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émanant des établissements d’enseignement et de
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Abstract
Surface roughness is known to easily suppress the adhesion of elastic surfaces.

Here a simple model for the contact of viscoelastic rough surfaces with significant
levels of adhesion is presented. This approach is derived from our previous model
[E. Barthel and G. Haiat Langmuir, 18 9362 2002] for the adhesive contact of
viscoelastic spheres. For simplicity a simple loading/unloading history (infinitely
fast loading and constant pull-out velocity) is assumed. The model provides
approximate analytical expressions for the asperity response and exhibits the
full viscoelastic adhesive contact phenomenology such as stress relaxation inside
the contact zone and creep at the contact edges. Combining this model with
a Greenwood-Williamson statistical modeling of rough surfaces, we propose a
quantitative assessment of the adhesion to rough viscoelastic surfaces. We show
that moderate viscoelasticity efficiently restores adhesion on rough surfaces over
a wide dynamic range.
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1 Introduction

Surface roughness is a major parameter for the control of the adhesion of vis-
coelastic materials and as such is central to many technological processes. As
an example, in the automotive industry, when assembling a polymer interlayer
with two glass sheets to form a laminated windshield, a periodic roughness is
intentionally generated on the polymer to reduce the adhesion and facilitate po-
sitioning before the final heat treatment [1]. Roughness also plays a role in the
self-adhesion mechanism (or tack) of soft polymers [2, 3] like repositionable ad-
hesives. In a similar way, in the glass industry, glass molding is performed at
elevated temperatures for easy glass flow but at the risk of adhesion. Indeed ad-
hesion of hot glass to the mold halts production until the mold has been cleaned
of its adherents. The roughness of the mold strongly impacts the adhesion of
the viscoelastic glass gob [4] and a stochastic but carefully tailored roughness,
obtained through shot peening of the steel surfaces for instance, will promote an
easy molding process.

The adhesive contact to rough viscoelastic surfaces is a complex problem
however because it couples the statistical approach of the adhesive contact to
rough surfaces with the difficulties involved in the viscoelastic adhesive contact.
For elastic solids, the adhesive contact to rough surfaces is reasonably well under-
stood. Building upon the Greenwood-Williamson independent asperity approach,
Fuller and Tabor [5] have given a useful description of the strong reduction of the
adhesive force incurred when roughness increases. They introduce an adhesion
parameter σs/δc where σs is the standard deviation of the summit height dis-
tribution and δc is the maximum single asperity extension before rupture. This
adhesion parameter is a measure of the energy balance between stretched and
compressed asperities. If the adhesion parameter is large, the compression of the
upper asperities dominates the traction of the adhesive lower asperities which
significantly depresses the adhesion.

The calculations are relatively straightforward for elastic contacts which are
essentially reversible. For viscoelastic contacts, adhesion depends upon the full
contact history so that the calculations are more involved. In the absence of
adhesion, the viscoelastic contact problem was first solved by Ting [6]. Subse-
quently, important results for the viscoelastic crack problem were obtained by
Schapery [7, 8] and Greenwood and Johnson [9, 10]. Hui and coworkers [11, 12, 13]
have tackled the problem of viscoelastic adhesive contacts. We recently proposed
a model for the full viscoelastic contact of adhesive bodies [14, 15, 16].

The present paper inquires into the application of this model to the adhesive
contact to rough surfaces. To model the response of a distribution of asperities
a simplified description of the viscoelastic contact is needed and the first part of
the paper develops such a minimal model. It is devised so that the two main
phenomena characteristic for viscoelastic adhesive contact – stress relaxation un-
der the contact and creep induced by the adhesive interactions at the contact
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edges – are preserved while keeping calculations to a minimum. The model ex-
hibits typical viscoelastic adhesive contact phenomenology, and in particular the
time lag between indenter retraction and the actual contact radius recession, also
called ”stick period” [14]. In the second part of the paper examples of the use
of this approximate model for rough surfaces are presented. The impact of the
pull-out velocity on the pull-out force for typical rough surfaces is calculated.
The results emphasize how a moderately viscoelastic material effectively restores
the adhesion lost through roughness.

2 Model

2.1 Single asperity contact

Modeling the viscoelastic contact of an axisymmetric asperity in the presence of
adhesion is complex because, as in all viscoelastic problems, the solution depends
upon the full contact history.

