3.4) do not provide
a continuous interpolation for T (z). The first line in Eq. (3.4) is, clearly, the saturation

region ; the second line describes the front of the traveling wave, with the characteristic
‘anomalous dimension’ 1 − γ0 ≈ 0.37 which is a hallmark of the BFKL evolution in the
presence of saturation [47, 48]; finally, the third line represents the perturbative QCD tail,
where the amplitude exhibits color transparency (T (r) ∼ r2), and which is generated via
the large–ρ behaviour of the BFKL kernel. More precisely, within the BFKL evolution,
the color transparency is amended by quantum corrections in the “double–logarithmic
approximation” (DLA). These are not explicitly shown here, since the contribution of
this large–ρ tail to physical quantities is anyway negligible in the high–energy regime of
interest. It is however important to notice that such DLA effects violate geometric scaling,
which is therefore restricted to the region at z <∼ L.

The single–event amplitude in Eq. (3.4) looks quite similar to the solution to the BK
equation (see, e.g., Ref. [75]), but it differs from the latter in two essential points:

a) The front is compact in Eq. (3.4), i.e., it has a finite width L which is independent of Y .
By contrast, the front of the BK solution extends up to distances ρ− ρs ∼

√
Y , and thus

its width increases with Y . In the context of the BK equation, this front is often referred
to as the geometric scaling window [47, 48]. We see that, as a consequence of fluctuations,
the width of the geometric scaling window for a single event (and for sufficiently high
energy) is considerably reduced with respect to the mean field approximation.

b) The front velocity λ which enters Eq. (3.4) via ρs is considerably smaller than the
corresponding BK velocity λ0. This is seen numerically for generic values of αs, and is
confirmed by an analytic calculation valid in the weak coupling limit α2

s → 0, which shows
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that in this limit λ converges towards λ0, but only very slowly [2, 3, 50] :

λ ' λ0 − C
ln2(1/α2

s)
when α2

s � 1 . (3.6)

Here, C is a known number, which is determined by the linear, BFKL, dynamics and turns
out to be quite huge : C = π2γ0χ

′′(γ0) ≈ 150. (Here, χ(γ) is the Mellin transform of the
BFKL kernel [2, 3]. Note also that λ0 = χ(γ0)/γ0 ≈ 4.88.) The tendency of λ to decrease
when increasing α2

s is also confirmed by a study of the ‘strong noise limit’, which shows
that in that limit λ vanishes as a power of 1/α2

s [77].

More precisely, the above picture applies only for high enough rapidities, larger than the
formation time of the front, estimated as [3, 78] :

ᾱs Yform ∼ ln2(1/α2
s)

2χ′′(γ0) γ2
0

. (3.7)

This is the rapidity evolution necessary for the front to reach its final form in Eq. (3.4),
and for the velocity to reach its asymptotic value in Eq. (3.6), starting with some generic
initial condition at Y = 0. For Y < Yform, the width of the front increases with Y as
ρ − ρs ∼

√
Y , via BFKL diffusion, while for Y > Yform, this width gets stuck at its

maximal value, equal to L. As indicated by the ‘geometric scaling’ region in the diagram
in Fig. 1, a similar behaviour is shown also by the average amplitude 〈T (ρ)〉Y , but only
up to some maximal rapidity Y ∼ YDS, beyond which the effects of fluctuations become
overwhelming (see the discussion in the next subsection).

Let us conclude this presentation with a few physical considerations on the role of fluc-
tuations [3]. The previous arguments exhibit the special role played by the parameter α2

s

in the study of fluctuations (in particular, the mean field limit is obtained as α2
s → 0),

and this deserves a comment. In the dilute regime where the fluctuations are important,
and for large Nc, the target itself can be described as a collection of dipoles, and then
the amplitude T (r) describes the scattering between the external dipole r and the target
dipoles. The dipole–dipole amplitude T (r, r′) is of order α2

s and is peaked at sizes r′ ∼ r.
Hence, to a good approximation, T (r) ∼ α2

sf(r), where f(r) is the dipole occupation num-

ber in the target, that is, the number of dipoles with size r (per unit of ln 1/r2) within an
area r2 around the impact parameter of the external dipole. In a given event, f is discrete
(f = 0, 1, 2, . . . ), so the scattering amplitude takes on only discrete values, which are
multiples of α2

s. In particular, the minimal non–zero value for T is α2
s, showing that the

tail of the front must abruptly end when T becomes of O(α2
s). This explains the compact

nature of the front.

Furthermore, the particle number fluctuations follow a normal distribution: δf ∼
√
f ,

showing that δT ∼ α2
s

√
f ∼

√

α2
sT . Thus, the mean field approximation becomes reliable,

in the sense that δT � T , as soon as T � α2
s. In particular, this becomes a good

approximation everywhere (i.e., for any r) in the limit α2
s → 0.
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3.2 Front dispersion through fluctuations

Let us consider now the average over the target wavefunction, which in the present context
amounts to an average over the statistical ensemble of fronts : the fronts associated to all
the possible evolutions of the target over a rapidity interval Y . It turns out that at high
energy — sufficiently high for the fronts to reach their canonical form, cf. Eq. (3.7) — this
averaging is quite simple: Since all the fronts in the ensemble have the same shape, they
can differ from each other only by a translation. That is, the only random variable in the
problem is the position ρs of the front, which can be argued to be distributed according
to the following, Gaussian, probability density [3, 50, 51]

PY (ρs) =
1√
πσ

exp

[

−(ρs − 〈ρs〉)2

σ2

]

. (3.8)

In this equation, 〈ρs〉 ' λᾱsY is the average position of the front and increases with Y
with the velocity shown in Eq. (3.6), since this is the common average velocity for all the
fronts in the ensemble. Furthermore, σ2/2 ≡ 〈ρ2

s〉 − 〈ρs〉2 is the front dispersion, which
rises linearly with Y , σ2(Y ) ' DfrᾱsY , since the stochastic process is a random walk
around the average front 10 . It has been first suggested by numerical simulations [50], and
very recently confirmed through analytic arguments [51] that, in the weak coupling limit
α2

s → 0, the front diffusion coefficient Dfr scales as

Dfr ' D
ln3(1/α2

s)
when α2

s � 1 . (3.9)

This vanishes, as expected, in the mean field limit α2
s → 0, but only very slowly. The

coefficient D has been explicitly computed in Ref. [51]. (Once again, this is determined
by the linear dynamics in the tail.)

Then the average amplitude 〈T 〉Y is determined by

〈T (ρ)〉Y =

∞
∫

−∞

dρs PY (ρs)T (ρ− ρs), (3.10)

with T (ρ− ρs) the single–event front in Eq. (3.4). Higher–point correlations can be com-
puted similarly. Note that the ensuing average amplitudes will naturally depend upon the
difference z ≡ ρ− 〈ρs〉, but they will also show additional dependencies upon Y , via the
front dispersion σ. That is, unlike the individual fronts, the average amplitudes will gen-
erally not show geometric scaling [2, 3]. In fact, as we shall shortly discover, at sufficiently
high energies the geometric scaling is replaced by a new, diffusive, scaling.

Given the Gaussian nature of the probability distribution (3.8), it is straightforward to
compute the average in Eq. (3.10) for the piecewise–defined front in Eq. (3.4), and we
shall do so indeed in the more detailed studies in the next subsections. Here, however,

10 Note that our present normalizations for the coefficients λ and Dfr differ by a factor ᾱs from
those used in the Introduction.
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we would like to point out (following an original analysis in Ref. [4]) that, for sufficiently
high energy, the dominant contributions to the average amplitudes 〈T (N)〉Y with any N
are given by the saturation region in Eq. (3.4), and thus they are all expressed through a
universal function.

Let us start by better specifying what we mean by “sufficiently high energy” : As antici-
pated in the Introduction (cf. Fig. 1), this is the regime in which the target expectation
values are dominated by dense fluctuations, which in turn requires relatively high values
of Y and not too large values of ρ (but ρ can still be much larger than the average sat-
uration scale 〈ρs〉; see below). More precisely, we shall demonstrate here that within the
high energy regime defined as

High–energy regime ⇐⇒ σ � 1/γ0 and ρ− 〈ρs〉 � γ0σ
2 , (3.11)

the dominant contributions to the average dipole amplitudes can be simply computed
with a Θ–function saturation front:

Tθ(ρ) ≡ Θ(ρs − ρ) , (3.12)

which in turn implies [4]

〈T (ρ)〉Y =
1

2
Erfc

(

z

σ

)

, (3.13)

and, more generally,

〈T (ρ1)T (ρ2) · · ·T (ρN )〉Y =
1

2
Erfc

(

z>

σ

)

, (3.14)

where z = ρ − 〈ρs〉 and z> = ρ> − 〈ρs〉, with ρ> = the largest among the ρi’s. In these
equations, Erfc(x) is the complementary error function,

Erfc(x) ≡ 2√
π

∞
∫

x

dt e−t2 , (3.15)

which arises here as the integral of the probability density (3.8) over all values of ρs larger
than ρ (respectively, ρ>).

In words, the dominant contributions to the average amplitudes at high energy come
from those fronts within the statistical ensemble at Y which are at saturation at the
highest resolution scale ρ> set by the incoming projectile. This is true, in particular, for
relatively large values of ρ, well above 〈ρs〉, where on the average the scattering is weak,
〈T (ρ)〉Y � 1, yet this average value is dominated by the relatively rare configurations
which are at saturation for that (large) value of ρ. The subdominant contributions not
shown in Eqs. (3.13)–(3.14) are suppressed by, at least, one power of 11 1/σ and/or z/σ2

(respectively, z>/σ
2), and are sensitive to the detailed shape of the single–event front.

11 Such estimates should more properly read, e.g., z/γ0σ
2, but here and in what follows we shall

often use the fact that γ0 ≈ 0.63 is a number of O(1) to simplify the parametric estimates.
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A similar sensitivity holds for the average amplitudes outside the ‘high energy regime’
defined in Eq. (3.11).

Note that the universal behaviour exhibited in Eqs. (3.13)–(3.14) emerges also in the limit
of strong fluctuations, as recently shown in Ref. [77]. This observation is consistent with
the analysis in Ref. [4] and the present considerations, since the limit of strong fluctuations
is formally obtained by letting σ → ∞ within our formulæ, in which case the ‘high energy
regime’ of Eq. (3.11) extends everywhere.

To demonstrate the above results, we need to study the influence of the shape of the front
on the average amplitudes with increasing energy. To that aim, it is sufficient to consider
the following, simplified, profile for an individual event :

Tγ(ρ) = Θ(ρs − ρ) + Θ(ρ− ρs) e−γ(ρ−ρs) . (3.16)

For γ = γ0 ≈ 0.63, this simulates the front region in the second line of Eq. (3.4), while
for γ = 1 it rather corresponds to the ‘color transparency’ region in the third line there.
By using Eqs. (3.16) and (3.8) it is straightforward to deduce

〈T (z)〉Y =
1

2
Erfc

(

z

σ

)

+
1

2
exp

(

γ2σ2

4
− γz

)

[

2 − Erfc
(

z

σ
− γσ

2

)]

, (3.17)

with z = ρ−〈ρs〉. The first term is the same as in Eq. (3.13) and comes from the saturation
piece of Tγ , while the second term comes from the exponential piece of Eq. (3.16).

The following limiting behaviours of the function Erfc(x) will be useful in what follows:

Erfc(x) =



































2 − exp(−x2)√
π |x| for x� −1

1 for x = 0

exp(−x2)√
πx

for x� 1.

