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The present work considers the turbulent Von Kármán flow generated by two

counter-rotating smooth flat (viscous stirring) or bladed (inertial stirring) disks.

Numerical predictions based on one-point statistical modeling using a low Reynolds

number second-order full stress transport closure (RSM model) are compared to

velocity measurements performed at CEA (Commissariat à l’Énergie Atomique,

France). The main and significant novelty of this paper is the use of a drag force

in the momentum equations to reproduce the effects of inertial stirring instead of

modelling the blades themselves. The influences of the rotational Reynolds number,

the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or

not of impellers are investigated to get a precise knowledge of both the dynamics

and the turbulence properties in the Von Kármán configuration. In particular, we

highlighted the transition between the merged and separated boundary layer regimes

and the one between the Batchelor [1] and the Stewartson [2] flow structures in the

smooth disk case. We determined also the transition between the one cell and the
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two cell regimes for both viscous and inertial stirrings.
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I. INTRODUCTION

The flow between two finite counter-rotating disks enclosed by a cylinder, known as the

Von Kármán [3] geometry, is of practical importance in many industrial devices. Counter-

rotating turbines may indeed be used to drive the counter-rotating fans in gas-turbine aero-

engines. Moreover, this configuration is often used for studying fundamental aspects of

developed turbulence and especially of magneto-hydrodynamic turbulence.

From an academic point of view, the laminar flow between two infinite disks has indeed

justified many works since the beginning of the controversy between Batchelor [1] and Stew-

artson [2] on the flow structure. Batchelor [1] solved the system of differential equations

relative to the steady rotationally-symmetric viscous flow between two infinite disks. In the

exactly counter-rotating regime, the distribution of tangential velocity is symmetrical about

the mid-plane and exhibits five distinct zones: two boundary layers developed on each disk,

a transition shear layer at mid-plane, where the axial and tangential velocities change sign

and two rotating cores on either side of the transition layer. The central cores rotate with

a tangential velocity proportional to the disk velocities. The proportionality coefficient is

always inferior to 1. This solution can be regarded as the connection of two Batchelor flows

in the rotor-stator configuration. As stated by Batchelor [1] himself, “this singular solution

may not be realizable experimentally, of course”, which supposes that another solution may

exist. In 1953, Stewartson [2] found that the flow is divided into only three zones for large

values of the Reynolds number ReH = ΩH2/ν > 100 based on the interdisk space H (Ω is

the rotation rate of the disks and ν the kinematic viscosity of the fluid): one boundary layer

on each disk separated by a zone of zero tangential velocity and uniform radial inflow. Lance

and Rogers [4] found numerically in the exactly counter-rotating regime a Stewartson solu-

tion for ReH = 1023. The existence at large Reynolds numbers of the Stewartson solution

has been confirmed by the analysis of McLeod and Parter [5] in an infinite counter-rotating

disk system. The Stewartson solution has also been obtained numerically by Pesch and Ren-

trop [6] at ReH = 2000. Kreiss and Parter [7] have proved the existence and non-uniqueness

of solutions at sufficiently large Reynolds numbers for the two-disk configuration. Thus,

both Batchelor and Stewartson solutions are possible depending on the initial and boundary

conditions but the Batchelor prediction has not been mentioned in the literature for the

exact counter-rotating disk case. Pearson [8] obtained numerically a basic inviscid solution
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of the Von Kármán flow, which differs from both the Batchelor and Stewartson solutions:

at high Reynolds number (ReH = 103), the solution is unsymmetrical and the main body

of the fluid rotates faster than that of either disk. In the counter-rotating regime, Dijkstra

and Van Heijst [9] showed numerically that the transition from the one cell to the two cell

structure occurs for a given Reynolds number and corresponds to the appearance of a de-

tached shear layer on the slower disk. Recently, Yang and Liao [10] solved the Von Kármán

swirling viscous flow using the homotopy analysis method. The reader is referred to the

work of Holodniok et al. [11] and to the review of Zandbergen and Dijkstra [12] for a more

extensive survey until 1987.

