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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

A collisional-radiative model describing non-local-thermodynamic-equilibrium plasmas is devel-

oped. It is based on the HULLAC suite of codes for the transitions rates, in the zero-temperature

radiation field hypothesis. Two variants of the model are presented, the first one is configuration-

averaged, while the second one is a detailed level version. Comparisons are made between them

in the case of a carbon plasma; they show that the configuration-averaged code gives correct re-

sults for an electronic temperature Te = 10 eV (or higher) but fails at lower temperatures such

as Te = 1 eV. The validity of the configuration-average approximation is discussed: the intuitive

criterion requiring that the average configuration-energy dispersion must be less than the electron

thermal energy turns out to be a necessary but far from sufficient condition. Another condition

based on the resolution of a modified rate-equation system is proposed. Its efficiency is emphasized

in the case of low-temperature plasmas. Finally, it is shown that near-threshold autoionization

cascade processes may induce a severe failure of the configuration-average formalism.

PACS numbers: 52.25-b;52.25.Kn;52.25.Dg
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I. INTRODUCTION

It is now well-known that in highly-charged hot plasmas, emission and absorption spec-

tra usually display broad structures theoretically described as unresolved transition arrays

(UTA) [1, 2, 3], spin-orbit split arrays (SOSA) [4] or supertransition arrays (STA) [5]. Iso-

lated lines may also be present when transitions occur between two configurations of small

degeneracy. The UTA formalism consists in expanding the individual transition energies as

a function of the various moments < En > — where the ponderation is performed using

line strengths — with the assumption that levels inside a given configuration are distributed

according to thermal equilibrium, the validity of this assumption lying on the condition that

the configuration width ∆c must be smaller than the thermal energy kBTe. The various

configuration populations are then calculated using averaged rate equations: the collisional

and radiative transition rates are averaged over the states of the initial configuration and

summed over the states of the final configuration. Another interesting possibility is the

description of plasmas out of local thermodynamic equilibrium (LTE) in terms of effective

temperatures [6]. It has been demonstrated [7] that, in certain circumstances, a temperature

different from the electronic temperature may be defined for each configuration. Such an

ensemble of non-LTE parameters may be obtained via the resolution of an inhomogeneous

system of linear equations. However, this theoretical derivation emphasizes that the valid-

ity of such an assumption is restricted to certain types of configurations. An even more

drastic assumption can be made (e.g., [8]): one may describe the population of each ion

according to a simple collisional-radiative (CR) model given by Colombant and Tonon [9].

This simple model includes collisional ionization, three-body recombination and radiative

recombination, which are the only processes possible between the ground states of two ions

of consecutive charges in the absence of any external radiation field; inside each ion, the

excited-level populations obey a simple Boltzmann distribution.

Since the early proposals of Bates et al [10] or McWhirter [11], numerous collisional-

radiative codes have been developed. They are based on various atomic descriptions, such

as hydrogenic approximation for SCAALP (Self-Consistent Average Atom for Laboratory

Plasmas) [12], supraconfiguration for SCROLL (Super Configuration Radiative cOLLisional)

[13, 14], AVERROÈS (AVERage Rates for Out of Equilibrium Spectroscopy) [15], or MOST

(MOdel for computing Superconfiguration Temperatures) [16, 17], parametric or analytical
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potentials for ATOM3R-OP (code by Minguez et al, including atomic and optical properties)

[18]. Hansen et al [17] have analyzed the respective efficiency of detailed and superconfigu-

ration averaged CR models.

Due to its numerous applications, the theory of non-LTE plasmas is nowadays a very ac-

tive subject [19, 20]. For instance, laser-produced and discharged-produced plasmas appear

as very promising sources of intense extreme-UV light well suited for 13.5 nm-lithography

([21, 22, 23] and other references in the same volume); for such plasmas of moderate density,

the non-LTE condition prevail in most cases. Another domain of application is low-density

astrophysics plasmas as well as laboratory coronal plasmas.

The aim of this paper is first to present a detailed CR model. One essential feature is

that it must be based on a reliable atomic code. To this respect, the HULLAC (Hebrew

University Lawrence Livermore Atomic Code) parametric-potential code is known to be

efficient in applications dealing with ion spectroscopy and collisional rate calculation. A

known limitation of several atomic models used in plasma physics [12, 13, 14, 16, 17] is that

configuration interaction is ignored. However it has been demonstrated that configuration

interaction may play a major role in several radiative effects in plasmas, especially when

∆n = 0 transitions are involved, such as in the xenon 13.5 nm emission [23, 24]. Let

us mention that “configuration interaction” means here interaction in its broader sense,

such as between 4p54d9, 4p64d74f and 4p64d75p in xenon xi, and not what is sometimes

called identically but is only a restricted interaction between relativistic configurations, i.e.,

a change from pure jj-coupling scheme to some intermediate coupling [25]. Therefore,

it is desirable to build a CR formalism based on an atomic model that includes mutual

influence of configurations. Moreover, it is important to define a correct validity condition

of such formalisms: in the case of configuration average, is it enough to check that the rms

deviation of the level energy inside a given configuration, ponderated by the corresponding

configuration population, is less than the thermal electron energy?