(3.18)

i) Consider first the (relatively) low energy situation at σ � 1/γ. By using Eqs. (3.17)–
(3.18) one finds that the average amplitude retains its single event profile, except in the
short interval |z| <∼ σ where it gets smoothed:

〈T (z)〉Y =











1 for z � −σ,

e−γz for σ � z,
for σ � 1/γ . (3.19)

In this regime, geometric scaling is manifest at the level of the average amplitudes. The
situation is similar to the mean field approximation, except for the facts that the real front
is compact and has a smaller velocity, cf. Eq. (3.6). (The compactness becomes manifest,
of course, only if one starts with the more realistic profile in Eq. (3.4).) We thus conclude

Negligible dispersion ⇐⇒ σ � 1/γ0 ⇐⇒ ᾱsY � ln3(1/α2
s)

γ2
0D

. (3.20)

34



D
S

M
/S

P
h

T
-T

06
/0

01
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/0

01
/ 

The upper limit above, namely ᾱsYDS ∼ ln3(1/α2
s), is parametrically larger than the

‘critical’ rapidity ᾱsYc ∼ ln(1/α2
s) for the onset of the unitarity corrections, cf. Eq. (2.13),

and also than the formation time ᾱsYform ∼ ln2(1/α2
s), cf. Eq. (3.7), for the individual

fronts (as it should for the present discussion to make sense).

ii) For σ � 1/γ, the first term in Eq. (3.17) dominates everywhere except at extremely
large distances ahead of the front, such that z >∼ γσ2. For instance, in the interesting
range σ � z � γσ2, where the average amplitude is small, we obtain

〈T (z)〉Y ' 1

2
√
π

σ

z

{

1 +
2z

γσ2

}

e−z2/σ2

for σ � z � γσ2, (3.21)

where the first term inside the curly brackets comes from the ‘saturation’ piece in the
r.h.s. of Eq. (3.17), while the second term corresponds to the ‘exponential’ piece there,
and is suppressed with respect to the first term by a factor z/γσ2 � 1, as anticipated.
One can similarly check that Eq. (3.14) yields indeed the dominant behaviour for the
N–dipole amplitude 〈T (N)〉Y within the range specified by Eq. (3.11).

On the other hand, it is easy to check that, for much larger values of ρ, such that z �
σ2, the dominant contribution to the average amplitude comes from the second term in
Eq. (3.17), that is, from the exponential tail in Eq. (3.16). One then finds

〈T (z)〉Y ' exp(−γz) exp

(

γ2σ2

4

)

for z � σ2, (3.22)

where we recognize the same exponential decay with ρ as for a single front, Eq. (3.16).

The piecewise expression of the average amplitude at high energy reads therefore

〈T (z)〉Y =











(1/2)Erfc(z/σ) for −∞ < z � γ0σ
2,

∼ e−z for γ0σ
2 � z,

for σ � 1/γ0, (3.23)

where we have directly considered the more realistic profile in Eq. (3.4), so the exponential
tail at very large z is determined by the ‘color transparency’ piece of Eq. (3.4).

For all but very large values of z, the average front profile in Eq. (3.23) has no resemblance
at all with the single–event profile in Eq. (3.4): There is no trace of the BFKL ‘anomalous
dimension’ γ0, nor of ‘geometric scaling’. Rather, so long as z � γ0σ

2, the average ampli-
tude obeys a new type of scaling — it scales as a function of z/σ — which was previously
observed in Refs. [3, 4], and for which we propose the name of diffusive scaling . Note
that the kinematical region for diffusive scaling coincides with the high–energy regime of
Eq. (3.11), and is represented as the region at Y > YDS and ρ at the left of the curve
“Q2

d” in Fig. 1. In particular, within the weak scattering regime at σ � z � γ0σ
2, the

average amplitude decreases as a Gaussian in z = ρ− 〈ρs〉, and not as an exponential (as
it happens for the single–event front within the geometric scaling window).

This behaviour is illustrated in Figs. 9 and 10, which show the average amplitude in
Eq. (3.17) for γ = 1 and various values of σ, as a function of either the ‘geometric scaling’
variable r2〈Q2

s〉 (in Fig. 9), or the ‘diffusive scaling’ variable z = ln(1/r2〈Q2
s〉)/σ (in Fig.
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Mean Field
Fluct. σ = 9
Fluct. σ = 7
Fluct. σ = 5
Fluct. σ = 3
Fluct. σ = 1

r2Q2

s

〈T
(r

)〉

1001010.10.010.0011e-041e-051e-06

1

0.1

0.01

0.001

1e-04

1e-05

1e-06

Fig. 9. The average dipole–hadron forward amplitude of Eq. (3.17) (with γ = 1) as a function
of the “standard” scaling variable r2〈Q2

s〉 and for various values of the front dispersion σ.

1

2
Erfc(z/σ)

Fluct. σ = 9
Fluct. σ = 7
Fluct. σ = 5
Fluct. σ = 3
Fluct. σ = 1

z/σ ≡ ln(1/(r2Q2

s
))/σ

〈T
(r

)〉

43210-1-2

1

0.1

0.01

0.001

1e-04

1e-05

1e-06

Fig. 10. The same as in Fig. 10 as a function of the “diffusive” scaling variable
z = − ln(r2〈Q2

s〉)/σ. As σ increases the amplitude approaches the limiting behavior in Eq. (3.13).

10). The “mean field” curve in Fig. 9 represents the limit σ → 0, that is, the single–event
profile in Eq. (3.16). This shows geometric scaling, and would be the actual behaviour in
the absence of fluctuations. As manifest on Figs. 9 and 10, when increasing σ, the average
amplitude deviates more and more from geometric scaling and eventually approaches the
limiting profile in Eq. (3.13) (displayed as the “Erfc” curve in Fig. 10), which shows
diffusive scaling.
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These considerations show that the mean field approximations (like the BK equation)
completely fail to describe the dipole scattering at high energy. This is particularly striking
when one considers multi–dipole correlations : in the high energy regime (3.11) these
correlations are given by Eq. (3.14), which shows that the mean–field factorization (2.32)
is maximally violated. For instance, within the range σ � z � σ2, the average amplitudes
are weak, yet strongly correlated :

〈T (ρ)〉 '
〈

T 2(ρ)
〉

'
〈

TN(ρ)
〉

≈ 1

2
√
π

σ

z
e−z2/σ2

for σ � z � σ2 . (3.24)

Accordingly, the N–dipole amplitudes with enter the evolution equations with Pomeron
loops become as important as the one–dipole amplitude 〈T (ρ)〉Y already in the weak
scattering regime, and not only in the region where the unitarity corrections are important.
This is so because the individual fronts which contribute to these average amplitudes are
themselves at saturation, and thus they are sensitive to unitarity corrections in the event–

by–event description.

This dominance of saturated gluon configuration within the diffusive scaling region has
another interesting consequence, to which we shall refer as the rigidity of the average
amplitude: This is the property that, within the intermediate weak scattering regime at
σ � z � σ2, the average amplitude increases unusually slow when increasing Y at fixed
dipole size (i.e., at fixed ρ). To better appreciate this property, recall first the rapid, BFKL,
increase of the average amplitude in the weak scattering regime at low and intermediate
energies, say, in the geometric scaling window (cf. Eqs. (1.1)):

∂ 〈T (r)〉Y
∂Y

∼ γ0λᾱs 〈T (r)〉Y when r2〈Q2
s〉 � 1 . (3.25)

On the other hand, Eq. (3.13) implies

∂ 〈T (r)〉Y
∂Y

=
1

2
Erfc′

(

z

σ

)

(

1

σ

dz

dY
− z

σ2

dσ

dY

)

= ᾱs

(

λ+
Dfr

2

z

σ2

)

1√
πσ

exp

(

− z2

σ2

)

∼ λᾱs
z

σ2
〈T (r)〉Y , (3.26)

where we have used z = ρ − 〈ρs〉, 〈ρs〉 ' λᾱsY and σ2 ' DfrᾱsY , and the last estimate
holds for σ � z � σ2 (compare to Eq. (3.24)). Clearly, as compared to the intermediate
energy (or mean–field) regime in Eq. (3.25), the relative variation of the high–energy
amplitude in Eq. (3.26) is smaller by a factor z/σ2 � 1. This is so since the individual
fronts which contribute to 〈T (r)〉Y in this regime are all at saturation, so by themselves
they cannot increase when further increasing Y ; the comparatively slow growth visible in
Eq. (3.26) is rather due to the progression of the average front towards larger values of ρ.

4 Fluctuation effects on deep inelastic scattering at high energy

In this section, we shall consider the high–energy limit of the inclusive and diffractive
cross–sections introduced in Sect. 2, with the purpose of demonstrating the fundamental
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change of behaviour introduced in this regime by the gluon–number fluctuations.

To perform this analysis, we still need to complete our previous factorization formulæ
with the electromagnetic vertex describing the dissociation of the virtual photon into a
qq̄ pair. Within the present, high–energy, approximations, this vertex factorizes out and
the DIS cross–sections for (inclusive and diffractive) γ∗h scattering can be computed as
[57, 58]

dσγ
tot

d2b
(Y,Q2) =

∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 Ptot(b, r;Y ), (4.1)

and, respectively,

dσγ
diff

d2b
(Y, Ygap, Q

2) =
∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 Pdiff(b, r;Y, Ygap). (4.2)

In these equations, |ψγ
T/L|2 are probability densities for the qq̄ dissociation of a virtual

photon with either transverse (T ) or longitudinal (L) polarization (these can be found
in the literature and are displayed, for convenience, in the Appendix A), r = x − y and
b = (x + y)/2 are the transverse size and the impact parameter of the qq̄ pair, r ≡ |r|,
v is the fraction of the photon’s longitudinal momentum taken away by the quark, and
Ptot and Pdiff are the total and, respectively, diffractive probabilities for onium–hadron
scattering, as introduced in Eqs. (2.3) and (2.11). The above formulæ are a priori frame–
independent, but in order to use our formula (2.3) for Pdiff , we need to evaluate the
diffractive cross–section (4.2) in the frame where Y0 = Ygap.

More precisely, the factorization formula (4.2) for diffraction holds within the same ap-
proximations as previously used in the calculation of Pdiff , namely, the leading logarithmic
approximations with respect to both ln(1/x � ) and ln(1/β). Under these assumptions, the
diffractive cross–section depends upon x � and β (or, equivalently, upon Ygap and Y −Ygap)
only via the high–energy evolutions of the target and the projectile, respectively. In the
high–energy regime of interest, these approximations are certainly correct in so far as
the x � –dependence is concerned (since x � is truly small), but they fail to describe the
actual β–dependence in the vicinity of β = 1 (i.e., in the case of a relatively small mass
M2

X
<∼ Q2 for the diffractive system). In fact, within the present approximations, the

diffractive cross–section for β ' 1 reduces to its ‘elastic’ piece in Eqs. (2.1) and (2.2),
which is independent of β. However, for β ' 1, the projectile is simply a qq̄ pair, and
for that pair the generalization of Eq. (4.2) which provides the correct β–dependence
is by now well known [34, 79], and will be exhibited in Appendix B (see Eq. (B.1)). It
is therefore quite straightforward to improve the subsequent analysis in the vicinity of
β = 1, whenever this is needed. However, since our main interest here is rather in the
high–energy limit x � → 0 at fixed β, we find it more convenient to focus on generic values
of β � 1, for which the relatively simple factorization formula (4.2) applies as written.