In addition, for contact problems, one must deal with mixed boundary con-
ditions: the surface normal displacement u(r) is prescribed inside the contact
zone whereas the normal surface stress σ(r) due to the adhesive interactions is
specified inside the so-called cohesive zone (Figure 1), outside the contact zone.
Moreover the boundary between these two regions is not fixed but moves during
the contact history. For a viscoelastic material, the solution is reasonably simple
for growing contact radius [11, 17]. However, during pull-out (i.e. decreasing
contact area), the residual deformation has to be taken into account. This in
turn depends upon the full stress history, which leads to a complex situation,
both for adhesionless [6] and adhesive [11, 12, 13, 14, 15] contacts.

2.2 Resolution method

Under the assumption of axial symmetry, we resort to two auxiliary functions g(r)
and θ(r), which are the following Abel transforms of respectively the distributions
of normal surface stress σ(r) and normal surface displacement u(r):

g(r) = −
∫ +∞

r

sσ(s)√
s2 − r2

ds, (1)

θ(r) =
d

dr

∫ r

0

su(s)√
r2 − s2

ds, (2)

2.2.1 Boundary conditions

A first benefit of these transforms is their pertinence for axisymmetric boundary
conditions. In particular, inside the contact zone (r < a), the normal surface
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displacement is known through the contact condition

u(r) = δ − h(r) (3)

where δ is the penetration and h(r) the shape of the indenter (Figure 1). Then,
using Eq. 2, inside the contact zone

θ(r) = δ − δ0(r) (4)

where

δ0(r) =
d

dr

∫ r

0
ds

sh(s)√
r2 − s2

· (5)

It turns out that δ0(r) is the Hertz penetration for a contact radius r as shown
in the next section. Note that this function δ0(r) is determined by the shape of
the indenter only. It is equal to r2/R for a sphere of radius R and to π

2
r/ tanβ

for a cone of apical angle β.
Conversely, as mentioned above, the adhesive stress distribution σ(r) outside

the contact zone is known. More precisely, in the present case, we will show in
section 2.2.3 that it can be self-consistently determined through an independent
set of equations, under the assumption of small cohesive zone size. Therefore the
g function is known outside the contact zone (r > a).

2.2.2 Mechanical Equilibrium – Viscoelastic materials

The second benefit of these auxiliary functions is that they naturally handle the
long range nature of the elastic field: for instance, under the conditions of linear
elastic behaviour (Young’s modulus E, Poisson ratio ν) and absence of shear
stresses at the contact, mechanical equilibrium leads to

g(r) =
E⋆

2
θ(r) (6)

where

E⋆ =
E

(1 − ν2)
(7)

The contact problem is solved under the assumption of continuity of the stress
distribution at a. The penetration is then directly obtained by [14]

g(a) =
E⋆

2
θ(a) (8)

For example for an adhesionless contact, σ(r) = 0 for r ≥ a so that g(a) = 0
and δ = δ0(a) as mentioned in section 2.2.1. If adhesion is present, g(a) is not
zero and a more complex situation arises.
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For a linear viscoelastic material, under the approximation of constant Poisson
ratio [18] we introduce the creep and the relaxation functions

φ(t) =
2

E∗
φ̃(t) (9)

ψ(t) =
E∗

2
ψ̃(t) (10)

with

φ̃(t) = 1 +
(1 − k)

k
(1 − e

−t
µ ) (11)

ψ̃(t) = k + (1 − k)e
−t
kµ (12)

where µ is the creep time. The parameter k lies between 1 (elastic) and 0
(Maxwell). Due to the decoupling between spatial and temporal responses, the
equilibrium equation (Eq. 6) will now be

g(r, t) =
∫ t

0
dτψ(t− τ)

d

dτ
θ(r, τ) (13)

or its inverse

θ(r, t) =
∫ t

0
dτφ(t− τ)

d

dτ
g(r, τ) (14)

where the relaxation function ψ(t) and the creep function φ(t) are inverse for this
product of convolution. In the case of increasing contact radius, Eqs. 4 and 14
determine the penetration by

δ(t) = δ0(a(t)) +
∫ t

0
dτφ(t− τ)