The present paper is organized as follows. In Section II, we review the list of processes

accounted for in the HULLAC suite and included in the present CR code, with emphasis

on hypotheses particular to the present formalism. We briefly describe the configuration-

averaged equations and define a modified CR system. Examples of results are then given

in Section III in the case of a carbon plasma, using both detailed code and configuration-

averaged code. The influence of the electron temperature Te on the configuration-average
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results is discussed in Section IV, pointing out possible limitations of this averaging proce-

dure. Conclusions and perspectives are exposed in the last section.

II. DESCRIPTION OF THE HULLAC-BASED COLLISIONAL-RADIATIVE

CODE

A. The HULLAC code

The HULLAC suite of codes [26] is widely used to study ionic spectroscopy as well as col-

lisional processes. Its key features among which the fully relativistic formalism, the account

for interaction between configurations, the efficient description of continuum wavefunctions

using the phase-amplitude method, the fast computation of collisional cross-sections using

the factorization method, make it a valuable tool in the atomic physics of plasmas. Pos-

sible alternatives are the codes based on the multi-configuration Hartree-Fock (MCHF) or

Dirac-Fock (MCDF) formalisms, such as the MCHF Cowan’s code [27], or other parametric-

potential codes such as M. F. Gu’s Flexible Atomic Code [28, 29], as used in [18].

We briefly describe below the radiative and collisional processes for which the rates are

calculated using the HULLAC code. Emphasis is put on the assumptions particular to the

present work and on the implications of the detailed balance principle.

1. Radiative bound-bound transitions

Radiative transition probabilities gjAji, i.e., Einstein A coefficient from the state j to i

multiplied by the degeneracy gj of the upper state, are computed for each relativistic level.

Since in the present formalism we assume that no outer electromagnetic field is present, we

do not account for absorption and stimulated emission rates. This amounts to consider a

zero-temperature radiation field or optically thin plasmas. However the present formalism

can deal with non-zero-temperature radiation fields too.

2. Autoionization and dielectronic recombination

The HULLAC code provides the autoionization rates Iij from level i to j. The rate for

the inverse process, dielectronic recombination, follows from Iij using the detailed balance
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principle

Dji = IijN
SB
i /NSB

j (II.1)

where NSB
i /NSB

j is the ratio of the i to j populations as calculated with the Saha-Boltzmann

equation for the temperature Te, but not necessarily equal to the observed population ratio,

NSB
i /NSB

j =
gi

gj

ne

2

(

h2

2πmkBTe

)3/2

exp

(

−
Ei − Ej

kBTe

)

(II.2)

where gk is the k-level degeneracy, Ek its energy calculated taking the fully-stripped-ion

energy as zero, ne and Te being the electron density and temperature. Since collisions are

much more frequent between electrons than ions, the electrons have been assumed to obey

a Maxwellian distribution at Te. In some infrequent cases (about 0.1%) and only for the

lowest charge states such as Ci), very large rates may be obtained: such unphysical numbers

are simply cancelled, which has a very small effect on the CR system solution.

3. Collisional excitation and deexcitation

The collisional excitation cross section is given in HULLAC by a four-term fit, according

to the Sampson et al expression [30, 31, 32]. A drawback of this fit is that it sometimes

gives rise to negative cross-sections at threshold or at large electron energies, and even

to negative excitation rates. This behavior is connected to the used Sampson fit formula

[30, 31] which is unable to describe forbidden transitions or strong configuration mixing: the

cross-sections may then exhibit a complex energy dependence with multiple maxima, not

properly described here.

A possible workaround would be to express such cross-sections as function of the corre-

sponding radiative rates Aji provided the transition is allowed, using, e.g., the van Rege-

morter formulae [33, 34]. Another possibility is to use alternative fitting expressions as, e.g.,

splines discussed by Burgess and Tully [35].

Nevertheless, since this event is only marginal (less than 5% of the cross-sections in cases

considered here) these pathological transition rates have simply been canceled. Another

option would be to get a more efficient version of the cross-section fit.