One of our main conclusions below will be that the diffractive cross–section (4.2) at high
energy and up to relatively large virtualities Q2 (within the region for diffusive scaling) is
dominated, for any β, by the elastic scattering of the onium — that is, by the ‘elastic’ piece
in Eq. (2.1) — and therefore is independent of β (i.e., it is independent of the minimal
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rapidity gap Ygap for fixed values of Y and Q2), within the present approximations. This is
so because, as we shall see, the inelastic piece P inel

diff of the diffractive probability, Eq. (2.18),
is parametrically suppressed as compared to the respective elastic piece, Eq. (2.7), in the
high–energy regime defined by Eq. (3.11). Therefore (with z ≡ ln(1/r2〈Q2

s〉) ) :

Pdiff(r;Y, Y0) ' Pel(r;Y ) = |〈T (r)〉Y |2 when σγ0 � 1 and z � σ2. (4.3)

Since, moreover, Pel can be computed from the scattering of the qq̄ pair alone, cf. Eq. (2.10),
we arrive at the remarkable conclusion that, at sufficiently high energy, the computation
of both inclusive and diffractive DIS cross–sections requires merely the knowledge of the
forward amplitude 〈T (r)〉Y for the qq̄ pair in the frame where the target carries most of
the total energy (Y0 ' Y ).

The dominance of the elastic over the inelastic scattering in diffractive DIS at large Q2

and relatively small β is an essential consequence of fluctuations — in the mean field
approximation, the situation is precisely the opposite ! [35, 40] —, and might seem coun-
terintuitive at a first sight: At small β, the projectile contains many gluons, yet Eq. (4.3)
implies that the relative normalization of these many Fock states remains unchanged after
the collision. But this is perhaps less surprising, as we argue now:

Note first that Eq. (4.3) becomes natural in the saturation regime at r2〈Q2
s〉 � 1, where

Pdiff and Pel attain their respective unitarity bounds: Pdiff = Pel = 1. In that regime, all
the Fock states in the projectile are equally absorbed, since they are completely absorbed.
Thus, for low Q2 <∼ 〈Q2

s〉 at least, the inelastic diffraction is naturally suppressed. Now, in
the discussion in Sect. 3 we have noticed the tendency of the fluctuations to ‘push–up the
saturation physics’, that is, to extend a behaviour which looks natural in the saturation
regime up to large values of Q2, well above the average saturation momentum. In view
of this, it is not so surprising to find that, in the fluctuation–dominated regime at high
energy, the inelastic diffraction remains suppressed up to relatively high Q2, within a
distance ln(Q2/〈Q2

s〉) ∼ σ2 determined by the dispersion of the fronts.

To limit the complexity of the calculation, we shall demonstrate this property by using the
simplest non–trivial case — that where the onium wavefunction at the time of scattering
contains only two components: a one–dipole state representing the original qq̄ pair and
a two–dipole state, which physically describes a qq̄g configuration. This is the physical
situation in a frame in which the rapidity Y − Y0 = ln(1/β) of the projectile is relatively
large, so that its high–energy evolution cannot be neglected, but not too large, so that
one can restrict oneself to a single step in this evolution: the emission of one gluon with
longitudinal momentum fraction β. For this case, we shall be able to analytically compute
the dominant behaviour at high energy. Note that the qq̄ and the qq̄g components have
also been included in previous studies of DIS at small x [34–37, 39–41, 79–83], which were
based on the mean field approximation. The comparison between our subsequent results
and such previous studies will facilitate emphasizing the role of fluctuations.
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4.1 The general set–up

Let us start by summarizing the expressions for the various scattering probabilities corre-
sponding to onium configurations which involve, at most, two dipoles. These expressions
are obtained by restricting the general formulæ introduced in Sect. 2 to the case where the
number of dipoles is N = 2 and the dipole probabilities P1 and P2 are given by Eq. (2.14)
with dY = Y − Y0 = ln(1/β).

We start with the forward amplitude (2.9), which can be expressed either as the scattering
of a single qq̄ dipole in the frame where the target has rapidity Y :

A(x,y;Y ) = 〈T (x,y)〉Y , (4.4)

or as the scattering of an onium composed of two dipoles, in the frame where the target
has rapidity Y0 (with the simplified notation T � � ≡ T (x,y)) :

A(x,y;Y ) = 〈T (x,y)〉Y0
+ ln(1/β) ∆A(x,y;Y0),

∆A(x,y;Y0) ≡ ᾱs

2π

∫

�

M(x,y, z) 〈T ��� + T � � − T ��� T � � − T � � 〉Y0
. (4.5)

Note that ∆A expresses the effects of the one–step high–energy evolution, that is, the
contribution to scattering of the two–dipole state (the first three terms within the brack-
ets) together with the ‘virtual’ correction to the one–dipole state (the fourth term there).
By comparing Eqs. (4.4) and (4.5) and taking the limit dY ≡ ln(1/β) → 0, one can
immediately deduce an evolution equation for 〈T � � 〉Y :

∂ 〈T ��� 〉Y
∂Y

=
ᾱs

2π

∫

�

M(x,y, z) 〈T � � + T � � − T � � − T ��� T � � 〉Y , (4.6)

which is recognized as the first equation in both the Balitsky hierarchy [5], and in the
hierarchy of equations with Pomeron loops [14]. (The differences between these two hi-
erarchies, which express the effects of gluon number fluctuations, start with the second
equation, as obeyed by the two–dipole amplitude 〈T (x1,y1)T (x2,y2)〉Y .) Within the mean
field approximation (2.32), Eq. (4.6) reduces to the BK equation (2.39).

Consider similarly the elastic probability, Eq. (2.7). This can be evaluated in both frames
(the ‘Y –frame’ and the ‘Y0–frame’) :

Pel(x,y;Y ) = |〈T (x,y)〉Y |2 ' |〈T (x,y)〉Y0
|2 + ln(1/β) ∆Pel(x,y;Y0)

∆Pel(x,y;Y0) ≡ 2 Re{〈T (x,y)〉Y0
∆A(x,y;Y0)} , (4.7)

where the expression in the Y0–frame holds to the order of interest in ᾱs ln(1/β). Clearly,
∆Pel represents the qq̄g contribution to the elastic probability.

For the diffractive probability (2.3), on the other hand, the choice of the Y0–frame is
mandatory, since Y0 plays also the role of the physical rapidity gap. We thus find:

Pdiff(x,y;Y, Y0) = P qq̄
diff(x,y;Y0) + ln(1/β) ∆Pdiff(x,y;Y0), (4.8)
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where

P qq̄
diff(x,y;Y0) ≡ | 〈T (x,y)〉Y0

|2 = Pel(x,y;Y0) (4.9)

is the contribution of the elementary qq̄ pair, and is the same as the elastic probability
corresponding to a total rapidity separation Y0 (cf. Eq. (4.7)), and

∆Pdiff(x,y;Y0) ≡ ᾱs

2π

∫

�

M(x,y, z)
{

|〈1 − S ��� S � � 〉Y0
|2 − |〈1 − S � � 〉Y0

|2
}

=
ᾱs

2π

∫

�

M(x,y, z)
{

|〈T � � + T � � − T ��� T � � 〉Y0
|2 − |〈T � � 〉Y0

|2
}

(4.10)

represents the additional contribution due to the qq̄g state.

Although elastic and inelastic diffraction cannot be separately measured in DIS, as ex-
plained at the end of Sect. 2.1, it is nevertheless convenient at a mathematical level —
and, as we shall later discover, also insightful at a physical level — to separate the integral
in Eq. (4.10) into its ‘elastic’ and ‘inelastic’ components, defined according to Eq. (2.18).
Namely, the following mathematical identity can be easily checked:

∆Pdiff(x,y;Y0) = ∆Pel(x,y;Y0) + ∆Pinel(x,y;Y0), (4.11)

with ∆Pel as given by Eq. (4.7) and ∆Pinel representing (by construction) the qq̄g contri-
bution to the inelastic probability (2.18):

P inel
diff (x,y;Y, Y0) = ln(1/β) ∆Pinel(x,y;Y0)

∆Pinel(x,y;Y0) =
ᾱs

2π

∫

�

M(x,y, z)
∣

∣

∣ 〈T ��� + T � � − T � � − T ��� T � � 〉Y0

∣

∣

∣

2
, (4.12)

which starts at order ᾱs ln(1/β). In fact, at the level of the qq̄g state, the integral (4.12) for
the inelastic diffraction has a direct phenomenological significance, as the cross–section

for gluon production in diffractive DIS (for not too small values of β) [41, 82] (see Eq. (C.1)
in Appendix C). Thus, this quantity is also interesting in itself.

By inserting the above expressions for the dipole scattering probabilities into Eqs. (4.1)
and (4.2), we finally deduce our approximations for the DIS cross–sections. Without any
loss of generality, the total cross–section can be evaluated in the Y –frame. Then, the
calculation involves the qq̄ component alone (cf. Eqs. (2.11) and (4.4)) :

dσγ
tot

d2b
=
∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 2 Re 〈T (b, r)〉Y . (4.13)

Following Eq. (4.8), the diffractive cross–section is decomposed as the sum of two contri-
butions, due to the qq̄ state and the qq̄g state, respectively:

dσγ
diff

d2b
=

dσqq̄
diff

d2b
+

dσqq̄g
diff

d2b
, (4.14)

where (cf. Eq. (4.9))
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dσqq̄
diff

d2b
=
∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 × | 〈T (b, r)〉Y0

|2 , (4.15)

(this is purely elastic) and, respectively,

dσqq̄g
diff

d2b
= ln(1/β)

∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 ∆Pdiff(b, r;Y0) , (4.16)

which in turn receives two types of contributions: elastic and inelastic (cf. Eq. (4.11)).

In what follows we shall evaluate the cross–sections in Eqs. (4.13)–(4.16) by using the high–
energy estimates (3.13)–(3.14) for the dipole amplitudes, with the purpose of extracting
the dominant behaviour at high energy and clarifying the physical origin of the dominant
contributions. Note that, whereas the functional form of the amplitudes in Eqs. (3.13)–
(3.14) is universal (in the sense explained in the Introduction), the coefficients λ and
Dfr which implicitly enter these expressions (via the Y –dependencies of 〈ρs〉 and σ2) are
not : they depend upon the details of the QCD evolution, and presently they are not well
under control (cf. Sect. 3.2). To avoid specifying these parameters, we shall perform our
subsequent analysis in terms of the variables ρ−〈ρs〉 and σ. That is, we shall increase the
energy by increasing the value of σ, and we shall measure all dimensionful quantities, like
r2 or Q2, in units of 〈Q2

s〉. This strategy is physically meaningful, since the proper way to
approach the “high–energy limit” is to simultaneously increase Y and Q2, in such a way
that the ratio Q2/〈Q2

s〉 remains within the interesting scaling region in Fig. 1.

To better emphasize the effects of the fluctuations, we shall also estimate the relevant
convolutions with the following ‘mean–field’ amplitude

T̄ (r, Y ) =











(r2Q2
s(Y ))γ for r ≤ 1/Qs(Y )

1 for r > 1/Qs(Y ),
(4.17)

which is representative for either the Golec-Biernat and Wüsthoff (GBW) ‘saturation
model’ [35] (in that case, γ = 1), or for the solution to the BK equation in the regime of
geometric scaling (then γ = γ0 ≈ 0.63).

More generally, for our purposes here, the mean–field amplitude (4.17) is also represen-
tative for the actual situation in QCD at intermediate energies, that is, so long as the
dispersion of the fronts remains negligible (cf. Eq. (3.20)). To also study the transition
between this regime and the high–energy regime defined by Eq. (3.11), where the ampli-
tudes take their “error–function” form in Eqs. (3.13)–(3.14), we shall perform numerical
simulations with the dipole amplitude in Eq. (3.17). Recall that this amplitude provides
a smooth interpolation between the mean–field amplitude (4.17) at low energy (σ → 0)
and the error–function amplitude (3.13) at high energy (σ → ∞). In fact, in most of our
explicit examples below, we shall choose γ = 1, for simplicity.

