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CRITICAL BEHAVIOR OF THE
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MODEL ON A STACKED TRIANGULAR
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We estimate, using a large-scale Monte Carlo simulation, the critical ex-
ponents of the antiferromagnetic Heisenberg model on a stacked triangular
lattice. We obtain the following estimates: v/v = 2.01 + .03, v = .79 + .03.
These results are compatible with a transition in the Wilson-Fisher O(4) uni-
versality class, as predicted by a 2 + ¢ Renormalization Group calculation.
As a consequence we are able to obtain a satisfactory picture of the critical
behaviour of Heisenberg helimagnets, solving thus a long-standing puzzle.
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1 INTRODUCTION

There is at the present time a satisfactory understanding of the critical be-
haviour of physical systems where the rotation symmetry group O(N) is
broken down to O(N-1) at low temperatures. Several theoretical tools are
available to estimate the critical exponents and there is good agreement be-
tween these estimates. The Wilson-Fisher fixed point which describes the
critical physics can be smoothly followed between two and four dimensions:
for N > 3 the 2 4 € and 4 — € renormalization group expansion merge in a
continuous manner.

The situation is much more complicated when the rotation symmetry is
fully broken in the low-temperature phase. A prominent example is found
in the so-called helimagnetic systems where Heisenberg spins are in a spiral
arrangement below the critical temperature. It is an interesting question,
both theoretically and experimentally, to know the corresponding univer-
sality class. A widely studied prototypical model is the antiferromagnetic
Heisenberg model on a stacked triangular lattice, which is simple and dis-
play commensurate helimagnetic order below a transition point 7.. At the
present time, there is little consensus in the literature regarding critical phe-
nomena associated with this model [1].

This topic has been investigated by use of a D = 4 — ¢ renormalization
group calculation[2]. The corresponding Ginzburg-Landau theory for a N-
component vector model involves two N-component bosonic fields. It is found
that for N large enough the transition is second order and not governed
by the Heisenberg O(2N) Wilson-Fisher fixed point but by a different fixed
point which is also non-trivial for D < 4. For smaller N, this new fixed
point disappears and there is no stable fixed point which is an indication
for a fluctuation-induced first-order transition. The dividing universal line
between second-order and first-order behaviour is found to be N.(D) = 21.8—
23.4e+ 0(62). The rapid variation of N, leaves us rather uncertain about the
fate of the case D = 3. Clearly more information is needed about the N,.(D)
line in the (number of components-dimension)-plane.

A D = 2 4+ € renormalization group study has been performed for a
system of Heisenberg spins[3] by use of a non-linear sigma model defined on a
homogeneous non-symmetric coset space O(3)x0(2)/0(2). It was found that
near two dimensions the system undergoes a second order transition which is
governed by the O(4) usual Wilson-Fisher fixed point. In fact the symmetry



O(3) x O(2)/0(2) is dynamically enlarged at the critical point to O(3) x
0(3)/0(3) and O(3) x O(3) is O(4). This mismatch between the expansions
near four dimensions and near two dimensions is quite unusual and does not
happen in the well-studied O(N) — O(N — 1) critical phenomena. As a
consequence, the D = 3 case remains elusive and a direct study in three
dimensions is called for.

Some preliminary Monte Carlo (MC) simulations have shown some evi-
dence [4] for a continuous transition in the case of the Heisenberg antiferro-
magnet on a stacked triangular lattice. However the exponents found are not
compatible with those of the O(4) vector model in three dimensions. This
fact is difficult to reconcile with RG studies which predict a O(4) transition
(D =2+ ¢). It is the purpose of this article to shed light on this discrep-
ancy by means of a MC study of the model. We did a large-scale simulation
with much better statistics than previous attempts. As a consequence we are
able to pin down the transition temperature in a very precise manner and to
obtain reliable estimates of critical exponents.

We thus focus on the classical spin model defined by the classical Heisen-
berg Hamiltonian:

<wy>
The exchange interaction .J;; is nonzero ( .J;; = 1 in what follows) between
nearest-neighbors of a stacked triangular lattice and the spins are three-
component unit vectors. The classical ground state is found by minimizing
the Fourier transform J(Q) of the couplings J;;. The spins adopt a planar
arrangement on a three-sublattice structure with relative angles 120 degrees.

2 The simulation

We made two successive sets of Monte Carlo simulations of this model, using
slightly asymmetric lattices (with periodic boundary conditions) of shape
L?L,, where L is the linear size inside the planes, and L, = 2/3L the stacking
size.

The first set of simulations was run on a CM-2 8K massively parallel com-
puter. We made runs on lattices of size 122 8 (with a total of 600 000 Monte
Carlo sweeps of the lattice), 24* 16 (with a total of 1 500 000 sweeps) and



482 32 (with a total of 1 570 000 sweeps). In the first case we used the Heat-
Bath algorithm, in the later two cases we used an Hybrid Overrelaxation
algorithm[5] where each Heat-Bath sweep is followed by an energy conserv-
ing sweep. The next set of simulations was run on CRAY vector computers
on lattices of size 24216, 30?20 , 36224 and 48232 with 4 to 8 106 Hybrid Over-
relaxation sweeps. Both simulations concentrate in the immediate vicinity
of the transition.