As above, the inverse process, collisional deexcitation, is given by the detailed balance

principle

Rcd
ji = Rce

ij

gi

gj
exp

(

Ej − Ei

kBTe

)

. (II.3)
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4. Collisional ionization and three-body recombination

Collisional ionization is given by a Sampson-type interpolation formula [32]. The inverse

process, three-body recombination, also obeys the detailed balance equation. Similarly

to the autoionization-dielectronic recombination relation (II.1), one gets the three-body

recombination rate from the collisional ionization rate

R3br
ji = Rci

ijN
SB
i /NSB

j . (II.4)

with the same Saha-Boltzmann population ratio (II.2). Contrary to collisional excitation,

the computed collisional ionization rates are always non-negative and do not require a special

test procedure. The only difficulty may arise from transitions at very small energy for which

it is unclear whether the j state of the next ion is energetically above the i state. Let us

also mention that, if the i → j autoionization transition is allowed, the corresponding rates

for collisional ionization and photoionization are not calculated by HULLAC.

5. Photoionization and radiative recombination

Photoionization (PI) cross-sections are obtained from HULLAC using a three-parameter

formula. One will note that in the absence of an external electromagnetic field, the PI

rate is zero. Free-free transitions (inverse or direct bremsstrahlung) are not accounted for

here. They may be included using, e.g., semi-classical description, and would give rise to a

smoothly varying probability. Besides, since here we consider mainly bound level dynamics,

they should not influence much these populations.

The rate for the opposite process, radiative recombination, is again given by the detailed

balance equation, where the spectral intensity of the outer field is taken equal to zero here

since no external electromagnetic field is considered. Nevertheless, the PI effect will of course

be included if one has to compute opacities. Here again, due to some limitations in the used

fit, in some cases the HULLAC rate is singular; however, as mentioned below in the case

of carbon, such situation is even less common than the occurrence of computed negative

excitation rates described above. The affected recombination rates are once again cancelled.
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B. The collisional-radiative code

1. Detailed and configuration-averaged CR equations

Once the various transition rates are computed, one may write down the system of rate

equations
dNi

dt
=
∑

j

RjiNj − Ni

∑

j

Rij (II.5)

where Rji is the sum of all the rates described above. Two versions of the code have been

developed. This first one addresses the direct solution of the system (II.5), which may

involve thousands of levels. The second performs the configuration average (CA) detailed

in Appendix A. One deals here with stationary solutions, therefore the time-derivative in

(II.5) is canceled
∑

j

RjiNj − Ni

∑

j

Rij = 0. (II.6)

Populations are normalized according to
∑

all j Nj = 1. The algorithm solving this system or

its CA counterpart is a classical Gauss elimination. It might not be the most efficient for very

large systems: since the transition rates only connect levels from two identical or consecutive

charge states Z⋆, in plasmas with a large number of possible Z⋆ the CR system (II.6) has

many zeroes and sparse matrix techniques may become efficient. However numerical tests

(comparison of 16- and 32-digits arithmetics, and the one proposed in Appendix B) have

shown that the accuracy of the solution is fair and the computation time remains reasonable

even on an ordinary desktop computer.

Another check will prove to be especially important in dealing with the configuration

average validity. It is based on a comparison with the Saha-Boltzmann solution, and is

detailed in Appendix B. It consists in solving an additional rate-equation system with the

substitution of the rates R′ to R

R (all processes) −→ R′ (collisional excitation, ionization and inverse processes only).

(II.7)

It should be noted that we do not account here for pressure-induced continuum lowering,

and therefore the present results do not hold in the case of very high ion densities.
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2. Detailed balance principle and configuration average

When performing the accuracy check developed in Appendix B, the “thermodynamic

solution” — obtained with partial rates R′ only — turns out to be in fair agreement with

the Saha-Boltzmann solution when one considers detailed levels. An illustration is given

below (Section IIIB). However this no longer holds after configuration averaging. Such a

behavior may be understood from inspection of the microreversiblity equation

Rp
ijNi = Rq

jiNj (II.8)

where Rp is the rate for some process p, Rq the rate for the inverse process q, and Ni

are the level populations at thermodynamical equilibrium, thus obeying Saha-Boltzmann

law. However, with the notations of Appendix A, one cannot write the “micro”-reversibility

equation for transitions between configurations. Indeed, from the (A.2) rate definition, one

has

Rp
αβNα =

1
∑

i∈α

gi







∑

i∈α
j∈β

giR
p
ij







(

∑

i∈α

Ni

)

6=
∑

i∈α
j∈β

Rp
ijNi (II.9)

6= Rq
βαNβ in the general case. (II.10)