To obtain order–of–magnitude estimates in what follows, we shall rely on simplified ver-
sions of the convolutions appearing in Eqs. (4.13)–(4.16), which in addition to being sim-
pler, have also the merit to clearly separate the physical origin of the various contributions.
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The relevant simplifications exploit the properties of the “virtual photon wavefunctions”
|ψγ

T/L|2, as explained in the Appendix A. The ensuing, simplified, formulæ read then

∫

dv d2r |ψγ
T (v, r;Q)|2 f(r) ∼ αemNc

∑

f

e2f







2/Q
∫

0

dr

r
f(r) +

1

Q2

∞
∫

2/Q

dr

r3
f(r)





 , (4.18)

and, respectively,

∫

dv d2r |ψγ
L(v, r;Q)|2 f(r) ∼ αemNc

∑

f

e2f





Q2

2/Q
∫

0

dr rf(r) +
1

Q4

∞
∫

2/Q

dr

r5
f(r)





 , (4.19)

where in writing the r.h.s.’s we have kept the various parametric dependencies, but ig-
nored all numerical factors. For each of these expressions, the first term within the square
brackets corresponds to the symmetric configurations, for which v ∼ 1/2 (in such config-
urations, the longitudinal momentum of the incoming photon is “democratically” divided
among the quark and the antiquark), and the second one, to the aligned jet configura-

tions, for which v is either close to zero, or close to one (either the quark, or the antiquark,
carries most of the total longitudinal momentum).

To conclude this subsection, let us summarize here, for more clarity, the main conclusions
that will emerge from the subsequent analysis:

i) For very high energy and relatively large virtuality Q2 � 〈Q2
s〉Y , such that

σ(Y ) � 1/γ0 and σ(Y ) � Z ≡ ln
Q2

〈Q2
s〉

� σ2(Y ) , (4.20)

all the convolutions which enter the calculation of the various DIS cross–sections —
by which we mean both the convolution with the photon wavefunction, as explicit in
Eqs. (4.13)–(4.16), and that with the dipole kernel M(x,y, z), which is implicit in the
structure of ∆Pdiff (cf. Eq. (4.10)) — are dominated by small dipole sizes r ∼ 1/Q. This
situation is very different from the mean–field, or intermediate energy, regime, where the
dominant contributions (especially in the diffractive sector) come from larger dipoles,
with r ∼ 1/Qs. In turn, this property ensures that for sufficiently high energy, the DIS
processes at fixed impact parameter become fully perturbative.

ii) Within the kinematical range indicated in Eq. (4.20), the inclusive and diffractive
cross–sections have the same universal behaviour as the dipole amplitudes in Eq. (3.24),
that is, they exhibit diffusive scaling and a Gaussian decrease with Z/σ at large Q2, and
they rise very slowly when increasing Y at fixed Q2.

iii) At high energy (σγ0 � 1), the inelastic contribution of the qq̄g state to diffraction,
Eq. (4.12), is parametrically smaller than the respective elastic contribution, Eq. (4.7), for
all dipole sizes r such that z � σ2. (We recall that z ≡ ln(1/r2〈Q2

s〉).) This implies that
the diffractive DIS cross–section at high energy is dominated by the elastic scattering of
the onium up to very large Q2 (namely, so long as Z � σ2), and thus is independent of
the minimal rapidity gap Ygap : being elastic, most of the contributing processes have a
rapidity gap which is close to the total rapidity Y .
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Conclusion (i) above together with the discussion in Sect. 3 show that the DIS cross–
sections at high energy are controlled by the gluon configurations in the target wavefunc-
tion which are at saturation on the resolution scale Q2 of the virtual photon. This explains
other properties of the high–energy cross–sections alluded to above — like their rigidity
when increasing Y , or the dominance of the elastic component of diffraction — which are
a priori expected in the ‘black disk’ regime at Q2 <∼ 〈Q2

s〉, but which here are found to
extend up to very large Q2, cf. Eq. (4.20).

4.2 The qq̄ component

In this subsection, we shall evaluate the qq̄ contributions to the DIS cross–sections, cf.
Eqs. (4.13) and (4.15). Recall that Eq. (4.13) is written in the Y –frame and represents
the total cross–section, whereas Eq. (4.15) is written in the Y0–frame and represents
only a part of the diffractive cross–section (see Eq. (4.14)). Therefore, in what follows,
the target expectation values will be understood to be evaluated either at Y , or at Y0,
depending upon the quantity that we need to compute. For simplicity, we shall keep this
difference implicit, and denote the target rapidity simply as Y . Moreover, as anticipated
in the previous discussion, Eq. (4.15) with Y0 replaced by Y represents the dominant
contribution to the diffractive cross–section (4.2) at high energy. Accordingly, the cross–
sections that we shall compute in this subsection represent our main results in this paper.

To render the subsequent discussion more intuitive, it is instructive to see the plots of
the integrands in Eqs. (4.13) and (4.15), as numerically computed with the two limiting
expressions for the dipole amplitude: the high–energy approximation (3.13) (the ‘fluctu-
ation’ piece in the plots in Fig. 11) and the mean–field model of Eq. (4.17) (with γ = 1
for definiteness). As manifest on Fig. 11, and it will be analytically demonstrated in what
follows, the strength of the integration is shifted towards smaller dipoles sizes after in-
cluding the effects of fluctuations. This phenomenon becomes truly spectacular at high
Q2, where the integrand corresponding to ‘fluctuations’ appears to be strongly peaked
at r ∼ 2/Q (for both inclusive and diffractive cross–sections), while that for the mean
field approximation is rather smoothly distributed at all sizes r >∼ 2/Q (with only mild
maxima at r ∼ 2/Q for σtot and, respectively, at r ∼ 1/Qs for σdiff).

4.2.1 The mean–field approximation

Let us first present the corresponding mean–field estimates, as these will serve as a term of
comparison with the forthcoming results at high energy. These estimates will be obtained
here by using the dipole amplitude (4.17) together with the approximations in Eqs. (4.18)–
(4.19). To avoid a proliferation of physical situations, we shall focus on the case Q2 � Q2

s,
where the contrast with the high energy behaviour turns out to be most important. For
that case, we shall distinguish between the total and the diffractive cross–sections, and
also between transverse and longitudinal polarizations for γ∗. To simplify writing, we shall
omit the overall factor αemNc

∑

f e
2
f , which is common to all the cross–sections.

i) Total cross–sections
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Fig. 11. The qq̄ contributions to the integrands in Eqs. (4.13) and (4.15) as computed with two
different expressions for the dipole amplitude — the mean–field amplitude (4.17) with γ = 1
and the ‘fluctuation’ amplitude (3.13) — are plotted as functions of rQs for two values of Q2 :
Q2 = 0.1Q2

s (left) and Q2 = 100Q2
s (right).

Choosing γ = 1 in Eq. (4.17), the transverse contribution to Eq. (4.13) is found as

dσT
tot

d2b
∼

2/Q
∫

0

dr

r
r2Q2

s +
1

Q2

1/Qs
∫

2/Q

dr

r3
r2Q2

s +
1

Q2

∞
∫

1/Qs

dr

r3
∼ Q2

s

Q2
ln

(

Q2

Q2
s

)

, (4.21)

where the dominant term, as isolated in the r.h.s., comes from the aligned–jet configura-
tions with dipole sizes r within the range 2/Q < r < 1/Qs. For the longitudinal sector,
one similarly obtains

dσL
tot

d2b
∼ Q2

2/Q
∫

0

dr r3Q2
s +

1

Q4

1/Qs
∫

2/Q

dr

r3
Q2

s +
1

Q4

∞
∫

1/Qs

dr

r5
∼ Q2

s

Q2
, (4.22)

where the leading–order term comes from dipole sizes r ∼ 1/Q, and it receives equally
important contributions from both the symmetric and the aligned–jet configurations.

The above results show that, at sufficiently large Q2, the transverse sector dominates over
the longitudinal one, by a logarithm ln(Q2/Q2

s). However, this dominance disappears at
lower values of Q2, within the geometric scaling window in Fig. 1. Indeed, in that regime
one must rather use γ = γ0 ≈ 0.63, and then one finds that both σT

tot and σL
tot are of the

same order, namely ∼ (Q2
s/Q

2)γ0 , and they are dominated by dipole sizes r ∼ 1/Q.

After similarly treating the case Q2 � Q2
s, one finds the following limiting behaviours for

the total γ∗h cross–section in this mean–field scenario :

dσγ
tot

d2b
≈











ln(Q2
s/Q

2) for Q2 � Q2
s

Q2
s/Q

2 ln(Q2/Q2
s) for Q2 � Q2

s .
(4.23)

ii) Diffractive cross–sections
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The diffractive cross–section (4.15) involves the dipole amplitude squared, and this leads
to important differences with respect to the inclusive cross–section [35], at least in this
mean–field case. The contribution of the small dipoles is now strongly suppressed, because
T̄ 2 ' (r2Q2

s)
2γ for r � 1/Qs. Accordingly, the dominant contribution to σdiff comes from

relatively large dipole sizes, of the order of the saturation length: r ∼ 1/Qs [35].

To see this, let us focus on the contribution of the aligned–jet configurations within the
transverse sector (this turns out to be the dominant piece). The relevant integral reads

dσT
diff

d2b
∼ 1

Q2

∞
∫

2/Q

dr

r3
T̄ 2 ∼ 1

Q2

1/Qs
∫

2/Q

dr

r3
(r2Q2

s)
2γ +

1

Q2

∞
∫

1/Qs

dr

r3
∼ Q2

s

Q2
, (4.24)

where for more clarity we have split the integration domain into two: 2/Q < r < 1/Qs

and r > 1/Qs. It can be easily checked that, so long as γ > 1/2, both domains contribute
on equal footing to the leading order result ∼ Q2

s/Q
2, which is generated by dipole sizes

r ∼ 1/Qs, as anticipated. Indeed, the integral over the first domain is dominated by large
values of r, of the order of the upper cutoff 1/Qs, while that over the second domain is
saturated by small values of r, close to the respective lower cutoff 1/Qs. By comparison,
the other contributions to diffraction — that of the symmetric transverse configurations,
and the whole longitudinal contribution — are of ‘higher–twist order’, that is, they are
suppressed by powers of Q2

s/Q
2 � 1 with respect to the leading contribution (4.24).

We thus arrive at the (by now) standard picture of DIS diffraction in the presence of
saturation [35], in which σdiff is a leading–twist quantity at high–Q2, so like the inclusive
cross–section (4.21). Accordingly, the ratio between the diffractive and the inclusive cross–
sections is only slowly varying with Q2 and with the total energy [35, 36]

R ≡ (dσdiff/d
2b)

(dσtot/d2b)
∼ 1

ln(Q2/Q2
s(Y ))

, (4.25)

(this behaviour is illustrated by the ‘mean–field’ curve in Fig. 16), in rough agreement
with the pattern observed in the corresponding HERA data at small x. This agreement
has represented one of the main successes of the saturation models applied to the phe-
nomenology at HERA [35, 36].

Notice the qualitative difference between the ways that the inclusive and diffractive cross–
sections get constructed — σtot receives leading–twist contributions from all dipole sizes,
with a slight preference though for r ∼ 1/Q, whereas σdiff is dominated by dipoles with
r ∼ 1/Qs —, which nevertheless leads to quantitatively similar results (cf. Eq. (4.25)). For
later reference, let us display here the qq̄ contribution to the diffractive cross–section in
the mean–field approximation for both small and large Q2:

dσqq̄
diff

d2b
≈











ln(Q2
s/Q

2) for Q2 � Q2
s

Q2
s/Q

2 for Q2 � Q2
s .

(4.26)

The above results depend crucially upon the property of the mean–field amplitude T̄ (r)
to decrease very fast when decreasing r below 1/Qs : T̄ ∼ (r2Q2

s)
γ with γ > 1/2. From the
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discussion in Sect. 3, we know that this behavior is eventually washed out by fluctuations
when increasing energy. As we shall shortly see, this change of behaviour has dramatic
consequences for the high–energy limit of both inclusive and diffractive DIS cross–sections.