∂

∂τ
g(a(t), τ) (15)

This result is equivalent to previous formulations [12, 17].
The decreasing contact radius case is more intricate. Taking into account the

domains where g and θ are known respectively, we have to resort to Eqs. 4, 13
and 14 to determine the penetration by the integral equation

g(a(t), t) =
∫ t

ta−(a(t))
dτψ(t− τ)

∂

∂τ
{δ(τ) − δ0(a(t))} + ḡ(a(t), t) (16)

Here ta−(a(t)) is the time at which the contact radius was first equal to a(t),
during the loading phase. The corrective term

ḡ(a(t), t) =
∫ ta−(a(t))

0
dτψ(t− τ)

∂

∂τ

(

∫ τ

0
dτ ′φ(τ − τ ′)

∂

∂τ ′
g(a(t), τ ′)

)

(17)

is unessential, except for the cross-over between increasing and decreasing contact
radius regimes (a = amax, t = tmax).
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Then for a given history of the penetration, one can calculate the history of
the contact radius and subsequently the force [14, 15, 16]. Under the assumption
of small cohesive zone size (see section 2.2.3 for the cohesive zone and section 6
for details of the calculation) the force is given by Eq. 19 in [14]:

P (t) = 4
∫ t

0
dτψ(t− τ)

d

dτ

∫ min(a(t),a(τ))

0
dr (δ(τ) − δ0(r)) (18)

Note that this equation is valid for both inward and outward runs. Eqs. 16 and 18
involve stress relaxation inside the contact zone but also crack tip viscoelasticity
through g(a(t), t), as discussed in more details in the next paragraph.

2.2.3 Cohesive Zone

For any adhesive contact, in the context of the present (Sneddon) method, the
quantity g(a), which is the function g evaluated at the edge of the contact zone,
plays a central role. For the contact zone, it determines Eqs. 15, 16 and 18
between macroscopic contact variables. But we have previously shown that, for
the cohesive zone, g(a) determines the stress intensity factor [19] characteristic
of the local deformation process at the crack tip.

Here we dicuss, for the specific case of a viscoelastic adhesive contact, how
g(a(t), t) is determined by the cohesive zone parameters. This results in an inde-
pendent relation between g(a) and the contact radius velocity ȧ through Eqs. 20,
21, 22 and 23.

This problem is similar to a viscoelastic crack [7, 8, 9, 10] and calls for a
consistent treatment of an adhesive-stress induced creep inside a cohesive zone of
finite size (c(t) ≥ r ≥ a(t), Figure 1). The equivalence of various methods for the
description of the cohesive zone has been demonstrated earlier [20]. In brief, the
details of the description of the stresses inside the cohesive zone is unimportant
as long as the effective range of these interactions is preserved. Greenwood and
Johnson [21] have proposed a description (the so-called ”Double-Hertz”) which is
analytically simple and which we have retained for our viscoelastic models [14].
Following these authors, we assume a specific stress distribution which results in

g(r) =
π

4
σ0

r2 − c2√
c2 − a2

. (19)

Assuming that the size of the cohesive zone is small compared to the contact
zone (a≫ c− a ≡ ǫ) and taking the limit when r → a gives:

g(a) = −π
4
σ0

√
2aǫ (20)

For a decreasing contact radius the self-consistent equation coupling the total
adhesion energy and the deformation of the contact zone writes (Eq. 23 of Ref.
[14]):

w =
π

8
σ2

0ǫφ1(tr) (21)
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where w is the adhesion energy,

φ1(t) =
2

t2

∫ t

0
dττφ(t− τ) (22)

and tr is a fracture dwell time. For non vanishing contact radius velocity, this is
the time it takes for the crack tip to move a distance equal to the cohesive zone
size. It is given by:

tr(t) =
−ǫ(t)
ȧ(t)

(23)

The simultaneous resolution of Eqs. 20-23 determines the velocity dependence
of g(a). It is typical of viscoelastic crack problems : compare our set of Eqs. 20,
21 and 23 with, for instance, Eqs. 1, 47 and 48 in [7]. As a result, g(a) increases
with ȧ as displayed on Figure 2: again compare e. g. with Fig. 6 b in [10].