In the special case where all the levels of a given configuration would have the same transition

rate, simply proportional to the final level degeneracy, i.e., all transitions between microlevels

have identical probabilities, from the definition (A.2),

Rp
αβ = gβRp

ij/gj for every i, j, (II.11)

one can easily derive that the level populations inside a given configuration would simply

be proportional to their degeneracy

Ni = giNα/gα, (II.12)

and using the rate property (II.11) one might write the members of the microreversibility

equation (II.8) as

Rp
ijNi =

gjgi

gβ

Rp
αβ

Nα

gα

, Rq
jiNj =

gigj

gα

Rq
βα

Nβ

gβ

. (II.13)
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This clearly demonstrates that, in this circumstance, the “micro”-reversibility equation

Rp
αβNα = Rq

βαNβ would hold for configurations too. Conversely, when (II.11) does not

hold, the observed difference between the “thermodynamical” solution of

∑

β

R′

βαNβ − Nα

∑

β

R′

αβ = 0 (II.14)

(R′ standing for collisional excitation, collisional ionization and their inverse processes) and

the configuration-averaged Saha-Boltzmann solution (using average configuration energies)

is a measure of the departure from the (II.11) rule, i.e. from “non-uniformity” of transition

rates inside a given configuration.

III. CASE STUDY OF CR SOLUTION IN A CARBON PLASMA

A. Atomic physics and collision processes

A detailed CR analysis has been performed in Carbon, including all charge states. The list

of configurations is detailed in Table I. The HULLAC computation includes configurations

with single electron excitation up to the n = 5 shell. Some configurations such as 1s22p4,

1s22s2p24d in Ci, 1s22s2p4s in Cii, or 1s22p4p in Ciii autoionize. In the moderate-Te range

considered, it was not necessary to account for other multiply excited configurations, such

as 1s23lNl′ in Ciii or 2lNl′ in Cv. In order to consider the fully stripped Cvii ion, one must

include in the collisional-radiative equations a HULLAC fictitious configuration or level with

zero electron population and zero energy. As seen in Table I, going from a detailed level

to a configuration-average formalism amounts to divide the number of rate equations Neq

by a factor of almost 12, and the solution of this linear-system requires a computation time

proportional to the cube of Neq.

As mentioned in Section II, some transition rates could not be computed and had to

be canceled. At Te = 10 eV, 8190 deexcitation rates out of 465,083 computed (1.8%) and

178 radiative recombination rates out of 138,195 (0.13%) fall in this case. At Te = 1 eV,

the proportion of unreliable deexcitation rates is somehow higher (6.2%) while the one for

recombination rates is unchanged. This demonstrates the (weakly) increasing limitation in

the use of HULLAC formalism at low temperatures.
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B. Numerical accuracy of the detailed CR solution

Here as in the rest of this paper, we focus the attention on average net ion charges.

Of course many other physical quantities are of interest, but if the configuration average

procedure is correct, it should a fortiori provide correct average charges. The accuracy

of the solution of the modified CR system (II.7) with detailed levels is illustrated in Ta-

ble II. Keeping in mind that the modified system should amount to LTE (cf. Appendix B),

columns 2 and 3 of this table should be equal assuming perfect numerical accuracy, while

column 4 should cancel. One may conclude that for this 1781-equation system, the matrix-

inversion algorithm remains very efficient even with the usual 16-digit precision arithmetic

used. Another check in 32-digit arithmetic also provides fair agreement with the present

result.

C. Validity of the configuration average

On the upper part of Fig. 1, we have plotted the average ion charge < Z⋆ > versus the

electron density at Te = 10 eV, both in the CA and in the detailed collisional-radiative

formalism. Therefore, both should describe non-LTE effects and differ from the Saha-

Boltzmann value, as analyzed in subsection IIID. As a rule, the CA procedure appears

as pretty accurate, which is interesting since this average involves a much simpler matrix

inversion. But a detailed inspection of Fig. 1 reveals some discrepancies, at low densities first

(e.g., at Ne = 1013 cm−3, < Z⋆
CR > is 3.739 in the CA solution, and 3.749 in the detailed

solution), and more prominently at densities above Ne = 1020 cm−3: if Ne = 1021 cm−3,

< Z⋆
CR > is 1.977 for the CA and 2.076 for the detailed level computation.

An intuitive explanation for this behavior is the following. In “coronal” plasmas at 10

eV, the most probable charge state is the He-like Cv and the most populated configuration

is simply 1s2. At higher densities, recombination rates become larger and ions with a more

complex structure dominate. Since these ions have configurations with a larger energy

dispersion, the average configuration width may become of the order of magnitude of the

thermal energy kBTe. Therefore the intuitive criterion for the validity of configuration

averaging may be written as

< ∆E >=
∑

α

Nα∆Eα ≪ kBTe (III.1)
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where Nα is the α-configuration population (with
∑

α Nα = 1) and ∆Eα is the energy

dispersion

∆Eα =

(

1

gα

∑

i∈α

gi(Ei − Eα)2

)1/2

. (III.2)

Unfortunately this criterion, though necessary, is far from sufficient. In the lower part

of Fig. 1, two variants of the dispersion (III.1) are plotted: the dotted line corresponds

to populations Nα computed using the collisional-radiative solution, the dash-dot line is

obtained with Nα as given by the Saha-Boltzmann equation. Both values are significantly

below 10 eV, by a factor of 7 at the minimum, even for large density values where one

observes a small inaccuracy in the configuration average approximation. Moreover we will

exhibit a much more severe breakdown of validity of the criterion (III.1) in the next section.