In the turbulent case, the Von Kármán flow is a model flow to study the turbulence

characteristics on small scales. The main flow is axisymmetric and so offers an interest-

ing intermediate situation between two-dimensional and three-dimensional flows. Fauve et

al. [13] reported measurements of pressure fluctuations in the turbulent Von Kármán flow.

They showed that the pressure probability function is strongly non-Gaussian and displays

an exponential tail toward low pressure. Maurer et al. [14] used low-temperature helium gas

to obtain high Reynolds numbers and well-defined scaling properties. They established the

turbulence characteristics such as structure functions or the probability density function of

the velocity differences and confirmed that turbulence on small scales has universal prop-

erties independent of the forcing. Mordant et al. [15] investigated the dynamical behavior

of the Von Kármán flow at moderate to high Reynolds numbers using spatially averaged

measurements. Data of the power input and of pressure fluctuations at the wall are suf-

ficient to calculate the main turbulence characteristics such as the velocity fluctuations or

the typical length scales. Cadot et al. [16] measured the mean rates of energy injection

and energy dissipation in steady regimes of turbulence in the flow between counter-rotating

stirrers. The smooth stirrers are found to be less efficient in setting the fluid into motion

than in the case of bladed disks. Pinton et al. [17] measured the power consumption of the

turbulent Von Kármán flow at constant Reynolds number and showed that power fluctua-

tions occur and involve coherent fluid motions in the whole cell. Marié and Daviaud [18]

performed full velocity measurements linking velocity fluctuations with the turbulent drag

in this geometry. They showed especially that the turbulent drag is dominantly generated

by coherent structures at the largest scales of the flow. Cadot and Le Mâıtre [19] considered

the turbulent between two co- and counter-rotating stirrers. They measured the instanta-
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neous torques driving the flow and compared them to similarity laws having no dependence

on the Reynolds number with a good agreement.

Ravelet et al. [20, 21] reported experimental evidence of a global bifurcation on a highly

turbulent flow between two counter-rotating impellers. The transition between the sym-

metric and the unsymmetric solutions is subcritical and the system keeps a memory of its

history. Monchaux et al. [22] investigated the properties of the mean and most probable

velocity fields in the same configuration. They showed that these two fields are described

by two families of functions [23] depending on both the viscosity and the forcing. For large

values of the Reynolds number, in some regions, the flow behaves like a Beltrami flow in

which vorticity is locally aligned with velocity. Boroński [24] simulated the laminar Von

Kármán flow between two counter-rotating disks equipped or not by straight blades. For

a rotational Reynolds number Re = ΩR2/ν, based on the disk radius R, equal to 500, the

poloidal-to-toroidal ratio is increased from 13% in the smooth disk case to 51% in the bladed

disk case.

A renewal of interest for the Von Kármán flow is born from the dynamo experiments.

The flow between counter-rotating impellers is considered as a possible candidate for the

observation of a homogeneous fluid dynamo less constrained than the Riga and Karlsruhe

devices. The flow needs to be highly turbulent in order for nonlinearities to develop in the

magnetic induction. Numerous experimental [25, 26] or numerical [27, 28] studies have then

been dedicated to magneto-hydrodynamics turbulence in the Von Kármán geometry. In

the latter work, the flow has been optimized using a water model experiment, varying the

driving impeller configuration, well described in [21].

