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Electron heating in metallic resistors at sub-Kelvin temperature

B. Huard, H. Pothier, and D. Esteve
Quantronics group, Service de Physique de l’Etat Condensé (CNRS URA 2464),

DRECAM, CEA-Saclay, 91191 Gif-sur-Yvette, France

K. E. Nagaev
Institute of Radioengineering and Electronics, Russian Academy of Sciences, Mokhovaya ulica 11, 125009 Moscow, Russia

(Dated: September 6, 2007)

In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-
Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds
mainly through two processes: electronic diffusion to and from the connecting wires and electron-
phonon coupling. The goal of this paper is to present a general solution of the problem, in a form
that can easily be used in practical situations. As an application, we compute two quantities that
depend on the electronic temperature profile: the second and the third cumulant of the current
noise at zero frequency, as a function of the voltage across the resistor. We also consider time
dependent heating, an issue relevant for experiments in which current pulses are used, for instance
in time-resolved calorimetry experiments.

PACS numbers: 72.15.Lh,73.50.-h,73.23.-b,73.50.+d,72.70.+m

I. MOTIVATIONS AND OUTLINE

When performing electrical measurements, the signal
to noise ratio can usually be improved by simply increas-
ing the currents or voltages. In low-temperature exper-
iments, this procedure is problematic because of Joule
heating, which can affect the temperature of the cir-
cuit under investigation or the temperature of resistors
on bias lines, leading to excess noise. Particularly criti-
cal is the situation in the sub-Kelvin range, because the
temperature of the electrons decouples from the lattice
temperature1,2,3,4. A very conservative, wide-spread rule
of thumb among experimentalists is that the voltage V
across the small conductors should not exceed kBTph/e,
with Tph the lattice (phonon) temperature. In contrast,
macroscopic components, like commercial resistors, are
believed to be immune to electron heating. In fact, the
first rule is severe, and the second assertion is often in-
correct. The goal of the present article is to provide the
experimental physicist with easy evaluation tools of heat-
ing effects, in order to optimize experiments.

The important parameters are the voltage V, the re-
sistance R, the lattice temperature Tph, the resistor vol-
ume Ω and a parameter Σ that describes electron-phonon
coupling. The first step is to calculate the characteristic
temperature TΣ, which is the temperature that the elec-
trons would reach if cooling would occur only through
the coupling to a bath of zero-temperature phonons:

TΣ =

(

V 2

ΣΩR

)1/5

. (1)

The average electron temperature can then be directly
read from Fig. 2, the central result of this work, in which
the voltage V , the average temperature Tav and the lat-
tice temperature Tph are all expressed in units of TΣ. In
the section IIA, we explain how this result is obtained,

and give analytical expressions in various limits. The
results are used to calculate the second and third cumu-
lant of the current noise produced by the resistor (section
IIB, Fig. 4). Numerical applications are carried out ex-
plicitely in section IIC, showing in particular that heat-
ing in commercial resistors can be important. In section
III, we address time-dependent situations, and calculate
how fast electrons heat up in a resistor when a current is
applied, and how fast they cool down when the current
is switched off. For small voltages (eV ≪ kBTΣ), the
variations of temperature in both transients is exponen-
tial, with the diffusion time τD across the whole conduc-
tor as a characteristic time (see Fig. 5). In the opposite
limit (eV ≫ kBTΣ), heating is exponential, but cooling
proceeds very slowly, with a powerlaw dependence (see
Fig. 6). The timescale is the electron-phonon scattering
time τe−ph at temperature TΣ, defined by Eq. (17). As
a numerical application, we consider in section IIIC a
situation where repeated current pulses are applied to a
resistor, and compute the time-dependence of the elec-
tron temperature (Fig. 7).

II. STATIONARY SITUATIONS

A. Solution of the heat equation

When a voltage V is applied to a two-terminal resis-
tor (see top of Fig. 1), the Joule power V 2/R is deliv-
ered to the electrons. This power can dissipate by two
mechanisms: the first one, which dominates at room tem-
perature or in macroscopic resistors, is phonon emission.
It follows, at temperatures well below the Debye tem-
perature, a T n(x) − T n

ph dependence, with 4 ≤ n ≤ 6,

and T (x) the local electron temperature, Tph the phonon
temperature5. The second mechanism is the simple diffu-
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sion of the energetic electrons out of the resistor. The en-
ergy is then dissipated in the connecting leads, which are,
in typical situations, large and low-resistive. The balance
between the Joule power and the two cooling mechanisms
can be expressed in the form of a heat equation6

d

dx

(

LoT (x)

R

d

dx
T (x)

)

= −V 2

R
+ΣΩ

(

T 5(x) − T 5
ph

)

(2)

with x the position along the resistor in reduced units
(x runs from 0 to 1), Lo = π2k2

B/3e2 the Lorenz num-
ber, Ω the resistor volume, Σ the electron-phonon cou-
pling constant (typically Σ ≃ 2 nW/µm3/K5 for good
metals7). The left hand side of Eq. (2) accounts for heat
transport by electron diffusion, which is expressed by the
Wiedemann-Franz law, stating that the electron thermal
conductivity is proportional to the product of the elec-
trical conductivity and the electron temperature. The
following assumptions have been made to write Eq. (2):

1. The electron temperature T (x) is assumed to be
well defined locally, i.e. the local electron energy
distribution function is a Fermi function. This re-
quires that the thermalization of electrons among
themselves (e.g. by Coulomb interaction) occurs
faster than the diffusion of electrons across the
resistor8, a condition usually obeyed except for
short wires (length . 50 µm) made of very pure
materials9.