However, in subsection IIB 2, we have shown that a useful test consists in performing a

collisional-radiative analysis study with partial rates R′ which should amount to the Saha-

Boltzmann solution (i.e., LTE) if all levels in a given configuration had the same collision

rates. Therefore, in the lower part of Fig. 1, the solid line is the difference

∆Z⋆ =< Z⋆
th

config-av > − < Z⋆
SB

config-av > (III.3)

where < Z⋆
th

config-av > is the plasma charge computed with partial rates (II.7), while <

Z⋆
SB

config-av > is the plasma charge obtained through Saha-Boltzmann equation, both in a

configuration-averaged formalism (remember that such figures are identical when one deals

with detailed levels, cf. Table II). One notices a significant average-charge difference of about

0.17 at 1021 electrons/cm3. As mentioned in subsection IIB 2, the increase in the quantity

(III.3) is a clear indication of the breakdown of the validity of the configuration average. The

difference (III.3) is not a direct estimate of < Z⋆
CR

config-av > − < Z⋆
CR

detailed > but a value

of about 0.2 for the test (III.3) suggests a serious inaccuracy in the configuration-average

approach.

D. Density dependence

In order to demonstrate non-LTE effects, we have plotted on Fig. 2 the configuration av-

erage charge of a 10 eV-carbon plasma, both within the present collisional-radiative model

and using the Saha-Boltzmann equation, i.e., at LTE. Generally speaking, as the electron
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density Ne increases, one expects that LTE will prevail because collisions will dominate

radiative processes. At high Ne the most probable process becomes three-body recombi-

nation since it is the only one depending on the square of the electron density, therefore

one expects a decrease of < Z⋆ > as Ne increases. This is visible on Fig. 2, which also

shows that for Ne < 1016 cm−3, the CR charge is lower than the LTE charge. In coronal

plasmas, dominant processes are radiative recombination and collisional ionization: since

the latter is balanced by three-body recombination while the former is not balanced by its

inverse process (if photoionization with a thermal radiation at Te was present, this would

ensure complete LTE) the “unbalanced” recombination process tends to lower the average

ion energy and the average plasma charge. Then the CR solution converges toward LTE

at Ne ≃ 1018 cm−3, as expected. A little more surprising is the divergence of the CR and

LTE curves at higher densities Ne > 1021 cm−3. Again, this arises from the limitation of

validity of the configuration average, which may be observed for high densities Ne as well as

for low temperatures Te (Fig. 1). The detailed CR solution (circles on Fig.2) agrees with the

configuration-average solution at low Nee, while for large Ne it tends to the Saha-Boltzmann

limit and differs from the configuration average.

IV. DISCUSSION OF THE CONFIGURATION-AVERAGE VALIDITY

A. Analysis of the two validity criteria

We have demonstrated in the previous section that the energy criterion (III.1) is not

sufficient to ensure the validity of the configuration-average procedure. A physical expla-

nation for this is that while the condition (III.1) relies on energies only, the analysis using

the partial rates equation and the estimate of the difference (III.3) involves the transition

rates. Therefore both conditions are complementary, and the latter is certainly most strin-

gent. Another indication that the departure of (III.3) from zero is a sign of dispersion in

the transition probabilities relies on the analysis of the Saha-Boltzmann average charge dif-

ference < Z⋆
SB

config-av > − < Z⋆
SB

detailed >: as illustrated by Table III, this quantity turns

out to remain small (less than 0.1) even at low temperatures. This happens because the

Saha-Boltzmann equation involves energies and not rates, and therefore is insensitive to the

rate dispersion inside a configuration.
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B. Comparison with other data

Though the aim of this work was to analyze a validity criterion rather than to perform a

reference CR calculation in carbon, it is instructive to compare the present results with some

recent data. Colgan et al [36] have performed a detailed analysis of non-LTE carbon plasmas,

both in the configuration average and in the “fine-structure”, i.e., detailed formalism. Their

computation has been performed with the Cowan-based Los Alamos suite of codes and

involves 1348 configurations and 24 902 levels, much is more than in the present work.