To our knowledge, only very few numerical works have been devoted to the character-

ization of the mean and turbulent flow properties in the Von Kármán geometry. Kilic et

al. [29] performed a combined numerical and experimental study of the transitional flow

between smooth counter-rotating disks with a central hub for −1 ≤ Γ ≤ 0, Re = 105 and

G = H/R = 0.12, where Γ is the ratio between the rotating speeds of the two disks and

G is the aspect ratio of the cavity. They compared mean radial and tangential velocity

measurements using a single-component laser Doppler anemometer with computed results

either the low-Reynolds number k − ǫ turbulence model of Launder and Sharma [30] or a

laminar elliptic code. For Γ = −1, the weakly turbulent flow is of Stewartson type, whereas

the laminar computations and measurements produce a Batchelor type of flow. The tran-
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sitions from laminar to turbulent regime and from Batchelor to Stewartson flow structure

occur for Γ = −0.4. A good agreement is obtained in the rotor-stator configuration (Γ = 0)

and in the exactly counter-rotating regime (Γ = −1) but at intermediate values of Γ, the

agreement is less satisfactory. The same authors [31] performed the same comparisons when

a radial outflow of air is superimposed.

In this paper, we present comparisons between numerical predictions using a Reynolds

Stress Model, denoted RSM, and velocity measurements performed at CEA for the turbu-

lent flow between two counter-rotating disks. The main objective is to acquire a precise

knowledge of both the flow structure and the turbulence properties of the high turbulent

Von Kármán flow between smooth disks for a large range of the flow control parameters. A

second objective is to propose an easy and efficient way to model impellers and to quantify

their effect on the Von Kármán flow at high Reynolds number.

II. EXPERIMENTAL SET-UP

Velocity measurements using a laser Doppler velocimeter have been performed at CEA

in the Von Kármán geometry during the PhD thesis of Ravelet [21] and then by Romain

Monchaux [22] in two cases: viscous and inertial stirrings.

A. Geometrical configuration

We consider the Von Kármán flow generated by two counter-rotating disks fitted or not

by straight blades in a cylindrical vessel, as illustrated in figures 1a,b. The geometrical

parameters are fixed by the values studied experimentally by Ravelet [21]. The cylinder

and disk radii are respectively Rc = 100 mm and R = 92.5 mm. The radius ratio R/Rc is

then fixed to 0.925. The distance between the inner faces of the disks H can vary between

1 and 180 mm. Disks 1 and 2 rotate respectively clockwise and counterclockwise with two

rotation rates denoted Ω1 and Ω2. The motor rotation rates can be varied independently in

the range 0− 900 rpm, with |Ω1| ≥ |Ω2|. We use bladed disks (n blades of height h equal to

10 or 20 mm) to ensure inertial stirring or flat disks for viscous stirring. The impellers are

driven by two independent brushless 1.8 kW motors, with speed servo loop control.
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B. Measurement technique

Velocity measurements are performed using a laser doppler velocimetry (LDV). A basic

acquisition of 190.000 randomly sampled values of one velocity component at one point of

the flow lasts about two minutes. Due to geometry constraints, we can measure the axial

Vz and tangential Vθ mean velocity components. From this raw data, one may compute the

time-averaged flow at every point on a 11 ∗ 15 grid.

C. Flow control parameters

In the smooth case, the mean flow is mainly governed by three control parameters: the

aspect ratio of the cavity G, the rotational Reynolds number Re based on the cylinder radius

and the ratio Γ between the two rotation rates, defined as follows:

0.01 ≤ G =
H

Rc

≤ 1.8 2 × 105 ≤ Re =
Ω1R

2

c

ν
≤ 4 × 106 − 1 ≤ Γ = −

Ω2

Ω1

≤ 0

where ν is the kinematic viscosity of water. In the exact counter-rotating regime and in the

rotor-stator configuration, the ratio Γ is equal to −1 and 0 respectively. We define also the

radial r∗ = r/Rc and axial z∗ = 2z/H coordinates. Thus, r∗ = 0 is obtained at the center

of the disks and r∗ = 1 on the outer cylinder for r = Rc. In the same way, z∗ = −1 on the

lower disk 1 and z∗ = 1 on the upper disk 2.

In the case of inertial stirring, the number of straight blades n and their dimensionless

height h∗ = h/Rc have also to be considered.