2. The last term of the equation, which describes cool-
ing by phonons, assumes that the lattice temper-
ature Tph does not depend on the local electron
temperature T (x). Corrections due to the Kapitza
resistance between the phonons of the resistive film
and the substrate could in principle be included3,10,
but their contribution is not essential in practice.

3. The heat power transfered to phonons was taken
proportional to T n(x) − T n

ph with n = 5. Theoret-
ically, it is predicted that the exponent n, which
is related to a E2−n dependence of the electron-
phonon scattering rate with electron energy E,
can range from 4 to 6, depending on the rela-
tive sizes of the thermal phonon wavelength and
the electron mean free path, on the dimension-
ality of the phonon system, and on the dynam-
ics of impurities5. In most experiments, values
close to n = 5 have been found (see discussions in
Refs. 5,7,11), therefore our choice. The calculations
can however be easily extended to other values of
n, and the results presented in Fig. 2 apply, with
another definition of TΣ, as discussed in the follow-
ing.

4. Radiative cooling11, which has a negligible effect in
resistors connected to large, non-superconducting
contacts12, is neglected.

The heat equation (2) has to be solved with boundary
conditions for T (x) at x = 0 and x = 1. When the con-
necting wires to the resistor are low-resistive and very
large compared to the resistor, as is the case for macro-
scopic resistors made of thin and narrow metallic stripes
of metal, one can assume T (0) = T (1) = Tph. This sim-
ple hypothesis will be made in the following. For on-chip
thin-film resistors, heating of the contact pads themselves
may however not be negligible13.

Before a general solution of Eq. (2) is presented, we re-
call simple limits. The so-called interacting hot-electron
limit6 is obtained by neglecting phonon cooling:

T (x) =

√

T 2
ph +

3

π2
x(1 − x)

(

eV

kB

)2

(3)

(see left panel of Fig. 1, dashed lines). For Tph = 0,

the maximal temperature is T (1
2 ) = (

√
3/2π) eV/kB ≃

0.28 eV/kB, and the average temperature is Tav =
∫ 1

0
T (x)dx = (

√
3/8) eV/kB ≃ 0.22 eV/kB. Electron-

phonon coupling further reduces the temperature, so that
this is an upper bound on the average electron tempera-
ture, which numerically reads, keeping14 now Tph:

Tav

Tph
≤

√

1 +

(

0.22
eV

kBTph

)2

. (4)

In particular, the rule of thumb eV = kBTph corresponds
to a 2.5% average overheating of the electrons. Numeri-
cally, one obtains the equivalent expression

Tav [mK] ≤
√

T 2
ph[mK]+(2.5 × V [µV])2. (5)

In the opposite limit where cooling by diffusion can be
neglected, the electron temperature is homogeneous and
equal to3

T =
(

T 5
ph + T 5

Σ

)1/5
. (6)

In the following, we call this limit “the fully thermalized
regime”. In the limit Tph = 0, the temperature grows as

V 2/5 (see Fig. 3).
In intermediate regimes, the temperature profile is ob-

tained by solving numerically the heat equation. For gen-
erality, it is convenient to rewrite it in reduced units.
One possibility is to take as a reference the “cross-over

temperature”4 Tco =
(

ΣΩRe2/k2
B

)−1/3
, which is the en-

ergy scale for which phonon cooling and diffusion cooling
are equaly important. This temperature is an intrinsic
quantity for the resistor, which in particular does not de-
pend on V or Tph. However, it does not correspond to
the electron temperature in any limit, therefore we pre-
fer to take as a reference TΣ, keeping in mind that it
depends on V. Defining θ(x) = T (x)/TΣ, v = eV/kBTΣ

(= (eV/kBTco)
3/5), θph = Tph/TΣ (∝ V −2/5), Eq. (2)

reads:

d2

dx2
θ2(x) =

6

π2
v2

(

θ5(x) − θ5
ph − 1

)

. (7)
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The temperature profile being symmetric with respect
to the middle of the wire, Eq. (7) needs to be solved for
0 < x < 1

2 with the boundary conditions θ(0) = θph and

θ′(1
2 ) = 0. Instead of solving this non-linear differential

equation with boundary conditions specified at different
points, it is convenient to rewrite it in the following in-
tegral form:

2
√

3v

πθm
x =

∫ θ2(x)/θ2
m

θ2
ph

/θ2
m

du

(

2

7
θ5

m

(

u7/2 − 1
)

− λ5(u − 1)