Nevertheless, as seen in Table IV, their 10 eV-data compare satisfactorily with ours, whatever

the density: the difference is less than 2%. This is a general trend in such a range of

temperatures, where the carbon structure tends to the very stable (Z⋆ = 4) 1s2 configuration.

However, at 3 eV the difference within the detailed-formalism results remains reason-

able (about 10%), while large discrepancies, sometimes by a factor of 2, are observed on

the configuration-average results. It is somewhat expected that low-Te results exhibit large

dispersion, as already noticed in the NLTE conferences [19, 20]: then the neutral or weakly

charged ions become preponderant, and atomic models such as HULLAC are then known to

be much less efficient; furthermore, collision cross-sections are usually bigger at low Te and

inaccuracies such as those mentioned previously (Sec. II) have a strong influence. Never-

theless the factor of 2 on the configuration-average plasma charge needs further attention,

and is thoroughly analyzed in subsection IVD.

C. Low-temperature behavior

An even more spectacular proof for the insufficiency of the energy condition is provided

by the study of the carbon plasma at Te = 1 eV. The results are summarized in Fig. 3. It

is noticeable that while the energy dispersion (III.1), plotted as dotted or dot-dash lines,

is below Ne = 1014 cm−3 less than Te, and more than 2-order of magnitude less at Ne =

1012 cm−3, the configuration average validity is always dubious then, as pointed out by the

upper part of this figure. Conversely, as stressed before, when the criterion on ∆E is not

sufficient, the < Z⋆ > values from the modified CR system and the Saha-Boltzmann solution

are significantly different, indicating the breakdown of the configuration-average procedure.

It appears on this example, considering, e.g., Ne = 1012 cm−3 and 1022 cm−3 that both
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criteria should be checked.

Comparing these data to those in Table IV, one notices that the low-density average

charge in the detailed calculation increases with Te as expected, the < Z⋆ >≃ 1 at Te = 1 eV

being a plain coincidence; inversely, in configuration average the low-density charge turns out

to be < Z⋆ >≃ 2 on a broad range of Te. Of course the criterion (III.3) demonstrates that

this value is unreliable, but this unexpected “stability” deserves a more detailed analysis.

D. Breakdown of the configuration-average validity for cascade autoionization

processes

A thorough examination of the various-configuration influence has revealed that the un-

expected low-Te low-Ne configuration-averaged value < Z⋆ >≃ 2 arises mostly from two

configurations, namely 1s22p33d in Ci and 1s22s2p3s in Cii. As a matter of fact, a sim-

ple model involving the five configurations 1s22s22p2, 1s22p33d, 1s22s22p, 1s22s2p3s, and

1s22s2 fairly reproduces the unexpected behavior of Fig. 3. In a rather unusual way, the

dominant transition rates are then the autoionization rates from some levels of the first con-

figuration to some levels of the second one. Dielectronic recombination rates are accounted

for here, but they are small because the electron density is low. As illustrated by Fig. 4,

while the highest members of the 1s22p33d configuration decay to the 1s22s2p(3P )3s 2P

doublet or to the 1s22s2p(3P )3s 4P quartet, all these levels lie below the Cii first ionization

limit and do not autoionize; conversely, the upper member of this configuration, namely the

1s22s2p(1P )3s 2P doublet, does autoionize towards the Ciii ground state 1s22s2 1S with a

very large probability. So this detailed-level analysis shows that the cascade autoionization

process 1s22p33d → 1s22s2p3s → 1s22s2 is not allowed. However, the configuration-average

autoionization rates 1s22p33d → 1s22s2p3s and 1s22s2p3s → 1s22s2 are both very large

(6.8 × 1014 s−1 and 3.6 × 1013 s−1 respectively) and introduce a spurious very intense two-

step transition from Ci to Ciii, which explains the very stable and large Ciii ground state

population. The explanation why Colgan et al [36] did not notice such a big discrepancy

as ours between the detailed and CA ionization stages at 3 eV appears now clearly: the

1s22p33d configuration was not accounted for in their calculation. Remarkably enough,

adding or removing dozens of configurations other than the ones listed in Fig. 4 does not

significantly change the average Z⋆ (CA or detailed), while a plain five-configuration model
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qualitatively reproduces the Fig. 3 behavior.

Though the 1s22p33d and 1s22s2p3s configurations have an energy dispersion ∆Eα larger

than Te (3.41 eV and 2.93 eV respectively) these configurations have very small populations

(9.7 × 10−16 and 8.8 × 10−11 respectively), therefore the criterion (III.1) is largely fulfilled.

A more strict criterion such as maxα(∆Eα) < kBTe could be proposed, but it would be

hardly satisfied except at very large Te (max(∆Eα) = 5.3 eV for the carbon configurations

considered here), and furthermore one may question whether configurations with very small

populations should contribute to this condition.