2.2.4 General Model – stick period

For the viscoelastic adhesive contact, the main phenomenon we have identified
[14, 15] is the ”pinning” of the contact upon unloading (Figure 3). More precisely,
for such viscoelastic contacts, there is a typical time lag between the retraction
of the indenter and the actual contact radius recession. We have called ”stick
period” this period over which the contact radius stays pinned, before contact
edge retraction sets in, finally leading to contact rupture.

The physical interpretation of the stick period phenomenon has already been
given in [14]. Relaxation of the stresses inside the contact zone reduces the stress
intensity factor and hence g(a). This results in a slow crack motion (Figure 2)
and the contact radius practically comes to a halt. When pulling the indenter
out, enough tensile stresses must be re-built inside the contact zone before g(a)
is large enough for the contact edge to be restored into propagating condition
(Figure 2), and this depends upon the competition between stress relaxation and
pull out velocity as discussed in [16].

2.3 Approximate Model

We need a simple description of the viscoelastic adhesive contact for rough surface
calculations. We restrict the developments to the spherical asperity (radius R)
usual in rough surface models although extension to other asperity shapes should
be straightformard. We also introduce two major simplifications to the full model.
One is an assumption on the type of loading/unloading. The other one is an
approximation for the stick period.

2.3.1 Simplifying assumption – Direct unloading

We consider fixed-grip loading, i.e. a loading where the penetration is prescribed.
In addition, the loading phase is considered to be infinitely fast and the pull-out
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velocity δ̇ a (negative) constant (Figure 3), so that the penetration history simply
writes:

δ(t) = (δ0 + tδ̇)Θ(t) (24)

where δ0 is the initial penetration1, taken positive when the two surfaces are
pushed one into another. Θ is the Heaviside step function. Due to the infinitely
fast loading phase the quantity ta−(a(t)) defined in the unloading phase (sec-
tion 2.2.2) is equal to zero.

2.3.2 Stick period approximation

This approximation stems from the observation that for large penetrations, the
contact radius upon loading is primarily determined by the instantaneous elastic
response and that crack tip creep during loading is not a dominant process [14].

As a result, in the following, the stick period is approximately modeled by
a period of constant contact radius prescribed by the instantaneous modulus.
This will be a good approximation except for small initial contact radii where
the adhesive term is dominant.

In summary the approximate model is as follows:

1. calculate the initial contact radius from an elastic model with the instan-
taneous Young’s modulus; assume this contact radius stays constant to the
end of the stick period. The main viscoelastic process at work here is the
stress relaxation inside the contact zone, which directly impacts the force
(section 2.3.3);

2. determine if there is a stick period and if so calculate ending time tf (sec-
tion 2.3.4);

3. calculate the unloading phase (section 2.3.5) and in particular the adhesion
force.

2.3.3 Stick Period – Force

The force in the stick period is obtained from Eq. 18 taking into account the
discontinuity of the penetration at τ = 0. This leads to (section 6.1):

P1(t) = 4ψ(t)





2a3
0

3R
− σ0πa

3/2
0

√
ǫ0√

2E∗



+ 4a0δ̇
∫ t

0
dτψ(t− τ) (25)

which can be rewritten as:

P1(t) = ψ̃(t)P0 + 4a0δ̇
∫ t

0
dτψ(t− τ). (26)

1This initial penetration cannot be confused with the δ0(r) function introduced earlier and
which will now be substituted by its specific value for a sphere r2/R in the rest of the paper.
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where the normalized form of ψ (Eq. 12) has been used. P0 is the initial force
and ǫ0 the cohesive zone size at t = 0 which can be calculated from Eqs. 20-21.
The first term results from the relaxation of the initial force and the second one is
due to the flat punch viscoelastic response and is proportional to the (constant)
pull-out velocity.