)−1/2

(8)

with θm = θ(1
2 ) and λ =

(

θ5
ph + 1

)1/5

. The value of θm

is obtained by solving Eq. (8) for x = 1/2. In the left
panel of Fig. 1, the temperature profile along the resistor
is given for v = 1, 2, 3, 10 and 30, assuming Tph = 0. At
v . 1, one recovers the result of Eq. (3), plotted as dashed
lines: phonon cooling can be neglected. For v & 10, it
is an excellent approximation to take θm = λ in Eq. (8),
a value that does not depend on v. T (x) is then a func-
tion of xv only, which is essentially constant around the
middle of the wire, whereas at a distance 5/v from the
contacts one obtains the profiles shown in the right panel
of Fig. 1 for θph = 0 (see note 15), 0.5 and 1. The charac-
teristic length over which the electron temperature varies

from Tph to TΣ is therefore LΣ = L/v =
√

3
8 L3/5L

2/5
e−ph,

where the “electron-phonon length”

Le−ph =

(

8kB√
3e

)5/2
(

ρΣV 3
)−1/2

(9)

(ρ being the resistivity) is defined, following16 Ref. 6, as
the resistor length for which 4kBTΣ/R is equal to the

current noise in the interacting hot-electron regime
√

3
2 eI.

This length is typically of the order of a few µm for volt-
ages of the order ot 1mV.

From the complete temperature profile θ(x), the av-
erage electron temperature Tav is obtained using Tav =

TΣ

∫ 1

0 θ(x) dx. The central result of this work is the re-
sulting plot, shown in Fig. 2, of the average temperature
Tav as a function of the voltage V , both in units of TΣ,
for Tph/TΣ = 0, 0.25, 0.5, 0.75 and 1. At θph = 0 and

v . 2, Tav ∼
√

3
8

eV
kB

(dotted line), whereas for v & 4,

Tav/TΣ ≈ 1− 1.16/v (dashed line). This 1/v dependence
is due to the crossover regions of width ∼ 5/v at the re-
sistor ends. Figure 2 can be directly used to read out the
average electron temperature Tav for a given set of exper-
imental parameters (V, Tph), after having computed TΣ

with Eq. (1). Interestingly, the corresponding curves for
other exponents of the temperature in the last term of
Eq. (2) (n = 4 or 6 instead of 5) are almost identical (see
inset), and the same curves can be used to evaluate Tav,
however with the generalized definition of the reference

temperature TΣ =
(

V 2/ΣΩR
)1/n

.
However, because of the use of reduced units which de-

pend on V, the v-dependence of Tav at a fixed value of
θph shown in Fig. 2 does not correspond to a situation in

which V is changed at a fixed Tph, since θph ∝ V −2/5.
In order to visualize how temperature increases with V
at a given phonon temperature, we plot in Fig. 3 the av-
erage temperature Tav(V ) for various Tph, with V and

Tph given in units of4 Tco =
(

ΣΩRe2/k2
B

)−1/3
, which

is constant for a given resistor. The range in voltage
V is the same as in Fig. 2. We have used the relations
v5/3 = eV/kTco; (Tav/TΣ) v2/3 = Tav/Tco.

B. Second and third cumulants of the current noise

at zero frequency

The temperature profile can be used to evaluate the
current noise properties of the resistor. We focus here
on the second (S2) and third (S3) cumulants of noise at
low frequencies (ℏω ≪ eV for S2, ℏω ≪ eV, ~/τD for S3

(see Ref. 17 ), with τD = L2/D the diffusion time, D the
diffusion constant):

S2 = 2

∫∫

dt 〈δI(0)δI(t)〉

and

S3 =

∫∫

dt1dt2 〈δI(0)δI(t1)δI(t2)〉

0 1
0.0

0.5

1.0

0 5/v

v=2

ph=0
v=30

v=10

v=3  

 

T(
x)

 / 
T

x

v=1

ph=0
ph=0.5

 

 

x

v>10

ph=1

V

x0 1

T=T
ph

T=T
phT(x)

resistance R, volume 

FIG. 1: (Color online) Top: Resistor biased by a voltage V
and placed between two connecting wires in which the elec-
tron temperature T and the phonon temperature Tph are
equal. Left panel: Solid lines: temperature profile in the
resistor for different values of v = eV/kBTΣ with TΣ =
(

V 2/ΣΩR
)1/5

. Dashed lines: temperature profile expected
when phonon cooling is neglected (Eq. (3)). Right panel: tem-
perature profile near the ends of the resistor for v > 10 and
θph = Tph/TΣ = 0, 0.5, 1.
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with δI(t) = I(t) − 〈I〉 . It has been shown that when
phonon cooling can be disregarded and eV ≫ kBTph, S2

and S3 are proportional to the applied current6,13: S2 =
F2 × 2eI and S3 = F3 × e2I with F2 and F3 generalized
“Fano factors”. When furthermore the rate of electron-
electron interaction is negligible compared to 1/τD, the
distribution function is not a Fermi function, but a func-
tion with two steps8,18, and18,19,20 F2 = 1

3 ≈ 0.33;

F3 = 1
15 ≈ 0.067. In the opposite limit, where electron-

electron interaction is strong, electrons thermalize locally
to distribute in energy according a Fermi function, and
the temperature profile is given by Eq. (3). One then

obtains22,35 F2 =
√

3
4 ≈ 0.43 and21 F3 = 8

π2 − 9
16 ≈ 0.248.

In presence of strong phonon cooling (v ≫ 1), the elec-
tron temperature becomes homogeneous, at a value TΣ

smaller than eV/kB. It is then expected21 that F2, F3 →
0.