Let us note by S, the total spin per site for sublattice a (a € [1,2,3]), we
measured the magnetization:

1
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and the fourth-order cumulant:
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Our strategy to extract the critical exponents was first to estimate the
value of the critical temperature ., as the point where Br(f) is L indepen-
dent and then to estimate the exponents from the following set of equations:

XL(BC) ~ L’Y/l/’ (5>
My(B) ~ L7, (6)
aBL(6> -1/v
5B s L=, (7)

The extrapolation, from the 3 value used for the simulation, to 3, is done
using the Ferrenberg-Swendsen technique [6]. This technique is invaluable to
extrapolate in a neighborhood of size ~ 1/L'/" (We understand that, when
used blindly outside such a tight range, it may give wrong results). The
statistical analysis is done with respect to 20 bins, using first-order bias-
corrected jackknife (see e.g. Ref.[7] and references therein). The first 20 %

of each run is discarded for thermalization.



JFrom simulations of lattices of increasing sizes Ly < Ly < ..., converging
estimators of . are obtained by solving the equations:

Br._,(B) = Br.(f)- (8)

[. values Be v /v D—28/v

24-12 | 1.0440 (4) | 2.009 (14) (04) | 2.030 (07) (07) | .68 (02) (00)
48-24 | 1.0446 (2) | 2.033 (18) (14) | 1.998 (09) (25) | .77 (03) (01)

Table 1: CM-2 runs: critical temperature and critical exponents estimates.
The first column gives the linear sizes of the two lattices used. The two
numbers inside parenthesis are the estimates of the statistical errors, direct
and induced, on the last digits of the number on their left.

L. values Be v/v D —28/v v
3024 | 1.0439 (4) | 1.994 (37) (12) | 2.022 (13) (16) | .79 (07) (01)
36-30 | 1.0441 (4) | 1.988 (55) (16) | 2.020 (18) (21) | .74 (09) (02)
42-36 | 1.0448 (3) | 2.083 (68) (14) | 1.984 (20) (31) | .90 (14) (02)
48-42 | 1.0443 (3) | 1.986 (61) (18) | 2.004 (22) (39) | .70 (08) (01)
4824 | 1.0443 (1) | 2.011 (11) (15) | 2.010 (04) (25) | .78 (02) (01)

Table 2: CRAY runs: critical temperature and critical exponents estimates.
The first column gives the linear sizes of the two lattices used. The two
numbers inside parenthesis are the estimated statistical errors, direct and
induced, on the last digits of the number on their left.

The results can be found in the second column of Tab.1 (resp. Tab.2) for
the CM-2 (resp. CRAY) data. Within our statistical accuracy, all estimates
are compatible, there is neither any clear lattice size dependence, nor any
discrepancy between the two sets of runs. Our final estimate is thus:

B. = 1.0443 £ .0002. (9)



We use this value to compute xr,(3.), Mr(j;) and SBSLB(B) , in order to

estimate v/v, 3/v, and v itself. Results can be found in Tab.1 ZTcab.Q) for the
CM-2 (CRAY) runs. We quote separately the estimated “direct” statistical
errors computed from the dispersion of the results from the 20 bins, and the

errors induced by the uncertainty on the determination of 3., computed as
the (absolute value of the) difference between the values obtained using our
best estimate of 3. and the values using the one standard deviation estimate.
Our final numbers are /v = 2.01 £.03, D—23/v = 2.01 £.03, v = .794.03,
obtained from linear fits of the CRAY data for In(x7(8;)), In(Mr(3.)) and

ln(%@‘ ) respectively. The results of the fits are stable against omitting

the smallest Tattice data.

We observe that hyperscaling is verified within errors, and as usual in

three dimensions, 7 is very small ( ~ .01). The value for v is compatible
with the value for the O(4) fixed point[9] (v ~ .75). We have thus obtained
excellent evidence for a continuous transition in the D = 3 case and we
have shown that the critical exponents are perfectly compatible with the RG
prediction of the 2 + ¢ expansion. The specific heat exponent « is negative
due to the large value of v, like in the usual Heisenberg model (non-canted)
in D=3. Our results are in marked disagreement with the lower statistics
Monte Carlo results of Ref.[4] (v = .59 4+ .02). The methods of analysis are
different. Ref.[4] uses data taken in a wide region around the transition point
and adjust the values of the critical exponents using the old fashioned “data
collapsing” method. This method has the disadvantage to give much weight
to points with large value of (3 — ﬂc)ﬁl/”. We extract the exponents directly
from data reweighted to .. We have also a much higher statistics: we use
8 x 10° heat-bath + energy-conserving sweeps whereas [4] uses 6-20 times
20000 sweeps of a less efficient algorithm. Our estimated statistical error on
the determination of f. is one order of magnitude smaller than the one in

ref.[4].
3 Conclusion
In view of the present evidence for O(4) behaviour at D = 3 we are led to

suggest the phase diagram shown in Fig.1 between two and four dimensions
and for models with three or more components. Let us first summarize the



knowledge obtained from perturbative RG studies:

i) There is a universal line N, (D) separating a first-order region from a
second-order region near D = 4 — ¢. Its slope is known from RG studies|2]
as well as the critical value N, for D = 4.