III. STATISTICAL MODELING

The predictions of the Reynolds Stress Model (RSM) used in the present work have

already been validated in the rotor-stator configuration (Γ = 0) [32–35] for a wide range of

aspect ratio G and Reynolds number Re. It showed that this level of closure is adequate in

such flow configurations, while the usual k − ǫ model, which is blind to any rotation effect

presents serious deficiencies. Thus, the purpose of this paper relying on a well established

turbulent model is to extend its application to new flow conditions and to get a better insight

into the dynamics of the highly turbulent Von Kármán flow.
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A. The differential Reynolds Stress Model (RSM)

The flow studied here presents several complexities (high rotation rate, wall effects, tran-

sitional zone, shear layer), which are severe demands for turbulence modeling methods. Our

approach is based on one-point statistical modeling using a low Reynolds number second-

order full stress transport closure derived from the Launder and Tselepidakis [36] model

and sensitized to rotation effects [33]. This approach allows for a detailed description of

near-wall turbulence and is free from any eddy viscosity hypothesis. The general equation

for the Reynolds stress tensor Rij can be written:

dRij

dt
= Pij + Dij + Φij − ǫij + Tij (1)

where Pij, Dij, Φij, ǫij, and Tij respectively denote the production, diffusion, pressure-strain

correlation, dissipation and extra terms.

The diffusion term Dij is split into two parts: a turbulent diffusion DT
ij, which is inter-

preted as the diffusion due to both velocity and pressure fluctuations [37] and a viscous

diffusion Dν
ij, which cannot be neglected in the low Reynolds number region.

In a classical way, the pressure-strain correlation term Φij can be decomposed in three

parts: a slow nonlinear return to isotropy modeled as a quadratic development in the stress

anisotropy tensor and damped near the wall, a linear rapid part which includes cubic terms

and a wall correction applied to the linear part which is modeled using the Gibson and Laun-

der hypothesis [38]. In this last term, the widely adopted length scale k3/2ε−1 is replaced by

the length scale of the fluctuations normal to the wall.

The viscous dissipation tensor has been modeled in order to conform with the wall limits

obtained from Taylor series expansions of the fluctuating velocities [39]. The extra term Tij

accounts for implicit effects of the rotation on the turbulence field, it contains additional

contributions in the pressure-strain correlation, a spectral jamming term, inhomogeneous

effects and inverse flux due to rotation, which impedes the energy cascade [40]. A full de-

scription of the extra term Tij is given in [41].

The dissipation rate ε equation to solve is the one proposed by Launder and Tselepidakis

[36]. The turbulence kinetic energy k equation which is redundant in a RSM model is still

solved however, in order to get a more stable numerical convergence. It is verified that after

convergence the turbulence kinetic energy k is exactly equal to 0.5Rjj within 0.05% at each



9

grid point.

B. Numerical method

The computational procedure is based on a finite volume method using staggered grids

for mean velocity components with axisymmetry hypothesis in the mean. The computer

code is steady elliptic and the numerical solution proceeds iteratively. It has been verified

that a 120 × 120 mesh in the (r, z) frame is sufficient in smooth rotating disk cases to

get grid-independent solutions. A refined mesh 160 × 160 is necessary to model flows with

straight blades. It is to be compared to the 140 × 80 mesh used by Elena and Schiestel

[32, 33] and Poncet et al. [34, 35] in rotor-stator systems. The calculation is initialized

using realistic data fields, which satisfy the boundary conditions. About 20000 iterations

(almost 20 hours on the bi-Opteron 18 nodes cluster of IRPHE) are necessary to obtain the

numerical convergence of the calculation. The stress component equations are solved using

matrix block tridiagonal solution to enhance stability using non staggered grids.

C. Boundary conditions

At the wall, all the variables are set to zero except for the tangential velocity Vθ, which

is set to Ω1r on disk 1, −Ω2r on disk 2 and zero on the stationary cylinder. The usual value

ǫ = νk,jk,j/(2k) is imposed at the wall for the dissipation rate ǫ of the turbulence kinetic

energy. At the periphery of the disks, for R ≤ r ≤ Rc, Vθ is supposed to vary linearly from

zero on the stationary cylinder up to Ω1R on disk 1 and −Ω2R on disk 2 and the radial Vr

and axial Vz velocity components are fixed to zero.