For intermediate coupling to phonons, F2 and F3 de-
pend on the voltage across the resistor. Their value
are obtained from the full solution of the heat equation:
the second cumulant is given by a Johnson-Nyquist-like
formula6 S2 = 4kBTav/R in which the noise tempera-
ture is the average electron temperature Tav, yielding
F2 = 2kBTav/eV = 2θav/v. This formula can be un-
derstood as resulting from the added Johnson-Nyquist
noise of small sections of the resistor, each at a temper-
ature T (x). The decay of F2 at large V was discussed in
Ref. 22 , and the complete crossover was calculated in
Ref. 23 by numerical integration of Eq. (2). In turn, F3

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20
0.0

0.5

1.0

ph=0

 

 

T av
 / 

T

v = eV / kBT

ph=1

ph=0

 

 

 

 n=4,5,6

FIG. 2: (Color online) Average temperature Tav in units of
TΣ, as a function of v = eV/kBTΣ, for θph = Tph/TΣ = 0,
0.25, 0.5, 0.75, 1 (from bottom to top). The dotted line corre-

sponds to the low-v approximation Tav =
√

3
8

eV
kB

, the dashed-

dotted line to the large-v approximation Tav = 1 − 1.16/v.
Inset: at θph = Tph/TΣ = 0, comparison of the evolution of
the average temperature with v for various exponents n of
the temperature in the expression of the heat flow through
electron-phonon coupling.

is given by (see Appendix)

F3 =
36

π2

∫ 1

0

dxdy
1

θ(x)
G1(θ, x, y) {θ(y) − 2θav} (10)

where G1(θ, x, y) the Green’s function such that
(

∇2 + 15
π2 v2 θ3(x)

)

G1(θ, x, y) = δ(x − y) and
G1(θ, 0, y) = G1(θ, x, 0) = 0. The calculation of F3

is detailed in the Appendix. The right panel of Fig. 4
shows the voltage dependence of F2 (blue line) and
F3 (red line) as a function of v (bottom axis) and

L/Le−ph =
(√

3v/8
)5/2

(top axis), for Tph = 0. Also
shown with a dashed line is the curve obtained for F2

when electron diffusion is neglected22, using Eq. (6)
(dashed line), which gives F2 = 2/v ∝ V −3/5. In turn,
at large voltages, F3 ∝ v−2 ∝ V −6/5. If one considers
a situation where the resistor length L is varied at
constant current, then F2 ∝ 1/L and F3 ∝ 1/L2.
The decay to zero of F2 and F3 from the interacting

hot-electron values (
√

3
4 and 8

π2 − 9
16 ) is therefore very

slow, as already pointed in Ref. 21,23. The non-Gaussian
character of the current noise, evidenced by F3 6= 0, is
washed out at L/Le−ph & 10.

C. Examples

We consider here a few cases illustrating the use of
the results given in the preceding sections. As a first
example, we consider a 10 µm-long, 100 nm-wide and
5 nm-thick Cr resistor with resistance R = 25 kΩ like
these used in Ref. 25, biased at V = 1 mV and placed at

0 50 100
0

2

4

6
Tph / Tco = 6

Tph / Tco = 0

 T
av

 / 
T co

 

 

eV / kBTco

FIG. 3: (Color online) Average temperature Tav as a func-
tion of voltage V, for various temperatures Tph, all in units of

Tco =
(

ΣΩRe2/k2
B

)−1/3
. The value of Tph/Tco is given by the

intersection of the curves with the vertical axis. Blue dashed
line is the reference temperature TΣ.
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Tph = 20 mK. Assuming ΣCr = 2 nW/µm3/K5, the char-
acteristic temperature is TΣ = 1.3 K, and the voltage and
phonon temperature in reduced units v = eV/kBTΣ ∼ 9
and θph = 0.015. The noise temperature is directly read
from Fig. 2: Tav ∼ 0.87 × TΣ ∼ 1.15 K. At this voltage,
heating of the resistor is thus very important, an effect
which hindered the authors of Ref. 25 from drawing clear-
cut conclusions from Coulomb blockade measurements
at finite voltage. Increasing the resistor volume Ω with
“cooling fins” can help decreasing electron heating3, but
such a procedure is extremely inefficient since the char-
acteristic temperature TΣ decreases as Ω−1/5 only.

As a second application, we now consider a com-
mercial macroscopic surface mount resistor, with R =
500 Ω. Such resistors, made of thin (∼ 10 nm) NiCr
films26 with resistivity ρ ∼ 100 µΩ cm and dimensions
∼1mm×0.2mm, were used as bias resistors in mea-
surements of the state of superconducting Josephson
Q-bits27,28 performed at 15 mK, with a bias current
∼ 0.8 µA, resulting in a voltage V ∼ 400 µV. The
corresponding temperature scale TΣ ∼ 150 mK yields
v = eV/kBTΣ ∼ 30 and θph ∼ 0.1, hence, from Fig. 2,
Tav ∼ TΣ ∼ 150 mK. Even in such a macroscopic resis-
tor, the volume is not sufficient to provide with enough
electron-phonon coupling, and heating is important. In
the next section, we show how this heating is limited
when pulses are used instead of static voltages.