4.2.2 The high–energy behaviour

We now turn to the most interesting case for us here, namely the high–energy regime
of Eq. (3.11). The kinematical region where the effects of the fluctuations are most vis-
ible, and that we shall concentrate on in what follows, is the high–Q2 range defined by
Eq. (4.20): For much smaller Q2, such that Q2 � Q2

s(Y ), the cross–sections are domi-
nated by ‘saturated’ dipoles with sizes r >∼ 1/Qs, for which the mean field approximation
works quite well. For much larger Q2, such that Z � σ2(Y ), one enters the standard
perturbative regime where the amplitudes show color transparency and evolve according
to the DGLAP equation. From Eq. (4.20), we recall that Z ≡ ln(Q2/〈Q2

s〉), with 〈Q2
s〉(Y )

the average saturation momentum squared, as introduced in Sect. 3.2.

We shall soon verify that, within the interesting range (4.20), the convolutions yielding
the DIS cross–sections are dominated by dipole sizes r ∼ 1/Q. It is therefore appropriate
to evaluate these convolutions with the expression (3.13) for the dipole amplitude, which
is valid for z � σ2(Y ). By using that, we shall be able to compute exactly the dominant
behaviour of the cross–sections at high energy. But before describing the exact calcula-
tions, we shall also present some parametric estimates which have the merit to simply
demonstrate the physical points that we would like to emphasize here.

i) Total cross–sections

We start with the transverse sector and, for more clarity, we separate the respective
contributions of the symmetric and the aligned–jet configurations:

dσT
tot

d2b
= ST

tot + AT
tot , (4.27)

where (with z ≡ ln(1/r2〈Q2
s〉) ) :

ST
tot ∼

2/Q
∫

0

dr

r
〈T (r)〉Y ∼

∫ ∞

Z
dz Erfc

(

z

σ

)

, (4.28)

AT
tot ∼ 1

Q2

∞
∫

2/Q

dr

r3
〈T (r)〉Y ∼ e−Z

∫ Z

−∞
dz ez Erfc

(

z

σ

)

. (4.29)

Consider the large–Q2 case, such that σ � Z � σ2. It is then easy to verify that: (a)
the integrals giving ST

tot and AT
tot are dominated by their respective endpoints at z = Z

(i.e., by r ∼ 1/Q), (b) the dominant behaviour at large Z is given by the Gaussian
exp(−z2/σ2), and (c) after also computing the prefactors in front of this Gaussian, the
dominant contribution is found to come from the symmetric configurations.

To demonstrate this, we shall first consider the symmetric integral:
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ST
tot ∼ σ

∫ ∞

Z/σ
dx Erfc(x) ∼ σ

∫ ∞

Z/σ

dx

x
e−x2 ∼ σ

∫ ∞

Z2/σ2

dt

t
e−t

∼ σ3

Z2
exp

(

−Z
2

σ2

)

, (4.30)

where x = z/σ, t = x2, and we have used the asymptotic behaviour of Erfc(x), cf.
Eq. (3.18) (recall that Z/σ � 1). It is now clear that the integral over t is dominated by
its lower end at t = Z2/σ2, i.e., by z = Z, as anticipated.

The aligned–jet contribution can be similarly treated: because of the exponential factor ez

within the integrand, the integral in Eq. (4.29) is dominated by its upper cutoff at z = Z,
which yields

AT
tot ∼ σ

Z
exp

(

−Z
2

σ2

)

. (4.31)

As anticipated, this contribution is suppressed (by a factor Z/σ2 � 1) with respect to
the contribution (4.30) of the symmetric configurations.

Similar conclusions hold for the longitudinal sector : the dominant contribution is again
generated by dipole sizes r ∼ 1/Q, and it is of the same order as AT

tot, Eq. (4.31), hence it is
parametrically suppressed. We thus conclude that the inclusive cross–section in the high–
energy limit and for relatively large Q2 is dominated by symmetric dipole configurations
with typical sizes r ∼ 1/Q within the transverse sector.

It is in fact quite straightforward to go beyond the parametric estimate in Eq. (4.30) and
compute the dominant behaviour exactly. We present here only the final results, since a
similar calculation will be explained in more detail below, for the case of diffraction. Specif-
ically, after also reintroducing the overall electromagnetic factor F ≡ (Ncαem/2π

2)
∑

f e
2
f ,

one finds that the longitudinal part of the total cross–section is given by

dσL
tot

d2b
' πF

3
Erfc

(

Z

σ

)

, (4.32)

while the respective transverse part reads

dσT
tot

d2b
' πF

3
σΦ1

(

Z

σ

)

. (4.33)

Here we have found convenient to define the function

Φ1(x) ≡
∞
∫

x

dv Erfc(v) =
1√
π

exp(−x2) − xErfc(x) (4.34)

which has the following behavior in the various limits
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Fig. 12. The γ∗h total cross section as a function of Q2/〈Q2
s〉 and for various values of the front

dispersion σ.

Φ1(x) =











































2|x| + exp(−x2)

2
√
πx2

for x� −1

1√
π

for x = 0

exp(−x2)

2
√
πx2

for x� 1.

(4.35)

Eqs. (4.32) and (4.33) hold for Z � σ2 and are correct up to corrections of relative order
Z/σ2 and/or 1/σ. They confirm the previous estimates like (4.30) and imply the following,
final, result for the total DIS cross–section in the high energy regime where σγ0 � 1 and
Z ≡ ln(Q2/〈Q2

s〉) � σ2 :

dσγ
tot

d2b
' dσT

tot

d2b
' πF

3
σ Φ1

(

ln(Q2/〈Q2
s〉)

σ

)

. (4.36)

Note that the quantity (dσγ
tot/d

2b)/σ shows diffusive scaling, i.e., it depends upon the
kinematical variables Q2 and Y only via the dimensionless variable Z/σ ≡ ln(Q2/〈Q2

s〉)/σ.

Eq. (4.36) also allows us to study the behaviour of the cross–section at relatively low Q2

(below and around 〈Q2
s〉). Deeply inside the saturation region, one finds

dσγ
tot

d2b
≈ 2πF

3
ln

〈Q2
s〉

Q2
for ln(〈Q2

s〉/Q2) � σ , (4.37)

which is in agreement, as expected, with the mean–field behaviour in Eq. (4.23). However,
the difference with respect to the mean field situation occurs already in the vicinity of
the (average) saturation line Z = 0 : Within a wide interval | ln(Q2/〈Q2

s〉)| � σ around
this line, the cross–section (4.36) is rather large — since proportional to σ — and Q2–
independent:
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Fig. 13. The γ∗h total cross section (divided by the front dispersion) as a function of the “dif-
fusive” scaling variable Z = ln(Q2/〈Q2

s〉)/σ.

dσγ
tot

d2b
≈

√
πF

3
σ for | ln(Q2/〈Q2

s〉)| � σ . (4.38)

The cross–section starts to fall only when Q2 becomes so large that ln(Q2/〈Q2
s〉) � σ,

and then it has a rapid fall, of the Gaussian type (cf. Eq. (4.30)).

This behaviour is illustrated in Figs. 12 and 13, which are the analog at the level of
the DIS inclusive cross–section of Figs. 9 and 10 for the dipole amplitude. Namely, these
figures represent results obtained via the numerical evaluation of the total cross–section
(4.13) with the dipole amplitude in Eq. (3.17) with γ = 1. Fig. 12 shows the increase
in the deviation from the mean–field behaviour (and thus from geometric scaling) when
increasing σ, whereas Fig. 13 demonstrates the emergence of the diffusive scaling and the
convergence of the cross–section towards its high–energy asymptotic in Eq. (4.36).

ii) Diffractive cross–sections

Moving to the diffractive sector, one can immediately notice an important difference with
respect to the mean–field scenario of Sect. 4.2.1: Whereas in that case, the replacement of
the dipole amplitude by its square has strongly suppressed the small–dipole configurations
and thus shifted the strength of the integration from r ∼ 1/Q to r ∼ 1/Qs, in the present,
high–energy, case, there is no similar suppression, because both the Gaussian exp(−z2/σ2)
and its square exp(−2z2/σ2) decay rather slowly (as compared to the exponential e−z)
within the interesting range at σ � z � σ2. Accordingly, the aligned–jet contribution to
high–energy qq̄ diffraction, namely (compare to Eq. (4.24))

AT
diff ∼ 1

Q2

∞
∫

2/Q

dr

r3
〈T (r)〉2Y ∼ e−Z

∫ Z

−∞
dz ez Erfc2

(

z

σ

)

. (4.39)
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is dominated by its lower end at r ∼ 1/Q (that is, by z = Z), so like the corresponding
contribution (4.29) to the inclusive cross–section.

This points towards an important physical difference between the mean–field (or inter-
mediate energy) behaviour and the behaviour at high energy, which deserves a more
qualitative explanation. To that aim, notice that the measure dr/r3 in the aligned–jet in-
tegral favors the small dipoles, so the integral would be naturally dominated by its lower
end at r ∼ 1/Q if there was not for the strong suppression of the dipole sizes r � 1/Qs

introduced by the dipole amplitude squared T 2. Such a strong suppression occurs, as we
have seen, for the mean–field amplitude T̄ , but also for the typical events in the statisti-
cal ensemble in QCD at high energy and large Q2 � 〈Q2

s〉 : indeed, a typical event has
Qs ∼ 〈Qs〉 and thus yields a small contribution, of order 〈Q2

s〉 /Q2 = e−Z , to the inte-
gral. However, due to the front dispersion in the presence of fluctuations, the statistical
ensemble contains also fronts which are at saturation at the minimal size 1/Q, and each
such a front yields a relatively large contribution, of O(1). Although such fluctuations are
relatively rare, their contribution weighted by the respective probability ∼ exp(−Z2/σ2)
is still larger than that of the typical fronts, which behaves like e−Z . In other terms, the
convolution peaks up those rare gluon configurations in the target wavefunction which
are at saturation at the scale Q2 set by the virtual photon.

Therefore, at high energy — and in contrast to what happens in the mean–field approxi-
mation, or at intermediate energies — the inclusive and diffractive cross–sections receive
contributions from the same physical configurations, namely from the small dipoles with
size r ∼ 1/Q. In fact, a qualitative analysis similar to that in Eqs. (4.27)–(4.31) re-
veals that the analogy between inclusive and diffractive processes at high energy is even
stronger: In the large–Q2 regime defined by Eq. (4.20), both types of cross–sections are
dominated by symmetric dipole configurations within the transverse sector. In particular,
the dominant behaviour of σqq̄

diff can be estimated as in Eq. (4.30), and reads

dσqq̄
diff

d2b
' ST

diff ∼ σ4

Z3
exp

(

−2Z2

σ2

)

for σ � Z � σ2 , (4.40)

which implies the following estimate for the (diffractive/inclusive) ratio R :

R ∼ σ

Z
exp

(

−Z
2

σ2

)

for σ � Z � σ2 . (4.41)

This is a scaling function, which decreases quite rapidly with Q2 at fixed Y (unlike the
respective mean field estimate in Eq. (4.25)), but one should notice that this decrease
becomes significant only at very large Q2, such that Z � σ.