2.3.4 Approximate determination of the end of the stick period

At the end of the stick period a(tf) = a0 because the contact radius increase
has been neglected by assumption. However we do take into account the crack
tip evolution which is reflected in a cohesive zone size ǫ(tf ) smaller than ǫ0.
Since the contact radius is a constant, the crack dwell time tr (section 2.2.3) is
approximated as the crap tip age, which is also the contact age. Therefore, when
the contact radius starts decreasing at t = tf , the dwell time tr is taken equal
to tf . Inserting Eq. 21 into Eq. 20 provides an approximate criterion for the
begining of the contact radius decrease:

g (a(tf ), tf) = −
√

wπa0

φ1(tf)
(27)

When the contact radius decreases, Eq. 16 becomes

g(a(t), t) = δ̇
∫ t

0
dτψ(t− τ) + ψ(t)

(

δ0 −
a(t)2

R

)

(28)

Then tf is solution to the following implicit equation:

ψ(tf)

(

δ0 −
a2

0

R

)

+ δ̇
∫ tf

0
dτψ(tf − τ) +

√

wπa0

φ1(tf )
= 0 (29)

Note that the purely elastic case is recovered for t = 0. It is also recovered
for constant ψ(t) (elastic material) because δ(t) = δ0 + δ̇t, and for long waiting
times where ψ(t) ≃ ψ(+∞) and

∫ t
0 ψ(τ)dτ ≃ tψ(+∞).

Injecting the initial elastic solution, tf is identified as the non zero root of
function f , with

f(t) = δ̇
∫ t

0
dτψ(t− τ) +

√
wπa0





1
√

φ1(t)
− ψ(t)

√

2

E∗



 (30)

Time tf only depends on the mechanical properties of the material and on the
history of the penetration (δ0 and δ̇). Considering a given contact experiment on
a rough surface, the mechanical and adhesive properties as well as the pull-out
velocity are identical for all asperities. Therefore, tf will only be a function of the
initial penetration δ0 which is depends on the initial height of a given asperity.
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The numerical calculation of tf (δ0) is achieved using a bisection method. From
Eq. 30, and knowing that a0 increases with δ0, tf (δ0) is a strictly increasing
function of δ0 and can thus be numerically inverted to obtain the function zf (t),
representing the initial penetration necessary for a given asperity to reach the
end of the stick period at time t. This function will be useful for the computation
of the total force contribution (section 2.5) from the asperity height distribution.

2.3.5 Decreasing contact radius

The computation of the load P2(t) in the case of a decreasing contact radius is
performed using Eq. 18 which leads (section 6.2) to:

P2(t) = 4a(t)ψ(t)

(

δ0 −
a(t)2

3R

)

+ 4a(t)δ̇
∫ t

0
dτψ(t− τ) (31)

The two terms are respectively the elastic force for a spherical asperity with
the relaxed modulus at time t in presence of adhesion and the response of the
viscoelastic medium to a flat punch displacement (contact radius a(t)). Note that
the purely elastic case is recovered for elastic materials because δ(t) = δ0 + δ̇t.
Eqs. 21, 23, 28 and 31 completely describe the decreasing contact radius phase.

2.4 Single Asperity – Normalization

For a spherical asperity, following Maugis [14, 22], the normalization of the con-
tact variables is performed by introducing the following quantities:

P̃ =
P

πwR
, (32)

A =
a

(

3πwR2

4E⋆

)1/3
, (33)

δ̃ =
δ

(

9π2w2R
16E⋆2

)1/3
, (34)

λ =
2σ0

(

πw16E⋆2

9R

)1/3
, (35)

G(A) = −π
3
λ
√

2Aǫ̃. (36)

were ǫ̃ is the normalized size of the cohesive zone (same length scale as contact
radius a). In normalized form, g(a) is given by:

G(A0) = −π
3
λ
√

2A0ǫ̃0 (37)
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In normalized form, the self-consistent equation 21 is given by:

1 =
π2

12
λ2ǫ̃(t)φ̃1(tr(t)) (38)

where φ̃1 is given by:

φ̃1(tr) =
2

tr
2

∫ tr

0
dτ(τ)φ̃(τ) (39)

Consequently, Eq. 29 used for the determination of the end of the first regime
now writes:

ψ̃(t)
(

δ̃(0) −A2
0

)

+
˙̃
δ
∫ tf

0
dτψ̃(tf − τ) + 2

√

√

√

√

2A

3φ̃1(tf)
= 0 (40)

In the stick period, the force for one isolated asperity (Eq. 18) is now given by:

P̃1(t) = ψ̃(t)
(

A3
0(t) − A1.5

0

√
6
)

+
3

2
A0

˙̃
δ
∫ t

0
dτψ̃(t− τ) (41)