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5
10-1 101 103

F 2 ,
 F

3

F2

F3

v = eV / kBT

L / Le-ph

8/ 2-9/16

3 / 4

 

FIG. 4: (Color online) Solid lines: Fano factors F2 = S2/2eI
(blue) and F3 = S3/e2I (red) for the zero-frequency second
and third cumulant of noise, from the hot electron limit to
the fully thermalized regime. Dashed-dotted line: asymptotic
dependence of F2 neglecting electron diffusion: F2 = 2/v. Top
axis is resistor length over Le−ph (see Eq. (9)).

III. TIME-DEPENDENT SITUATIONS:

SWITCHING ON AND OFF JOULE HEATING

The case of a constant voltage V across the resistor,
which was investigated above, can be extended to the
case of slowly varying voltages directly. However, when
V changes on timescales shorter than the diffusion time
or than the electron-phonon scattering time29 (see be-
low), the previous results cannot be used to calculate
instantaneous temperatures. These issues are solved by
adding to the heat equation (2) a time-dependent term
dQ/dt = CedT/dt, with Ce = γTΩ the electronic heat ca-
pacity, γ = (π2/3)k2

BνF (from Fermi liquid theory), with
νF the density of states at Fermi energy (spin degeneracy
included). When V (t) = V f(t), the time-dependent heat
equation can then be rewritten, in reduced units, as

∂θ2

∂τ
=

∂2θ2

∂x2
− 6

π2
v2

(

θ5 − θ5
ph − f2(τ)

)

(11)

where τ = t/τD is the reduced time with τD = L2/D
the diffusion time. Note that the reference temperature
TΣ used to define θ(x) = T (x)/TΣ is calculated with
the voltage scale V, not with the time-dependent value
V (t). In the following, we treat more explicitely two sit-
uations: how a resistor heats up when the voltage is ap-
plied at t = 0, i.e. f(τ) = H(τ), and how a resitor
cools down when the voltage is set to zero at t = 0, i.e.

f(τ) = 1 − H(τ). Here, H(τ) is the Heaviside function
(0 for τ < 0, 1 for τ > 0). These situations also allow to
describe experiments in which current or voltage pulses
are used like, for example, when measuring the switching
rate of Josephson junctions27. Understanding how the
pulse characteristics can reduce the noise in such mea-
surements is therefore important to design the readout
of superconducting Q-bits.

When a voltage is applied, the linear drop of the elec-
trical potential, which results from the collective charge
modes, establishes after an RC time, where the capaci-
tance C is the capacitance of the wire to ground. This
time is generally much shorter than the time necessary
to build up the temperature profile, which involves dif-
fusion of individual electrons. Hence, we consider here
that Joule heating is homogeneous as soon as a voltage
is applied. When v . 1, the temperature profile is en-
tirely determined by the temperature at the ends of the
resistor, therefore a steady-state regime is reached only
when the electrons have diffused across the whole resistor
and the characteristic time is the diffusion time τD. If
v ≫ 1, the transient is shorter because, apart from very
close to the ends, the temperature is mostly determined
by a local equilibrium between Joule heating and phonon
emission. We now treat quantitatively these two limits.
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A. Small v limit

If v . 1, θ(x, t) − θph ≪ 1 even when the stationary
regime is reached, and Eq. (11) reduces to

∂θ2

∂τ
=

∂2θ2

∂x2
+

6

π2
v2f2(τ). (12)

As shown in section IIA, the proper energy scale when
v . 1 is eV, and the solution of Eq. (12) that satisfies the
boundary conditions T (0, τ) = T (1, τ) = Tph reads

(

kBT (x, τ)

eV

)2

=

(

kBTph

eV

)2

+
∑

k odd

ak(τ) sin(πkx)

(13)
with ak(τ) solution of

dak(τ)

dτ
+ π2k2ak(τ) =

24

π3k
f2(τ). (14)

In the case where f(τ) = H(τ), heating is then given

by ak(τ) =
(

24/π5k3
)

(1 − e−π2k2τ ), and in the case
f(τ) = 1 − H(τ), cooling from the profile (3) follows

ak(τ) =
(

24/π5k3
)

e−π2k2τ . Corresponding temperature
profiles at various times are plotted in the top panels
of Fig. 5 assuming Tph = 0, whereas the time evolution
of the average temperature Tav is plotted in the bottom
panels. At very short times, the average temperature
grows as kBTav/eV =

√
6 τ/π. At τ & 0.01, a better

approximation is

kBTav

eV
≃

√
3

8

√

1 − exp(−10 τ), (15)

which cannot be distinguished from the exact solution in
Fig. 5. At τ ≃ 0.5, the asymptotical temperature profile
given by Eq. (2) is essentially established. Conversely,
after the voltage is turned off, the temperature decay is
well approximated (within the line width in Fig. 5) by

kBTav

eV
≃

√
3

8
exp(−5 τ). (16)

Hence, in the low-voltage regime, heating and cooling
occur exponentially, and the timescale is the diffusion
time τD. In the example of the 500 Ω commercial resistor
in section IIB, τD ∼ 3 ms. For metallic wires made of pure
materials26 with an elastic mean free path of the order
of 40 cm2/s, τD ∼ 20 ns for a length L ∼ 20 µm.