To make these estimates more precise, let us compute the dominant behaviour of σqq̄
diff

in the regime σγ0 � 1 and Z � σ2. This is obtained by evaluating the convolution in
Eq. (4.15) with the dipole amplitude 〈T (r)〉 in Eq. (3.13). Consider first the longitudinal

cross section. Using Eq. (A.2) and defining u = r Q and τ = Q/ 〈Qs〉 we have

dσL
diff

d2b
=

πF

2

1
∫

0

dv

∞
∫

0

du 4v2(1 − v)2 uK2
0

(

u
√

v(1 − v)
)

Erfc2

(

ln(τ 2/u2)

σ

)

. (4.42)
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When σ is large we can set u = 1 in the argument of the error function; indeed, as
previously explained, the convolution is dominated by r ∼ 1/Q. Then the integrals over
u and v are easily performed and we arrive at (note that ln τ 2 = ln(Q2/〈Q2

s〉) = Z)

dσL
diff

d2b
=

πF

6
Erfc2

(

Z

σ

)

. (4.43)

Now let us look at the transverse cross section. It reads

dσT
diff

d2b
=

πF

2

1
∫

0

dv

∞
∫

0

du v(1 − v)[v2 + (1 − v)2] uK2
1

(

u
√

v(1 − v)
)

Erfc2

(

ln(τ 2/u2)

σ

)

.

(4.44)

The behavior of the last factor in the small–u region is crucial since it cancels the loga-
rithmic singularity of the remaining part of the integrand at u = 0. Hence, we cannot set
u = 1 as we did for the longitudinal case. Here it is convenient to define the function

Φ2(x) ≡
∞
∫

x

dv Erfc2(v) =
2√
π

exp(−x2) Erfc(x) − xErfc2(x) −
√

2

π
Erfc(

√
2x), (4.45)

which has the following behavior in the various limits

Φ2(x) =











































4|x| − 2
√

2√
π

− exp(−2x2)

4π|x|3 for x� −1

2 −
√

2√
π

for x = 0

exp(−2x2)

4πx3
for x� 1.

(4.46)

Using Eq. (4.45) we can write the last factor in Eq. (4.44) as

Erfc2

(

ln(τ 2/u2)

σ

)

=
σ

2
u

d

du
Φ2

(

ln(τ 2/u2)

σ

)

, (4.47)

and then the u–integration in Eq. (4.44) can be performed by parts. The boundary term
vanishes and therefore the virtual photon transverse cross section becomes

dσT
diff

d2b
=

πF

2
σ

1
∫

0

dv

∞
∫

0

du [v(1 − v)]3/2 [v2 + (1 − v)2] Φ2

(

ln(τ 2/u2)

σ

)

× u2 K0

(

u
√

v(1 − v)
)

K1

(

u
√

v(1 − v)
)

. (4.48)

Now we can safely set u = 1 in the argument of the Φ2 function since the remaining part
of the integrand is well–defined for any value of u. The integration over u and v becomes
straightforward and we obtain

dσT
qq̄

d2b
=

πF

6
σΦ2

(

Z

σ

)

. (4.49)
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Fig. 14. The contribution of the qq̄ component of the onium wavefunction to the diffractive cross
section as a function of Q2/〈Q2

s〉 and for various values of the front dispersion.

Comparing Eqs. (4.43) and (4.49) we see that the transverse cross section dominates over
the longitudinal one within the whole region of interest (namely, −∞ < Z � σ2 and
σγ0 � 1), so we finally arrive at

dσγ
diff

d2b
' dσT

diff

d2b
' πF

6
σ Φ2

(

ln(Q2/〈Q2
s〉)

σ

)

, (4.50)

up to corrections of relative order Z/σ2 and/or 1/σ. As anticipated by the notation in
Eq. (4.50), this is in fact the complete dominant contribution to the diffractive cross–
section in the high–energy regime of interest (see the discussion in Sect. 4.3). This quantity
has the same qualitative behaviour as the inclusive cross–section in Eq. (4.36), and this
behaviour is illustrated in Figs. 14 and 15 (to be read by analogy with Figs. 12 and 13).
In particular, the rescaled quantity (dσγ

diff/d
2b)/σ exhibits diffusive scaling.

Finally, the ratio R of the diffractive to the total cross section is easily obtained from
Eqs. (4.50) and (4.36). It reads

R =
1

2

Φ2

(

ln(Q2/ 〈Qs〉2)/σ
)

Φ1

(

ln(Q2/ 〈Qs〉2)/σ
) . (4.51)

For small values of Q such that ln(〈Q2
s〉/Q2) � σ the ratio approaches 1, it is constant and

equal to 1−
√

2/2 = 0.293 in the wide interval | ln(Q2/〈Q2
s〉)| � σ around the saturation

line, while it falls very fast with increasing momentum when ln(Q2/〈Q2
s〉) � σ with the

precise form easily inferred from Eqs. (4.46) and (4.35). This behaviour is graphically
illustrated in Fig. 16, and compared to the corresponding mean–field behaviour.
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(4.50)
σ = 9
σ = 7
σ = 5
σ = 3
σ = 1

Z/σ ≡ log(Q2/〈Q2

s
〉)/σ

σ
T d
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Fig. 15. The same as in Fig. 15 (divided by the front dispersion σ) as a function of Z/σ.
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Fig. 16. The ratio of the diffractive (contribution of the qq̄ component) to the total cross section
as a function of Q2/〈Q2

s〉.

4.3 The qq̄g component

In this subsection, we shall analyze the contribution of the qq̄g state to the diffractive
cross–section, Eq. (4.16), with the purpose of demonstrating that at high energy and up to
relatively large Q2, cf. Eq. (4.20), this contribution is dominated by its elastic component.
This situation is in sharp contrast with the corresponding mean–field behaviour [40],
that we shall also discuss, for comparison purposes. As a byproduct, we shall deduce an
expression for the cross–section for diffractive gluon production at high energy.
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Starting with the decomposition (4.11) for the diffractive probability, we shall successively
consider the elastic and inelastic pieces there, starting with the inelastic one.

4.3.1 The inelastic diffraction probability ∆Pinel

The inelastic diffraction probability associated with the qq̄g state is given by Eq. (4.12),
which after the trivial change of variable z ≡ x − s is rewritten as

∆Pinel(r) =
ᾱs

2π

∫

�

r2

s2(r − s)2
〈T (s) + T (r − s) − T (r) − T (s)T (r − s)〉2 . (4.52)

Here, r = x − y and, in line with the previous approximations, we have assumed the
high–energy amplitudes to be real and ignored their impact parameter dependence. It is
also implicit in our notations that the target expectation values are evaluated at a rapidity
Y0, and therefore they involve the (average) saturation momentum 〈Q2

s〉 (Y0).

i) The mean–field approximation

Within the mean field approximation, the two–dipole amplitude factorizes, 〈T (s)T (r − s)〉
≈ T̄ (s) T̄ (r − s), and the average amplitude T̄ (r) is given by Eq. (4.17).

The most interesting physical situation is when the external dipole r is small, r � 1/Qs,
and for that case one can distinguish between three different physical regions for the
internal dipoles s and r − s : (i) one of the two dipoles, say s, is much smaller than the
external one: s � r; (ii) both internal dipoles are much larger than the external one,
but they are still small as compared to the saturation length: r � s ' |r − s| � 1/Qs ;
(iii) both internal dipoles are at saturation: s ' |r−s| >∼ 1/Qs. Corresponding to these
three cases, the integral in Eq. (4.52) is decomposed into three pieces, which are easily
estimated as (up to irrelevant numerical factors)

∆Pinel(r) ∼ ᾱs







r
∫

0

ds

s
(s2Q2

s)
2γ + r2

1/Qs
∫

r

ds

s3
(s2Q2

s)
2γ + r2

∞
∫

1/Qs

ds

s3





 ∼ ᾱs r
2Q2

s (4.53)

The dominant contribution, as isolated in the r.h.s., comes from relatively large internal
dipoles with sizes s ∼ 1/Qs � r (i.e., from domains (ii) and (iii) alluded to above).
Note the similarity between this calculation and that of the qq̄ contribution to the diffrac-
tive cross–section in the mean field approximation (cf. Eq. (4.24)) : the external dipole size
r plays here the same role as the resolution scale 1/Q in Eq. (4.24), and the dipole kernel
has limiting behaviours similar to those of the transverse virtual photon wavefunction.

The case of a relatively large dipole r � 1/Qs is technically more involved, but the
analysis in Ref. [40] shows that, in that case, ∆Pinel(r) vanishes very fast — at least as
fast as S̄2(r) ≡ (1 − T̄ (r))2 — when increasing r.

To summarize, in the mean field approximation, ∆Pinel(r) increases with r like r2 at
r2Q2

s � 1, it decreases very fast at r2Q2
s � 1, and it develops a maximum at r ∼ 1/Qs

[40]. This behaviour is manifest on the “mean field” curve in Fig. 17.
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4.3.2 ∆Pinel : The high–energy behaviour

We shall now extract the dominant behaviour of the integral in Eq. (4.52) in the high–
energy regime at σ � 1/γ0 and z ≡ ln(1/r2〈Q2

s〉) � σ2. We anticipate that, in this regime,
the dominant contribution comes from internal dipoles with sizes comparable to that of
the external one, s ∼ |r − s| ∼ r, so one can use the high–energy estimates (3.13)–(3.14)
for all the amplitudes which appear in Eq. (4.52).

Eq. (3.14) implies 〈T (s)T (r − s)〉 = 〈T (r<)〉, where r< = min(s, |r − s|); thus, the
quadratic and one of the linear terms in Eq. (4.52) cancel each other, and the integral
reduces to

∆Pinel = 2
ᾱs

2π

∫

�

r2

s2(r − s)2

[

〈T (s)〉 − 〈T (r)〉
]2
, (4.54)

where the integration is now restricted to the half plane |s| ≥ |r − s|. It is convenient to
change the integration variable to u = s/r. Then the above equation becomes

∆Pinel = 4
ᾱs

2π

∞
∫

1/2

du

u

φ0
∫

0

dφ

1 + u2 − 2u cosφ

[

〈T (ur)〉 − 〈T (r)〉
]2
, (4.55)

where the upper limit is φ0 = arccos(1/2u). Since the scattering amplitudes in Eq. (4.55)
do not depend on the angle φ, one can perform the angular integration to obtain

∆Pinel = 8
ᾱs

2π

∞
∫

1/2

du
arctan

(

(1+u)
|1−u|

√

2u−1
2u+1

)

u(1 + u)|1 − u|
[

〈T (ur)〉 − 〈T (r)〉
]2
. (4.56)

One can check that the above integrand vanishes as 1/u3 for large u. Thus, the dominant
contribution comes from u = O(1), that is, from internal dipoles sizes s such that s ∼ r,
as anticipated. By using this property together with the specific form of the amplitude
given in Eq. (3.13), we can expand

〈T (ur)〉 − 〈T (r)〉 ' − ln u2

σ

∂ 〈T 〉
−∂(ln(r2〈Q2

s〉)/σ)
=

ln u2

√
πσ

exp

(

− ln2(r2〈Q2
s〉)

σ2

)

, (4.57)

where we have kept only the first term in the Taylor expansion, since the other terms
are suppressed by higher powers of ln(u2)/σ and thus are truly negligible at high energy.
After the expansion (4.57), the result of the integration is a pure number, so we arrive at

∆Pinel(r) ' ᾱs

2π

J

πσ2
exp

(

−2z2

σ2

)

for z � σ2 , (4.58)

with J numerically computed as J = 15.1.

The above result is valid for both small and large dipoles and shows that ∆Pinel(r) is
an even function of z ≡ ln(1/r2〈Q2

s〉), which rapidly vanishes when |z| � σ and has a
maximum at r2〈Q2

s〉 = 1. This behaviour is compared to the corresponding mean field
behaviour in Fig. 17 which shows that, when increasing the energy, the maximum around
r2 ∼ 1/〈Q2

s〉 becomes flatter and flatter. The emergence of the diffusive scaling with
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Fig. 17. The contribution of the qq̄g component of the onium wavefunction to the inelastic
diffraction probability as a function of r2〈Q2

s〉 and for various values of the front dispersion.