To conclude this low-Te analysis, it must be noted that the current computation generates

levels from 1s22p33d and 1s22s2p3s configurations at very close energies (explaining the

large autoionization rate as is usual for this process), which may not be reproduced by more

accurate computations or other atomic models. Concerning experimental data, in the NIST

(National Institute of Standards and Technology) tables [37], one finds the 1s22s2p(3P )3s

levels (but not the 2s2p(1P )3s ones), while the highly excited configuration 1s22p33d is

absent; the agreement on the 1s22s2p(3P )3s level positions is good. Noticeably, most of the

autoionizing states considered here are absent in the NIST tables, probably because their

broadening makes their position difficult to report. Nevertheless, the present analysis is

useful in itself because the reported effect must happen in other configurations or ions as

soon as these quasi-degeneracies are indeed present.

V. CONCLUSION

This work initially stemmed from the need of a collisional-radiative solver (or postpro-

cessor) for the HULLAC code; at the time of writing it, such solver was not part of the

HULLAC suite, at least in the publicly distributed code. Few CR computations based on

the HULLAC suite have appeared recently [38]. The possibility of performing the config-

uration average makes the handling of the CR equations considerably easier, the system

size decreasing from 1781 to 149 in the analyzed carbon case. Superconfiguration codes [17]

provide an interesting alternative concerning the computation efficiency and their ability to

deal with complex atoms. However the inclusion in these formalisms of effects such as a

full configuration interaction is still lacking. Of course the detailed-level methods will for

long suffer from the considerable computing time, considering that the carbon plasma case

15



analyzed here is one of the simplest. In this work we have proposed a method to check the

validity of the configuration average procedure which goes far beyond the plain criterion on

energy dispersion. It involves the solution of two configuration-averaged CR systems instead

of one, but this is much less cumbersome than solving a detailed-level CR system. This

criterion is based on rate equations for collisional excitation and ionization and their reverse

processes, and is therefore sensitive to a possible non-uniformity inside a configuration of

these rates only. However, it may be generalized to include other processes, for instance

the radiative processes, provided that one accounts for absorption and spontaneous emis-

sion from a fictitious Planck radiation field in thermal equibrium with the electrons. In the

analyzed case of cascade autoionization processes, it has been demonstrated that a spectac-

ular breakdown of the configuration-average validity may occur which can only be detected

using the criterion proposed here. Finally, the present formalism should also be efficient

in computing other physical quantities such as the opacity, the emissivity [36] or radiative

cooling coefficients [38] of non-LTE plasmas; such a topic has been recently addressed in our

laboratory [39].
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APPENDIX A: THE AVERAGED COLLISIONAL-RADIATIVE EQUATIONS

Rate equations for detailed levels i belonging to a given configuration α are written as

(II.5) while their configuration average is defined as

dNα

dt
=
∑

β

RβαNβ − Nα

∑

β

Rαβ (A.1)

where the configuration population is Nα =
∑

i∈α Ni and the transition rates from configu-

ration α to β writes

Rαβ =
1

gα

∑

i∈α

∑

j∈β

giRij (A.2)

gα being the degeneracy
∑

i∈α gi of the initial configuration.
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APPENDIX B: CHECKING THE NUMERICAL CR SYSTEM SOLUTION

The CR analysis in the detailed-level case (II.6) or its configuration-average counterpart

requires the solution of a potentially very large system of linear equations. One should there-

fore check the numerical accuracy of this procedure. In this CR system, the Rij stand for all

the transitions processes enumerated in section IIA. Because no external electromagnetic

field is present, two of these processes are not balanced by their inverse processes: radiative

deexcitation and radiative recombination. In order to check the accuracy of these CR equa-

tions, one substitutes partial rates R′

ij to the full rates Rij , which only include collisional

excitation, collisional ionization and their inverse processes.

In the detailed-level case, since the effects accounted for by rates R′ obey the detailed-

balance principle, the correct numerical solution of this system — numerically as complex

as the original system since the same number of equations is involved — must be the Saha-

Boltzmann solution.

In the configuration-average case, the comparison of this solution to the Saha-Boltzmann

solution with averaged energies provides a validity check of the CR solution as discussed,

e.g., in subsection IIIC.
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TABLES

TABLE I: List of configurations included in the HULLAC-based collisional-radiative analysis of a

carbon plasma. [1s2] means unrepeated identical core. One has 3 ≤ N ≤ 5, 0 ≤ l ≤ N − 1 for each

charge state. Nconf is the number of configurations, Nlev the number of (relativistic) levels.