B. Large v limit

If v ≫ 1, it was shown in section IIA that the tem-
perature becomes almost homogeneous in the wire. The
relevant timescale is then the electron-phonon scattering
time11,30,33 at the characteristic temperature TΣ :

τe−ph (TΣ) =
γ

ΣT 3
Σ

=
π2

3

L2
Σ

D
(17)

with LΣ the characteristic length for the variation of
T (x) introduced in section IIA. Numerically, γ/Σ ≈
0.03 µs K3. Using 6

π2 v2τ = 2τ∗ with

τ∗ = t/τe−ph (TΣ) , (18)

Eq. (11) reduces to

∂θ2

∂τ∗
= −2

(

θ5 − θ5
ph − f2(τ∗)

)

(19)

which for θph = f = 0 is simply equivalent to

∂T

∂t
= − T

τe−ph (T )
(20)

expressing that the instantaneous decay rate of T is ex-
ponential with a characteristic time τe−ph (T ) . Equa-
tion (19) yields

∫ θ2(τ∗)

θ2(0)

dw

f2(τ∗) + θ5
ph − w5/2

= 2 τ∗. (21)

When f(τ) = 1 − H(τ) and Tph = 0, the temperature
decay from TΣ has a simple form:

θ(τ∗) = (1 + 3τ∗)−1/3 . (22)

This temperature decay, which was directly measured
in Ref. 11 , follows a power law only, so that it takes
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FIG. 5: (Color online) Time evolution of the temperature pro-
file (top panels) and of the average temperature Tav (bottom
panels) in the limit v ≪ 1, for Tph = 0. Left panels: heat-
ing sequence of the resistor when V (t)/V = H(t) (as shown
in inset); right panels: cooling sequence of the resistor when
V (t)/V = 1 − H(t) (as shown in inset). The profiles are
plotted at various values of t/τD, with τD = L2/D the dif-
fusion time. The colors of the solid curves in the top panels
corresponds to those of the square symbols in the bottom pan-
els. The curves in the bottom panels cannot be distinguished

from kBTav/eV ≃
√

3
8

√

1 − exp(−10τ ) and
√

3
8

exp(−5τ ), re-
spectively.
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a very long time to recover the base temperature after
the voltage is set to 0, which is due to the divergence
of τe−ph (T ) when T → 0. The results of Eq. (21) with
f = 1 (heating) and f = 0 (cooling) are plotted in Fig. 6
in the case Tph = 0, with linear (top) and logarithmic
(bottom) time scales. The temperature rise is well ap-

proximated by θ(τ∗) ≈
√

2 τ∗ when τ∗ . 0.2 (dashed
line) and θ(τ∗) ≈ 1 − 0.86 exp(−4.2 τ∗) when τ∗ & 0.2
(dotted line). More generally, when τ∗ ≪ 1, for Tph 6= 0,

θ(τ∗) ≈
√

θ2(0) + 2(1 + θ5
ph − θ5(0)) τ∗. (23)

Even though v ≫ 1, we now estimate cooling by elec-
tron diffusion to the connecting leads. Starting from
a constant temperature T0, cooling by diffusion follows

Eq. (13) with ak(τ) =
(

kBT0

eV

)2 4
π

e−π
2

k
2

τ

k , and Tav/T0 ∼
exp(−5τ). Because of this exponential dependence, to
be compared with the powerlaw (22), diffusion can con-
tribute to the cooling when t becomes comparable to τD.

C. Numerical application

In experiments where the voltage is applied in repeated
pulses, heating is reduced, and the temperature oscil-
lates in time. To illustrate this effect, we reconsider
the second example of section IIC, but we now assume

0
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FIG. 6: (Color online) Evolution of the temperature with time
in linear (top) and log (bottom) scale in the limit v ≫ 1, for
Tph = 0. Left panels: heating sequence of the resistor when
V (t)/V = H(t) (as shown in inset); right panels: cooling
sequence of the resistor when V (t)/V = 1 − H(t) (as shown
in inset). Times are given in units of the electron-phonon time
at temperature TΣ : τe−ph (TΣ) = γ/

(

ΣT 3
Σ

)

. Blue dashed line

is
√

2 τ∗, red dashed-dotted line is 1−0.86 exp(−4.2 τ∗), with
τ∗ = t/τe−ph (TΣ) .

that the voltage is applied during short pulses of du-
ration tp = 0.1 µs, repeated every period tr = 20 µs
(which corresponds to actual experimental conditions in
Ref. 27,28 ). We now show that despite the short duty
cycle d = tp/tr = 0.005, heating is not negligible. In
our example, v ∼ 30, therefore the relevant timescale
when V is applied is τe−ph (TΣ) = γ/

(

ΣT 3
Σ

)