When the contact radius starts decreasing, G(A(t)) (Eq. 28) writes as follow :

G(A(t)) = ˙̃δ
∫ t

0
dτψ̃(t− τ) + ψ̃(t)

(

δ̃(0) −A2(t)
)

(42)

and the force in the second regime is expressed through:

P̃2(t) = ψ̃(t)

(

3

2
A(t)δ̃0 −

A3(t)

2

)

+
3

2
A(t)

˙̃
δ
∫ t

0
dτψ̃(t− τ) (43)

2.5 Accounting for a rough surface

We follow the roughness description proposed by Greenwood and Willamson [23]
in their adhesionless elastic contact study. Namely, a surface of nominal area A0

with N asperities is in contact with a rigid flat plane. All asperities are assumed
to have the same radius of curvature R and a Gaussian height distribution of
standard deviation σs:

χ(z) =
1

σs

√
2π

exp

(

− z2

2σ2
s

)

(44)

where χ(z) is the probability that the summit of an asperity stands between z and
z+ dz. For a penetration of the rigid flat δ0 , the number of asperities in contact
is given by: n = N

∫

∞

δ0
dzχ(z) and all contact variables can be obtained with the

same integration. Similarly, the calculation of the load at time t is performed by
integrating the viscoelastic response of each asperity initially in contact:

P (t) = N
∫

∞

0
dzχ(z + δ0)Pa(z, t) (45)

where Pa(z, t) is the load at time t of an asperity undergoing an initial penetration
of z − δ0.

12



3 Results and discussion

3.1 Single asperity – Impact of pull-out velocity

Force vs penetration curves (force plots) for a single asperity were calculated with
λ=5 – a value consistent with our assumption of small but finite cohesive zone
size – and for a moderately viscoelastic material with k = 0.5. Figures 4 and 5

display results obtained for δ̃0 = 5 for pull-out velocities
˜̇
δ ranging from −0.01 to

−50.

For very low pull-out velocity values (|˜̇δ| ≤ 0.1), there is an initial rapid
decrease of the force, followed by a linear variation of the force as a function of
penetration. This is due to the fast relaxation of the (predominantly compressive)
stresses. The stress field is then controlled by the relaxed modulus which leads
to constant contact stiffness and a linear force-distance curve segment, before
the contact radius starts decreasing. When the penetration decreases further,
the force becomes tensile (negative), displays an incurvation, levels off, finally
increases and jumps to zero: this evolution of the force results from contact
edge recession and asperity snap-off. The absolute value of the maximum tensile
force defines the pull-out force Fpullout, and the (positive) effective adhesion weff

through weff = Fpullout/(3/2 πR).

The very low velocity case is an elastic adhesive contact with an effective
modulus equal to the relaxed modulus and a pull-out force equal to 3/2 which
is the JKR value. At slightly larger pull-out velocities, we observe that the pull
out force increases with pull-out velocity from this 3/2 value: higher pull-out ve-
locity leads to increased contact radius velocity. Enhancement of the viscoelastic
crack tip dissipation and effective adhesion follow as amply demonstrated in the
literature[7, 8, 9, 11, 12, 17, 24]. It results from the combination of a fully relaxed
contact zone and a less relaxed cohesive zone.

In contrast, for large pull-out velocities (|˜̇δ| ≥ 1), the initial precipitous drop
of the force is no longer present and the pull-out force decreases with pull-out

velocity. Eventually for very large pull-out velocity (e.g.
˜̇
δ = −50) the behavior

tends toward an elastic behavior and the pull out force reverts to 3/2. Indeed, for
large pull-out velocities, the relaxation of the compressive stresses in the contact
zone is far from complete during the experimental time. The pull-out force is
lower than for low pull-out velocity because the compressive contact stresses
favor contact rupture.

As a consequence, there exists a transition with an optimum pull-out velocity

(here of around ˜̇δ = −1) for which the pull-out force is maximum. This result
specifically originates from the consistent inclusion of both viscoelastic crack tip
dissipation and contact stress relaxation.
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3.2 Rough surfaces

As an example of results for rough surfaces, the same material parameters λ = 5
and k = 0.5 are chosen. The initial penetration is δ̃0 = 5.