Charge Configurations Nconf Nlev

Ci [1s2] 2s22p2, 2s2p3, 2p4, 2s22pNl, 2s2p2Nl, 2p3Nl 39 1004

Cii [1s2] 2s22p, 2s2p2, 2p3, 2s2Nl, 2s2pNl, 2p2Nl 39 513

Ciii [1s2] 2s2, 2s2p, 2p2, 2sNl, 2pNl 27 166

Civ [1s2] 2s, 2p, Nl 14 24

Cv 1s2, 1s2s, 1s2p, 1sNl 15 49

Cvi 1s, 2s, 2p, Nl 15 25

Cvii 1 1

Total 150 1782

TABLE II: Accuracy check of the collisional-radiative (CR) detailed-level solution for carbon at

Te = 10 eV. The average < Z⋆
th > is the ion charge obtained by solving the modified CR system

(II.7), and should be equal to < Z⋆
SB >, the average ion charge derived from Saha-Boltzmann

equation, for infinite numerical accuracy. The additional test δmax is the maximum difference on

the ion-level populations between this modified CR system and the Saha-Boltzmann solution.

Ne(cm
−3) < Z⋆

th > < Z⋆
SB > δmax

1012 4.000004022 4.000004022 7.7 × 10−14

1014 3.999998278 3.999998278 3.2 × 10−14

1016 3.999823805 3.999823805 3.3 × 10−12

1018 3.982612437 3.982612437 3.2 × 10−10

1020 3.192620512 3.192620504 4.8 × 10−9

1022 0.711283477 0.711283469 3.8 × 10−10
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TABLE III: Average carbon plasma charge from Saha-Boltzmann equation at Te = 10 eV:

configuration-average and detailed-level values.

Ne(cm
−3) < Z⋆

SB
config-av > < Z⋆

SB
detailed >

1012 4.000004 4.000004

1013 4.000000 4.000000

1014 3.999998 3.999998

1015 3.999982 3.999982

1016 3.999824 3.999824

1017 3.998240 3.998240

1018 3.982613 3.982612

1019 3.844529 3.844448

1020 3.194906 3.192621

1021 2.026326 2.017892

1022 0.717721 0.711283

TABLE IV: Average ionization of a carbon plasma: Colgan et al [36] and present work. The

Colgan’s “fine-structure” (FS) is a detailed formalism, CA is the configuration average in both

works.

Te(eV) Ne(cm
−3) Colgan et al This work

FS CA detailed CA

3 1013 1.730 1.486 1.902 1.999

1015 1.923 1.895 2.037 2.166

1017 1.952 1.948 1.991 2.501

1019 1.004 0.959 1.179 1.980

10 1013 3.723 3.701 3.746 3.739

1015 3.862 3.856 3.828 3.828

1017 3.979 3.978 3.976 3.976

1019 3.786 3.785 3.833 3.835
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FIG. 1: Upper part: Carbon plasma average charge in collisional-radiative model with configuration

averaging (solid line) and detailed levels (broken line) as a function of electronic density for an

electronic temperature Te = 10 eV. Lower part: averaged configuration energy dispersion as

computed from (III.1) with collisional-radiative populations (dotted line, left scale) or with Saha-

Boltzmann populations (dot-dash line, left scale); average-charge difference (III.3) between the

modified CR system < Z⋆
th > and the Saha-Boltzmann solution < Z⋆

SB > (solid line, right scale),

both computed in the configuration-average formalism.
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FIG. 2: Carbon plasma average charge for Te = 10 eV. Solid line: collisional-radiative solution with

configuration average, broken line: Saha-Boltzmann solution, circles: collisional-radiative solution

with detailed levels.
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FIG. 3: Same as figure 1, but for an electron temperature Te = 1 eV. Notice on the top subfigure the

strong departure from the configuration-average validity if Ne ≤ 1014 cm−3, which is not detected

by the < ∆Econf > criterion (bottom subfigure, dotted line), but is detected by the criterion on

< Z⋆
th > − < Z⋆

SB > (bottom subfigure, solid line).
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FIG. 4: Autoionization processes involving three particular configurations in Ci, Cii, Ciii. The

arrows indicate the dominant transitions accounted for in the present calculation. The vertical

axis is the energy in eV, respective to the Ci ground state. Only some of the 38 levels of the

1s22p33d configuration are displayed. About ten of them autoionize toward the 1s22s2p (3P )3s 2P

or the 1s22s2p (3P )3s 4P levels — which are below the Cii limit 1s22s2 1S0 and do not themselves

autoionize —, and none toward the upper levels (1s22s2p (1P )3s 2P ), which are the only two

levels in the configuration 1s22s2p3s that autoionize. No cascade autoionizing process exists from

1s22p33d to 1s22p2, though large average autoionization rates connect these configurations.
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