∼ 10 µs.
Equation (23) with θph = 15 mK/ TΣ = 0.1 gives T (tp) =
0.17 TΣ = 25 mK, indicating slight heating by the first
pulse. The resistance then cools down during a time
tr before the next pulse is applied, following Eq.(21),
to T = 0.169 TΣ, hardly less than at the end of the
first pulse34. The temperature rises further during the
next pulses, till steady oscillations establish. The full
time evolution of T shown in Fig. 7 is obtained by iter-
ating Eq.(21). At each pulse, the temperature rise gets
smaller than during the preceeding pulse, because the
starting temperature is larger and the heat transfer to
phonons becomes more efficient. For the same reason,
the cooling between the pulses gets more and more ef-
ficient. At t & 250 µs, a stationary regime is reached,
with the reduced temperature oscillating between θmin

to θmax such that
∫ θ2

max

θ2
min

dw/(1 + θ5
ph − w5/2) = 2τ∗

p and
∫ θ2

min

θ2
max

dw/(θ5
ph − w5/2) = 2(τ∗

r − τ∗
p ). One obtains θmin =

0.33 (Tmin = 49 mK) and θmax = 0.36 (Tmax = 54 mK).
The amplitude of the oscillations ∆θ = θmax − θmin is
therefore very small. However, it increases with tp, as
shown in the inset of Fig. 7, and can become sizeable.

The main features of the time evolution of the temper-
ature can be calculated more simply, from the average
Joule power d × V 2/R. Using section II, the character-
istic temperature is then T eff

Σ = 52 mK, which fits with
the average temperature in the stationary regime of the
pulse sequence. According to section IIIB, this tempera-
ture is reached in a time τe−ph(T eff

Σ ) ∼ 220 µs. The rise of
temperature with time calculated with Eq. (21), in which
all quantities (θ, τ∗) are calculated using T eff

Σ , is shown
as a dotted line in Fig. 7, and reproduces well the overall
behavior. The amplitude ∆θ of the temperature oscilla-
tions can be evaluated using Eq. (23) under the assump-
tion that the starting temperature is T eff

Σ , which is a good
approximation for oscillations of small amplitude, and
considering that the voltage V is always present during
the pulse of duration tp, i.e. with θ(0) = T eff

Σ /TΣ = d1/5

and τ∗ = tp/τe−ph (TΣ) . If θph ≪ 1 and d ≪ 1, one ob-
tains ∆θ ≈ θ(0)τ∗, an approximation only 20% larger
than the exact result in the worst case of the inset of
Fig. 7 (tp = 2 µs).

IV. SUMMARY

The solution of the heat equation in a resistor
is determined by a characteristic temperature TΣ =
(

V 2/ΣΩR
)1/5

. If v = eV/kBTΣ . 1, cooling by phonons
is negligible and T (x) is given by Eq. (3), the average

temperature by Tav =
√

3/8 (eV/kB). If v & 10, the tem-
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perature is (T 5
Σ+T 5

ph)
1/5 except at distances shorter than

∼ 5L/v from the ends. At v & 4 and Tph = 0, the av-
erage temperature is Tav ≈ TΣ(1 − 1.16/v). Using these
results, we have calculated the decay of the Fano factors
F2 and F3 relative to the second and third cumulants of
current fluctuations with the resistor length L. We have
also addressed time-dependent situations to describe the
heating and cooling of resistors. If v . 1, the characteris-
tic timescale is the diffusion time τD and heating follows

kBTav(t) ≃
√

3
8 eV

√

1 − exp(−10τ), cooling kBTav(t) ≃
√

3
8 eV exp(−5τ), with τ = t/τD. If v ≫ 1, the instanta-

neous relaxation time is τe−ph (T ) = γ/
(

ΣT 3
)

. Heating
from T (0) to TΣ is achieved in a time τe−ph (TΣ) , fol-

lowing θ(τ∗) ≈
√

θ(0)2 + 2(1 + θ5
ph − θ(0)5) τ∗ at short

times and θ(τ∗) ≈ 1 − 0.86 exp(−4.2 τ∗) at long times,
with θ = T/TΣ and τ∗ = t/τe−ph (TΣ). Cooling from a
temperature T0 occurs very slowly, along a powerlaw: at

Tph = 0, T (t)/T0 = (1 + 3t/τe−ph(T0))
−1/3.

Finally, we recall that the actual temperature can be
higher than the predictions made here for at least two
reasons. First, the electronic temperature can be larger
than Tph in the connecting wires because of their fi-
nite resistivity13,22 or because of imperfect thermaliza-
tion to the cryogenic unit. Second, we have neglected
the Kapitza resistance10, due to which the phonon tem-
perature inside the resistor can differ from the bath tem-
perature Tph. However, this latest effect is relatively less
important in very thin resistors because the ratio of the
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FIG. 7: (Color online) Main panel: Time-dependence of
the temperature of a commercial macroscopic surface mount
500 Ω resistor (see text) heated by voltage pulses (bottom
curve) of length tp = 0.1 µs applied every 20 µs. Dashed-
dotted line is the predicted heating with the average Joule
power. Inset: (blue dashed lines) minimal and maximal tem-
perature reached in the stationary regime as a function of the
pulse length tp. In red solid line, temperature evaluated with
the average Joule power.

heat flow from electrons to resistor phonons to the heat
flow from resistor phonons to substrate is proportional
to the film thickness3.