3.2.1 Force distribution

Normalizing the roughness as the penetration (Eq. 34), we compute the force
curve for a rough surface with a normalized standard deviation σ̃s = 2. Com-
puting the contributions of asperities displaying each regime (stick period vs.

decreasing contact radius) to the total force for pull-out velocity ˜̇δ = −1 (Figure
6), we observe that the proportion of asperities initially in contact is almost 100%,
as expected for such a ratio of initial penetration δ̃0 to roughness σ̃s. This type of
contact is relevant to glass molding where a rather homogeneous distribution of
asperities, with narrow asperity height and radius distributions, is generated on
the mold surface. Note that the Greenwood-Williamson model is particularly apt
at treating such a surface morphology. It would be less adequate for a less regular
surface with a wide distribution of asperity height and/or a wide distribution of
asperity radius.

The force is initially dominated by asperities pinned in the stick period (black
dashed line). A gradual transition where the contact zones of the lower asperities
de-pin and start to recede is observed: the contribution of pinned asperities
drops to zero. Then the lowest asperities start to undergo contact rupture. It is
in the middle of this transition that the maximum tensile force (pull-out force)
is recorded.

3.2.2 Impact of roughness – Constant pull-out velocity

Force plots with increasing roughness (from σ̃s = 0.1 to σ̃s = 5) are displayed
on Figure 7. For small σ̃s, the results track the single asperity limit: all the
asperities in the population exhibit an identical behaviour, having nearly the same
initial penetration. For larger σ̃s, the initial contact force increases as expected
from the elastic (JKR) limit: for a single asperity the increase of the force with
initial penetration is more rapid than linear. Simultaneously, the duration of the
contact increases and the pull-out force decreases with roughness as in the elastic
case [5]. Indeed, for one isolated asperity, the pull-out time increases with initial
penetration. Therefore, when σ̃s increases, the distribution of the pull-out times
spreads out and the different asperities contribute less constructively to the total
pull-out force, which therefore decreases.

3.2.3 Impact of pull-out velocity – Constant roughness

Figures 8 and 9 display force plots at different pull-out velocity values, from
˜̇
δ = −0.01 to

˜̇
δ = −10 for a normalized standard deviation σ̃s = 2. The overall
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picture is similar to the single asperity case (section 3.1) and the same transition
from low to high velocity regimes is observed. At low pull-out velocities, a fast
decrease of the force due to stress relaxation is followed by a quasi elastic behavior
while at large velocities, the system is purely elastic. The pull-out forces in these
two limit regimes are differentiated by the roughness. This is because the elastic
moduli involved are different: indeed, the relaxed modulus is pertinent for the
very low pull-out velocity regime, and the instantaneous modulus for the very
high velocity regime. A larger elastic modulus will result in a larger adhesion
parameter and a lower adhesion force [5, 25]. A pull-out force enhancement is
recorded between these two limit regimes because of the combination of partial
contact stress relaxation and crack tip dissipation.

It is interesting to assess the details of the transition between these two
regimes. Calculation of pull-out forces as a function of pull-out velocities were
performed for a rough surface with a roughness of σ̃s = 2, a cohesive zone pa-
rameter λ = 5 and a moderately viscoelastic material k = 0.5. The pull-out force
as a function of pull-out velocity has been normalized to the rough surface limit
in the high velocity elastic regime (instantaneous modulus). The results are dis-
played on Fig. 10 where the isolated asperity result is also shown for comparison.
As expected both exhibit enhancement of the pull-out force in the intermedi-
ate regime where contact stress relaxation and crack tip creep occur at the same
time. Figure 10 clearly evidences that the enhancement of adhesion is much more
pronounced on rough viscoelastic surfaces than for an isolated asperity. Indeed
for elastic materials a roughness as large as σ̃s = 2 severely depresses the pull-out
force due to the stored elastic energy of the higher asperities. However for a
viscoelastic material these elastic stresses rapidly relax while the single asperity
adhesive force is enhanced through crack tip dissipation. As a result, even a very
moderately viscoelastic material is sufficient to enhance the effective adhesion on
rough surfaces by an order of magnitude over a large range of pull out forces
(Figure 10).