ii) Large-N studies[8] have shown that the stable fixed point found above
N.(D) persists smoothly in the region N = oo and 2 < D < 4: the top
boundary line of Fig.1.

iii) Smoothness along the D = 2 vertical axis can be shown by studying
the nonlinear sigma model suited to the N-vector model: it is built on the
homogeneous space O(N) x O(2)/O(N —2) x O(2)[10]. One finds a single
stable fixed point for all values of N > 3. In the large-N limit the exponents
from this sigma model are the same as those of the linear model: this happens
at the upper left corner of Fig.1.

If we believe in the perturbative RG results, then necessarily the universal
line N.(D) can only intersect the horizontal axis N = 3 between D=2 and
D=4. The simplest hypothesis is then that the plane (N, D) is divided in two
regions by the line N.(D) as shown in fig.1. This line intersects the N =3
axis at a critical dimension D.. Our Monte-Carlo results thus imply that D,
is between three and four dimensions since we observe a continuous transition
at D=3. Since in addition we have evidence for O(4) behaviour this means
that nothing dramatic happens between the neighborhood of D=2 and D=3.
We note that the stable fixed point that governs the whole second-order
domain reduces to a known fixed point (of the Wilson-Fisher O(N) family)
only in the N=3 case where there is a peculiar symmetry enlargement[10].
This is consistent with the fact that the stable fixed point found near D=4
above the line N.(D) does not belong to the Wilson-Fisher family. Our
results seem to exclude the intriguing proposal[3] D, = 3 or very close to 3,
a logical possibility for which there is no compelling argument. We note that
the phase diagram we propose is in agreement with all known RG results and
does not require the addition of any new fixed point, unseen in perturbation
theory. Our results also give support to the validity of the 2 + ¢ expansion,
a fact that is far from being obvious since perturbative treatment of a sigma
model neglects global aspects. Previous studies indeed have performed, as
usual, only perturbation theory for spin-wave excitations|[3].

We have thus obtained a simple picture of the critical behaviour of a
magnet with a canted ground-state. In the physical case, we predict that
Heisenberg helimagnets will belong to the O(4) universality class (the ex-
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ponent 7 belonging to a tensor representation[10]). We note for the future
that it would be interesting to obtain the critical behaviour of the XY canted
systems, much more relevant to the experimental situation.

2ND ORDER

NUMBER OF COMPONENTS

2 3 4

DIMENSION

Figure 1: Phase diagram of the D-dimensional O(N) canted model, in the
(N, D)-plane.

Acknowledgements

We would like to thank Guy Decaudain, David Lloyd Owen, Gyan Bhanot
and Roch Bourbonnais of TMC for their support. We also thank A. P. Young

and D. P. Belanger for various informations about this subject.

References

[1] For a review see: M. L. Plumer and A. Caillé, J. Appl. Phys. 70, 5961 (1991).

[2] T. Garel and P. Pfeuty, J. Phys. C9, 1.245 (1976); D. Bailin, A. Love and M.
A. Moore, J. Phys. C10, 1159 (1977).

8



[3]
[4]

[5]

[6]

P. Azaria, B. Delamotte and Th. Jolicceur, Phys. Rev. Lett. 64, 3175 (1990).

H. Kawamura, J. Appl. Phys. 63, 3086 (1988); J. Phys. Soc. Jpn 61, 1299
(1992).

A.D. Kennedy, Proceedings of the International Symposium on Lattice Field
Theory LATTICE 92, September 15-19 1992 Amsterdam.

A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 2635 (1988);
See also A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 63 1195
(1989).

A. Billoire, R. Lacaze, and A. Morel, Nucl. Phys. B 370 773 (1992).
H. Kawamura, Phys. Rev. B38, 4916 (1988).

H. E. Stanley in “Phase transitions and critical Phenomena”, Vol. III, C.
Domb and M. S. Green eds., Academic Press, New York, 1974; J.C. Le Guil-
lou and J. Zinn-Justin have also obtained unpublished estimates of the O(4)
exponents by field-theoretic methods that are very close to the series esti-
mates.

P. Azaria, B. Delamotte, F. Delduc and Th. Jolicceur, Saclay preprint
SPh'T/93-044, submitted to Nuclear Physics B.