V. APPENDIX: CALCULATION OF THE

THIRD CUMULANTS OF CURRENT IN

PRESENCE OF ELECTRON-PHONON

SCATTERING

The calculation of the third cumulant of current in
presence of electron-phonon scattering is an extension of
the expressions of Pilgram et al.17. The third cumulant at
zero frequency is expressed as a function of the correlator
between temperature and current fluctuations:

S3 =
6kB

R

1
∫

0

dx〈δT (x)δI〉. (24)

To calculate the integrand, we start from the stochastic
diffusion equation for the fluctuations δf of the electron
energy distribution function

(

∂

∂t
− 1

τD

∂2

∂x2

)

δf − δIee − δIe−ph

= −eδφ̇
∂f

∂ε
− 1

L

∂

∂x
δF imp − δF ee (25)

with δIee the linearized electron-electron diffusion inte-
gral, δIe−ph the linearized electron-phonon diffusion in-
tegral, δF imp and δF ee random extraneous sources asso-
ciated with electron-impurity and electron-electron scat-
tering. The correlation function of extraneous sources
is

〈δF imp(ε, x)δF imp(ε′, x′)〉ω = 2
D

νF Ω
δ(x − x′)δ(ε − ε′)

× f(ε, x)[1 − f(ε, x)]. (26)

The energy distribution function is assumed to have
a Fermi shape with coordinate dependent temperature
T (x) and electrical potential φ(x) :

f(ε, x) =

[

1 + exp

(

ε − eφ(x)

kBT (x)

)]−1

. (27)

To derive the correlator 〈δTe(x)δI〉ω , Eq. (25) is multi-
plied by ε and integrated over energy22, assuming that
the rate of energy dissipation associated with electron–
phonon scattering is of the form

νF

∫

dε εIe−ph = Σ
[

T 5(x) − T 5
ph

]

. (28)

The electron-electron collision integral and the associated
extraneous source drop out because of energy conserva-
tion, and one obtains

(

∂

∂t
− 1

τD

∂2

∂x2

)

(

e2Lo TδT
)

+ 5ν−1
F Σ T 4 δT−

− 1

τD

∂2

∂x2

(

e2φδφ
)

= − 1

L

∫

dε ε
∂

∂x
δF imp. (29)
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Now we multiply Eq. (29) and the equation for the fluc-
tuations of the total current, which in the low-frequency
limit reads18

δI =
eνF Ω

L

∫

dε

∫

dx δF imp. (30)

Upon averaging, it gives in the low-frequency limit

∂2

∂x2
[LoT 〈δT (x)δI〉ω] − Loα T 4 〈δT (x)δI〉ω

= − ∂2

∂x2
[φ〈δφ(x)δI〉ω ] +

2

e

∂

∂x

∫

dε εf(1 − f). (31)

with α = 5ΣΩR/Lo. The right-hand side of this equation
was calculated in Ref. 17 . The solution of this equation
may be written in a symbolic form as

〈δT (x)δI〉ω =
2kB

LoT

(

∂2

∂x2
− α T 3

)−1

×

×
{

∂(φT )

∂x
− ∂2

∂x2

[

φ

(

∂2

∂x2

)−1
∂T

∂x

]}

,

(32)

where the symbol (∂2/∂x2−f)−1 is the Green’s function
G(x, y) such that (∂2/∂x2 − f)G(x, y) = δ(x − y) and
G(0, y) = G(x, 0) = G(1, y) = G(x, 1) = 0. Using φ =
−V x, the expression in brackets greatly simplifies:

{

∂(φT )

∂x
− ∂2

∂x2

[

φ

(

∂2

∂x2

)−1
∂T

∂x

]}

= V (T − 2Tav).

(33)
To calculate the third cumulant of the current, one has to
solve Eq. (32) and substitute the solution into Eq. (24).
The generalized Fano factor F3 = S3/e2I is then

F3 =
36

π2

∫ 1

0

dx
1

T (x)

(

∂2

∂x2
− α T 3(x)

)−1

{T − 2Tav}
(34)

=
36

π2

∫ 1

0

dxdy
1

θ(x)
G1(θ, x, y) {θ(y) − 2θav} (35)

with G1(θ, x, y) the Green’s function such that

(

∂2

∂x2
− 15

π2
v2 θ3(x)

)

G1(θ, x, y) = δ(x − y), (36)

which can be calculated from21

G0(x, y) =

(

∂2

∂x2

)−1

= min(x, y) (max(x, y) − 1) (37)

using

G1 =

(

1 − 15

π2
v2 G0θ

3(x)

)−1

G0. (38)

In practice, we performed this calculation by discretiza-
tion of the coordinates and matrix inversion: the resistor
is cut into N pieces of length ε = 1/N, and the function
G0(x, y) is represented with a matrix G0 such that

G0
ij = − ε

N
min(i, j)(max(i, j) − 1) (39)

(0 ≤ i, j ≤ N). The term 15
π2 v2 G0θ

3(x) is represented by
the matrix F build on the calculated temperature profile
θ(x) using

Fij = G0
ij ×

15

π2
v2 θ3(j ε). (40)

We then invert the matrix A with Aij = 1
εδij − Fij and

compute G1 = A−1.G0. Finally,

F3 =
36

π2
ε
∑

i,j

G1
ij{−θ(j ε) + 2θav}

θ(i)
. (41)
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