4 Conclusion

A simple model for the adhesive contact of rough viscoelastic surfaces has been
developed based on a Greenwood-Williamson roughness distribution. For that
purpose a simplified model has been proposed for the adhesive contact of vis-
coelastic asperities, assuming instantaneous loading and constant pull-out veloc-
ity. It retains the full phenomenology of the viscoelastic contact including stress
relaxation inside the contact zone and creep in the cohesive zone.

For elastic surfaces, it is well known that increasing roughness rapidly sup-
presses adhesion. Our calculations give a quantitative assessment of how effi-
ciently viscoelasticity restores adhesion on rough surfaces through the interplay
between contact stress relaxation and cohesive zone creep. The phenomenon
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operates in a wide range of pull-out velocities.
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6 Appendix – Computation of the total force

The total force writes as [15]:

P (t) = 4
∫ +∞

0
g(r, t)dr (46)

The contribution of the cohesive zone is of higher order in ǫ (cohesive zone size)
and is neglected, which is typical for large λ. Then Eq. 46 becomes P (t) =

4
∫ a(t)
0 g(r, t)dr and Eq. 13 becomes

g(r, t) =
∫ t

ta−(a(t))
dτψ(t− τ)

d

dτ
θ(r, τ) (47)

with θ(r, τ) = δ(τ)− δ0(r) which is Eq. 4. Inserting Eq. 47 into 46 and inverting
the order of integration (cf also Ref. [15], section 3.2.4) results in Eq. 18.

6.1 During the stick period

During the stick period by assumption a(t) = a0 is constant and min(a(t), a(τ)) =
a0. In addition for a sphere of radius R loaded as specified in section 2.2.1,
combining Eqs. 4 and 24

θ(r, τ) = (δ0 + τ δ̇ − r2/R)Θ(τ) (48)

Then Eq. 18 gives:

P1(t) = 4ψ(t)
∫ a0

0
dr(δ0 −

r2

R
) + 4a0δ̇

∫ t

0
dτψ(t− τ) (49)

P1(t) = 4ψ(t)(a0δ0 −
a3

0

3R
) + 4a0δ̇

∫ t

0
dτψ(t− τ) (50)

where P1 denotes the force during the stick period. The initial penetration δ0 is
given by the double Hertz model and writes:

δ0 =
a2

0

R
− σ0π

√
a0ǫ0√

2E∗

. (51)

This last equation, in combination with the previous one, gives Eq. 25.
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6.2 Decreasing contact radius

By assumption the contact radius is constant or monotonously decreasing from
τ = 0 so that min(a(t), a(τ)) = a(t) and Eq. 18 directly results in Eq. 31.
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Captions and Figures

Fig. 1: Schematics of the viscoelastic adhesive contact showing the gap between
the surfaces and the normal surface stress distribution. Special emphasis is given
to the cohesive zone where the attractive interactions operate across the gap
between surfaces.

Fig. 2: Schematics of the relation between g(a) – proportional to the stress
intensity factor – and the crack velocity (after [14]).

Fig. 3: Prescribed penetration as a function of time (δ(t)) and resulting con-
tact radius history (a(t)). The constant radius approximation proposed in the
present model is also shown as aappro(t). The end of the stick period is tf .

Fig. 4: Single asperity force plot for different values of the pull-out velocity

(from
˜̇
δ = −0.01 to

˜̇
δ = −1) and for the elastic limit (JKR) with the relaxed

modulus.
Fig. 5: Single asperity force plot for different values of the pull-out velocity

(from
˜̇
δ = −1 to

˜̇
δ = −50) and for the elastic limit (JKR) with the instantaneous

modulus.
Fig. 6: Force distribution during adhesion rupture on a rough surface showing

the contributions from asperities in the stick period and asperities with receding
contact radius. The proportion of asperities in contact is shown on the right hand
axis.

Fig. 7: Force plots for rough surfaces with increasing roughness. Here δ0 = 5
and δ̇ = −1.

Fig. 8: Force plots for a rough surface with σs = 2 for increasing pull-out
velocity at low velocities. Also shown is the elastic limit for the relaxed modulus.

Fig. 9: Force plots for a rough surface with σs = 2 for increasing pull-out
velocity at high velocities. Also shown is the elastic limit for the instantaneous
modulus.

Fig. 10: Pull-out force enhancement over elastic case as a function of pull-out
velocity for an isolated asperity and for a rough surface with σs = 2.
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