(4.58)
σ = 9
σ = 7
σ = 5
σ = 3
σ = 1

z/σ ≡ ln(1/r2Q2

s
)/σ

2
π

ᾱ
s

σ
2
∆

P
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e
l
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Fig. 18. The same as in Fig. 18 (multiplied by ∼ σ2) as a function of z/σ.

increasing σ and the convergence towards the asymptotic form (4.58) are illustrated in
Fig. 18. Eq. (4.58) will be used in Appendix C to estimate the cross–section for gluon
production in DIS at high energy.

4.3.3 The elastic piece ∆Pel

It can be easily checked that, in the mean field approximation, the elastic piece ∆Pel(r) ≡
2 〈T (r)〉∆A(r) is a higher–twist effect (namely, ∆Pel ∼ ᾱs T̄

2(r) for r � 1/Qs), and
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thus for small r it represents only a small correction to the corresponding inelastic piece,
Eq. (4.53). But at high energy, ∆Pel turns out to be the dominant contribution, down to
very small dipole sizes, namely, so long as z � σ2. Moreover, its calculation turns out to
be quite subtle, as we explain now.

On one hand, it is straightforward to use ∆A = ∂ 〈T (r)〉/∂Y , cf. Eqs. (4.5)–(4.6), together
with Eq. (3.26), and deduce :

∆Pel(r) ' λᾱs Erfc
(

z

σ

)

1√
πσ

exp

(

− z2

σ2

)

, (4.59)

which appears to be larger than the corresponding inelastic piece, Eq. (4.58). For instance,
for small dipole sizes, or large z � σ, this elastic component behaves like

∆Pel(r) ' ᾱs

π

λ

z
exp

(

−2z2

σ2

)

for σ � z � σ2 , (4.60)

and dominates over the inelastic piece by a large factor λσ2/z � 1, as anticipated.

On the other hand, the above estimate for ∆Pel has the drawback to involve the average
front velocity λ, which is generally unknown. It is therefore tempting to try and compute
∆A(r) directly from its integral representation (4.5) together with Eqs. (3.13)–(3.14) for
the dipole amplitudes. A priori, this calculation is independent of λ, and should even
enable us to determine λ, by comparison with the expected result in Eq. (3.26). But this
expectation appears to be naive: the coefficient of the would–be dominant term at large Y
— that term precisely which should be identified as λ/σ — turns out to be zero. (This can
be checked via manipulations similar to those in Eqs. (4.55)–(4.57): without taking the
square of the amplitudes inside the integrand, so like in Eq. (4.56), the integral vanishes
exactly after the expansion (4.57).) This seems to imply the unphysical result λ = 0, but
in reality it only means that the approximations (3.13)–(3.14) — although the correct
leading–order estimates for the average amplitudes at high energy — cannot be used to
also evaluate the right hand sides of the evolution equations. The latter are sensitive to
the subleading terms, which are not under control in the present approximations.

To summarize, in the high–energy regime of interest, the diffractive probability associated
with the qq̄g component is controlled by its elastic piece, ∆Pdiff ≈ ∆Pel, and has the
dominant behaviour displayed in Eq. (4.59), where the overall normalization is not under
control (except in the unphysical limit α2

s → 0, cf. Eq. (3.6)). Although not as symmetric
as the inelastic contribution (4.58), the function (4.59) has still the properties to vanish
for both very small and very large dipole sizes, and to develop a rather flat maximum
at r ∼ 1/ 〈Qs〉. This behaviour is illustrated in Fig. 19, which also shows that, when
increasing σ, the elastic piece rises faster than the inelastic one (compare to Fig. 17) and
rapidly dominates over the latter even at very small dipole sizes, in agreement with our
previous estimates.

After replacing ∆Pdiff ≈ ∆Pel in Eq. (4.8) and also using Eq. (4.9), it becomes clear
that the diffractive probability coincides with the elastic probability, Eq. (4.7), which
demonstrates Eq. (4.3) to the order of interest in ᾱs ln(1/β). Although we have considered
here only the simplest evolution of the projectile (namely, the formation of the qq̄g state),
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Fig. 19. The contribution of the qq̄g component of the onium wavefunction to the elastic diffrac-
tion probability as a function of r2〈Q2

s〉. The high–energy estimate (4.59) is shown for various
values of σ and compared to the mean–field prediction obtained with Eq. (4.17).

we are confident that the property (4.3) holds also for smaller values of β, when higher
Fock–space components come into play. Indeed, such a behaviour is in agreement with
our qualitative arguments after Eq. (4.3). Assuming this to be the case, we conclude that,
within the diffusive scaling region at σγ0 � 1 and Z � σ2, the diffractive DIS cross–
section is dominated by the elastic scattering of the onium, and thus is independent of β
(for a given value of Y ), within the limits of the leading–logarithmic approximation with
respect to ln(1/β).

Moreover, as discussed in Sect. 2.1, the elastic probability (2.7) can be computed without
loss of generality in the Y –frame, where the onium reduces to its qq̄ component. We are
thus lead to the following expression for the diffractive DIS cross–section at high energy:

dσγ
diff

d2b
'
∫ 1

0
dv
∫

d2r
∑

α=L,T

|ψγ
α(v, r;Q)|2 × | 〈T (b, r)〉Y |2 . (4.61)

which to the accuracy of interest has already been evaluated in Eq. (4.50).

Note finally a subtle point concerning the implications of our above results for the dif-
ferential cross–section per unit rapidity: We have just shown that, within the present ap-
proximations, the partial derivative dσγ

diff/d ln(1/β) vanishes when taken at a fixed value

for the total rapidity Y . (This is the partial derivative which appears under the integral
sign in the r.h.s. of Eq. (2.1).) However, in studies of diffraction, one often considers the
differential cross–section dσγ

diff/d ln(1/β) as a function of β for a fixed value of the rapidity

gap Ygap = ln(1/x � ), and our corresponding prediction at high energy is non–zero: Rather,
this is obtained as the partial derivative of Eq. (4.50) w.r.t. Y at fixed Q2, which yields
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dσγ
diff

d2b d ln(1/β)

∣

∣

∣

∣

Ygap

' λᾱs
πF

6
Erfc2

(

ln(Q2/〈Q2
s〉)

σ

)

. (4.62)

But although non–zero, this quantity is parametrically small in the regime of interest
here, because of the ‘rigidity’ of the dipole amplitudes (cf. the discussion after Eq. (3.26)).
Specifically, in the weak scattering regime at σ � Z � σ2, we deduce

dσγ
diff

d2b d ln(1/β)

∣

∣

∣

∣

Ygap

∼ λᾱs
σ2

Z2
exp

(

−2Z2

σ2

)

∼ λᾱs
Z

σ2

dσγ
diff

d2b
, (4.63)

which involves an additional suppression Z/σ2 � 1 as compared to the corresponding
estimate at low and intermediate energies.

To conclude, in the diffusive scaling region at high energy, the (integrated) diffractive
cross–section is given by Eq. (4.50), which is independent of the minimal rapidity gap
Ygap, and increases very slowly when increasing the total rapidity Y at fixed Q2.

5 Conclusions

In this paper, we have formulated the inclusive and diffractive deep inelastic scattering
of a virtual photon off a hadronic target in the high–energy limit and in the large–Nc

approximation. We have worked in a Lorentz frame in which the high–energy limit is
achieved by boosting the hadronic target, which then evolves to very high gluon density,
whereas the rapidity of the projectile (the virtual photon) remains finite and relatively
small. Our main emphasis has been on a novel type of universal behaviour which emerges
at sufficiently high energy as a consequence of saturation and gluon–number fluctuations
in the target wavefunction. The essential feature of this new regime is the fact that the
DIS cross–sections at fixed impact parameter are dominated by the physics of saturation
up to very large values of Q2, well above the (average) saturation momentum 〈Q2

s〉 of the
target (which itself increases exponentially with Y ). And the distinguished signature of
this behaviour is a new, diffusive, scaling law, which should be obeyed by all the DIS
cross–sections at sufficiently high energies, and which reflects the Gaussian nature of the
probability distribution for the logarithm of the saturation momentum in the target.

To establish this behaviour, we have relied on two main types of ingredients: (i) a set
of factorization formulæ which relate the DIS cross–sections to dipole–target scattering
amplitudes, and (ii) the high–energy estimates for the latter, as determined by the
Pomeron loop equations via the correspondence with statistical physics.

Concerning point (i), let us recall here that we have restricted ourselves to diffractive
processes in which the hadron undergoes elastic scattering, and to leading–logarithmic
approximations for the high–energy evolutions of both the target and the projectile. Be-
sides, we have assumed the projectile to remain dilute, and thus to obey BFKL evolution.
Under these assumptions, we have shown that a physically transparent description of the
diffractive processes, à la Good and Walker, emerges when viewing the collision in the
frame in which the rapidity of the target is equal to the minimal rapidity gap. In this
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frame, the final state interactions automatically cancel out, and the projectile can be rep-
resented as a distribution of dipoles which elastically scatter off the target. The effect of
the collision is to destroy the coherence of the dipole superposition and thus transform
the incoming photon into a collection of partons in the final state.

Concerning point (ii), we should emphasize that the asymptotic functional form of the
dipole amplitudes at high energy follows from very general and elementary considerations
— the average amplitudes are dominated by saturated gluon configurations, for which
the single–event amplitudes have reached their unitarity limit T = 1 —, and as such it
should be very robust: It is likely that this dominant behaviour will not to be modified
by higher order perturbative corrections, nor by corrections in 1/Nc (but this remains to
be investigated). On the other hand, the energy dependencies of the average saturation
momentum 〈Q2

s〉 and of the front dispersion σ2 are sensitive to the details of the evolution,
and are presently unknown for realistic values of αs. This is why, in this paper, we have
systematically measured Q2 in terms of 〈Q2

s〉, and Y in terms of σ2.

Perhaps the most interesting, qualitative, conclusion of our analysis is the fact that, at
sufficiently high energies and as a result of fluctuations, the physics of gluon saturation
starts to be determinant at momenta Q2 well above the saturation momentum 〈Q2

s〉,
within a logarithmic distance ln(Q2/〈Q2

s〉) ∼ σ2 which increases linearly with Y . From
previous studies of the mean field approximation, we already knew that saturation can
manifest itself at momenta larger than Qs, via the phenomenon of geometric scaling. In
the present analysis, we have shown that this phenomenon is preserved by fluctuations so
long as the front dispersion is not too large (i.e., for σ2 � 1). What is however striking
about the high–energy regime at σ2 > 1 is that physics above 〈Q2

s〉 is not only influenced,
but actually dominated by rare configurations at saturation. This has tremendous physical
consequences, for both the dipole amplitudes and the DIS cross–sections :

• The strong correlation property 〈T 2(r)〉 ' 〈T (r)〉, which is natural at saturation where
〈T 〉 = 1, appears to be satisfied up to very large Q2 ≡ 1/r2, where 〈T 〉 � 1.

• The amplitudes and the DIS cross–sections are very rigid, in the sense that they rise
unusually slowly when increasing Y at fixed Q2 within the weak scattering regime.

• At relatively large virtualities Q2 � 〈Q2
s〉, cf. Eq. (4.20), the convolutions with the

photon wavefunction yielding the DIS cross–sections are dominated by small sizes r ∼
1/Q for the qq̄ pair, as they select those gluon configurations in the target wavefunction
which are at saturation on the resolution scale set by the virtual photon.

• Similarly, the convolutions with the dipole probabilities yielding the average over the
BFKL (onium) wavefunction of the projectile are dominated by dipole sizes of the order
of their parent dipole — the original qq̄ pair — and hence of order 1/Q.

• In the high–energy limit, the DIS diffractive cross–section becomes purely elastic (at
the level of the qq̄ pair), the inelastic contribution being parametrically suppressed.

• Within the high–energy regime defined by Eq. (3.11), all the amplitudes or cross–
sections show diffusive scaling, that it, they depend upon Q2 and Y only via the variable
z/σ with z ≡ ln(Q2/〈Q2

s〉).
• Within the diffusive scaling region alluded to above, the ‘twist expansion’ does not

apply anymore: At large Q2 � 〈Q2
s〉, the cross–sections decay as a Gaussian of z/σ,

and not as a power of 1/Q2.
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These properties are in sharp contrast with the corresponding predictions of the MFA (that
we have also worked out in this paper, at least qualitatively, for the sake of comparison),
and demonstrate the breakdown of the latter at sufficiently high energy.

Note that the above conclusions depend upon the functional form of the dipole amplitudes,
but not upon the precise values of coefficients λ and Dfr. But, of course, the latter are
necessary in order to translate our results into physical units for Y and Q2. The small–x
phenomenology at HERA suggests λ ' 0.2 ÷ 0.3 [35, 39], but we refrain ourselves from
suggesting a similar, experimental, measure of the diffusion coefficient Dfr, as we do not
believe that the high–energy regime that we discuss here has been approached at HERA.
(For instance, the diffractive data at HERA indicate the dominance of inelastic diffraction
at small β [40], at variance with the high–energy behaviour that we predict here.) The
conceptually proper way to compute λ and Dfr for realistic values of αs (and within
the present approximations: high energy, leading–order perturbative QCD, and large Nc)
would be by solving the Pomeron loop equations of Ref. [14]. This would also allow one
to explicitly test our present, asymptotic, predictions, and to study the preasymptotic
behaviour, like the dependence upon the initial conditions or upon the impact parameter.

Such more detailed calculations should allow one to determine the physical region in
which this high–energy behaviour should start to manifest itself and, especially, whether
this region might be accessible at the LHC.
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A The virtual photon wavefunction

In the dipole frame we have adopted throughout this paper, the DIS cross-sections are
factorized as the product of the photon wavefunction (γ∗ → qq̄) with the quark-antiquark
interaction amplitude. In this appendix, we give the qq̄ dissociation probabilities for the
virtual photon. This well-known process can be computed in perturbative QED (to lowest
order in αem) and reads

|ψγ
T (v, r;Q)|2 =

αemNc

2π2

∑

f

e2f
{(

v2 + (1 − v)2
)

Q̄2
fK

2
1(Q̄fr) +m2

fK
2
0(Q̄fr)

}

, (A.1)

|ψγ
L(v, r;Q)|2 =

αemNc

2π2

∑

f

e2f
{

4Q2v2(1 − v)2K2
0(Q̄fr)

}

, (A.2)
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where Q̄2
f ≡ v(1− v)Q2 +m2

f , mf and ef is the mass and the electric charge of the quark
with flavor f , and K0 and K1 are the modified Bessel functions.

In order to get estimates of the DIS cross-sections, i.e. to estimate the convolution of this
wavefunction with the qq̄ interaction amplitude, we shall ignore the quark masses (these
are important only for relatively small Q2 ∼ m2

f ) and use simple approximations for the
Bessel functions, as quite common in the literature (see, e.g., [35] for similar manipula-
tions). Specifically, since Kν(x) decreases exponentially at large x, one can restrict the
integrations in Eqs. (4.1)–(4.2) to values v and r such that Q̄fr < 1. Besides, for x � 1,
K1(x) ∼ 1/x and K0(x) ∼ ln(1/x), so the Bessel functions can be approximated as

K0(x) ∼ Θ(1 − x), K1(x) ∼
1

x
Θ(1 − x), (A.3)

where we ignore the overall normalization as well as the logarithmic singularity of K0 as
x → 0 (the latter is innocuous within the relevant convolutions). Another simplification
arises when performing the integral over v : the constraint v(1 − v)Q2 < 1 together with
the fact that v(1 − v) ≤ 1/4 for 0 ≤ v ≤ 1 makes it natural to distinguish between

(a) symmetric configurations, for which Q2r2 < 4 (“small dipoles”), and

(b) aligned jet configurations, for which 4 < Q2r2 (“large dipoles”).

In the first case, there is no restriction on the v integral, which is then dominated by
symmetric values v ∼ 1/2 : the total longitudinal momentum is “democratically” divided
among the quark and the antiquark. In the second case, the dominant contributions
correspond to the situation in which one of the two dipoles carries most of the total
longitudinal momentum, that is, v is either close to zero, or close to one, which allows us
to further simplify the respective integrand.

As a result of such simplifications, the integrations involving the transverse and longitu-
dinal photon wavefunctions are estimated as

∫

dv d2r |ψγ
T (v, r;Q)|2 f(r) ∼ αemNc

∑

f

e2f







2/Q
∫

0

dr

r
f(r) +

1

Q2

∞
∫

2/Q

dr

r3
f(r)





 , (A.4)

and, respectively,

∫

dv d2r |ψγ
L(v, r;Q)|2 f(r) ∼ αemNc

∑

f

e2f






Q2

2/Q
∫

0

dr rf(r) +
1

Q4

∞
∫

2/Q

dr

r5
f(r)






, (A.5)

where in writing the r.h.s.’s we have kept the various parametric dependencies, but ignored
all numerical factors. Eqs. (A.4) and (A.5) are used in this paper to get parametric
estimates for the photon–hadron cross-sections.
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B The diffractive cross–section near β = 1

In this Appendix we present the result for the differential diffractive cross–section per
unit rapidity for β ' 1 as obtained when relaxing the leading–logarithmic approximation
in ln(1/β). As compared to the formulæ in the main text, this quantity represents the
integrand which would give the elastic piece in the r.h.s. of Eqs. (2.1) if that quantity was
computed beyond the leading–log approximation w.r.t. ln(1/β). Notice that, within the
limits of that approximation, the elastic scattering implies β = 1, hence the differential
distribution was just a δ–function ∼ δ(β − 1). But this distribution gets smeared after
more accurately taking into account the kinematics for the diffractive production of the
qq̄ pair into which the virtual photon has fluctuated.

In the leading–logarithmic approximation with respect to ln(1/x), one finds [34, 79]

dσqq̄
diff

d2b d ln(1/β)
=

Q2

4πβ

∑

f

∫

d2rd2r′dvv(1 − v)Θ(κ2
f) e

i � f .( � ′− � )

∑

α=L,T

Φf
α(v, r, r′)〈T (r, b)〉Ygap

〈T (r′, b)〉Ygap
(B.1)

where κ2
f = v(1 − v)M 2

X −m2
f . Φf

T and Φf
L are given by

Φf
T (v, r, r′) =

αemNc

2π2
e2f

(

(v2 + (1 − v)2)Q̄2
f

r.r′

r r′
K1(Q̄fr)K1(Q̄fr

′)

+m2
fK0(Q̄fr)K0(Q̄fr

′)
)

(B.2)

and

Φf
L(v, r, r′) =

αemNc

2π2
e2f 4Q2v2(1 − v)2K0(Q̄fr)K0(Q̄fr

′) (B.3)

with r = |r| and r′ = |r′|. Note that these functions are such that

∑

f

Φf
α(v, r, r) = |ψγ

α(v, r;Q)|2 (B.4)

is the photon wavefunction squared discussed in Appendix A.

The cross–section (dσqq̄
diff/d

2b) is obtained (see Eq. (2.1)) by integrating (B.1) from ln(1/β) =
0 up to Y − Y min

gap . If this upper limit is relatively large, one recovers the qq̄ part of our
expression in the main text, namely Eq. (4.15) (with Y min

gap → Ygap, for simplicity) :

dσqq̄
diff

d2b
(Y, Ygap, Q

2) =
∫

d2r

∫

dv
∑

α=L,T

|ψγ
α(v, r;Q)|2 〈T (r, b)〉2Ygap

. (B.5)

This can be seen by changing the integration variable to κ2
f : the typical values of r and

r′ are set by the photon wavefunctions, and thus are of order 1/εf . On the other hand,
the integral over κ2

f fixes the difference r− r′ to be of order 1/κmax. When κmax � εf (in
practice, this condition amounts to M 2

X � Q2), the difference r− r′ is small as compared
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to both r and r′, so one can approximate the integral
∫

d2κf e
i � f .( � ′− � ) by δ2(r−r′), which

then yields (B.5). But although relatively large in the sense explained above, the difference
between Ygap and Y can be neglected in the evaluation of the target average which appears
in the r.h.s. of Eq. (B.5), in the spirit of the leading–logarithmic approximation with
respect to ln(1/x). This finally yields the ‘elastic’ cross–section dσγ

el/d
2b of Eq. (2.1).

Note finally that the differential cross–section is proportional to the diffractive structure
function FD,3

2 (x,Q2, β), which is measured at HERA:

FD,3
2 (x,Q2, β) =

Q2β

4π2αemx

dσγ
diff

d2b d ln(1/β)
. (B.6)

C The cross–section for diffractive gluon production

Given our previous efforts in Sect. 4 to (even analytically) evaluate the inelastic diffractive
probability ∆Pinel at high energy, it is rewarding to notice that this quantity can be used
to compute the cross–section for gluon production in diffractive DIS, according to [41, 82]:

dσγ
gluon

d2b d ln(1/β)
=
∫ 1

0
dz
∫

d2r
∑

α=L,T

|ψγ
α(z, r;Q)|2 ∆Pinel(b, r;Y0) . (C.1)

The convolutions with the photon wavefunction can be done by the same techniques as
before, and here we only list the final results. By using the high–energy approximation
(4.58) for ∆Pinel, one finds

dσL
gluon

d2b d ln(1/β)
' ᾱs

2π

2JF

3

1

σ2
exp

(

−2Z2

σ2

)

, (C.2)

for the longitudinal piece and, respectively,

dσT
gluon

d2b d ln(1/β)
' ᾱs

2π

√
2πJF

6

1

σ
Erfc

(
√

2Z

σ

)

, (C.3)

for the transverse one. As usual, F ≡ (Ncαem/2π
2)
∑

f e
2
f , and the above results are valid

in the high energy regime at σγ0 � 1 and −∞ < Z � σ2, up to corrections of O(Z/σ2).

Comparing Eqs. (C.2) and (C.3) we see that the transverse cross section dominates the
longitudinal one everywhere in the region of interest. Therefore,

dσγ
gluon

d2b d ln(1/β)
' ᾱs

2π

√
2πJF

6

1

σ
Erfc

(√
2 ln(Q2/〈Q2

s〉)
σ

)

, (C.4)

which, in contrast to the partonic probability (4.58), is a monotonically decreasing function
of Q2 (for fixed Y , that is, fixed σ and 〈Q2

s〉). Note that after multiplication by σ, this
cross–section exhibits diffusive scaling.
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It might be interesting to compare this high–energy estimate to the corresponding result
at intermediate energies, as given by the mean field approximation (say, by the solution
to the BK equation). As aforementioned, in the mean field case the elastic piece ∆Pel is
truly negligible (a higher–twist effect), so the diffractive cross–section is essentially equal
to that for the (diffractive) gluon production, and they are estimated as [40]

dσγ
gluon

d2b d ln(1/β)
∼ ᾱs F

Q2
s

Q2
ln
Q2

Q2
s

for Q2 � Q2
s . (C.5)

This result is obtained by using ∆Pinel ∼ ᾱsr
2Q2

s, cf. Eq. (4.53), and receives contributions
from dipole sizes r uniformly distributed within the range 1/Q < r < 1/Qs. By contrast,
the high–energy estimate (C.4) is dominated by r ∼ 1/Q.
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