We can not implement real straight blades in our two-dimensional code. So we limit

to modeling their most important effect, which is to increase the efficiency of the disks in

forcing the flow. Thus, we add a volumic drag force f in the equation of the tangential

velocity component Vθ. If we consider n straight blades, the volumic drag force f can be

written as:

f =
n

2πr
F =

n

4πr
ρCD|Vrel|Vrel (2)

where F is the drag force of one blade, ρ the fluid density, CD the dimensionless drag
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coefficient and Vrel = Ωir − Vθ the relative tangential velocity on disk i = 1, 2. The force

is designed to make the fluid velocity closer to the local disk velocity near the disks. This

form is close to the one proposed by Boroński [24] for spectral code. For curved blades, the

same approach can be used: a volumic lift force can be added in the equation of the radial

velocity component Vr. This will be the subject of a next study.

We can consider here that the height of the blades (h∗ = 0.1 or 0.2) is much larger than

the boundary layer thickness δ/Rc ≃ Re−1/2 ≤ 2 × 10−3 (for Re = 2 × 105). In this case,

Blevins [42] proposed some values for the drag coefficient (expected errors of ±20%) in an

uniform flow. For a thin rectangular plate perpendicular to the mean flow, the value of CD is

in the range [1.05− 1.9], depending on the size of the plate. As the flow is here not uniform

along the blades and as the drag coefficient is supposed to decrease for increasing values of

the Reynolds number, CD is expected to be lower than 2 depending on the flow and blade

parameters. Some calculations have been performed for Γ = −1, G = 1.8, Re = 2× 105 and

straight blades (h∗ = 0.2, n = 8) to study the influence of the trailing coefficient CD. The

differences on the extrema of the tangential velocity component are inferior to 0.5% for CD

in the range [0.1 − 2]. Thus, we have chosen to fix the value of CD equal to 0.5.

The reader is thus referred to [32–35] for more details about the RSM model and the

numerical method.

IV. SMOOTH DISK CASE: VISCOUS STIRRING

In this section, we consider the turbulent flow between two counter-rotating flat smooth

disks. Thus, we ensure a viscous stirring: the actuation is done by the setting in rotation

of the smooth walls and the movement is communicated to the fluid by diffusion of the

momentum through the boundary layers. We investigate the influence of the Reynolds

number Re, the aspect ratio of the system G, and the ratio Γ between the two rotation rates

on the mean and turbulent fields.

A. Flow structure in the exact counter-rotating regime

The structure of the mean flow in the exact counter-rotating regime is henceforth globally

well known: it can be decomposed into two toroidal cells in the tangential direction θ (not
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modelled here because of the axisymmetry hypothesis in the mean) and into two poloidal

recirculations in the (r, z) plane [28].

We focus here on the poloidal cells (fig.5a): the fluid at the top and the bottom of the

cavity is forced into two opposite rotation speeds, and is then entrained by the disks. Conse-

quently, a shear layer develops in the equatorial plane. This is perceptible in figure 2, which

presents axial variations of the tangential velocity component for Γ = −1, Re = 6.28 × 105,

G = 1.8 at five radial locations in the range r∗ = 0.346−0.865. The radial and axial velocity

components are not presented here because they are almost zero in the whole cavity both in

the experiments and in the calculations. The tangential component is quite weak too except

in the two very thin boundary layers, which develop on each disk and whose size is shown

in figure 3 and close to the periphery, where the shear layer is observed. For r∗ ≤ 0.476

(fig.2a,b), the profile exhibits a Stewartson [2] flow structure: a quasi zero tangential velocity

zone enclosed by two boundary layers on each disk. The flow in the boundary layers is char-

acterized by a strong tangential velocity component (positive on disk 1 and negative on disk

2) and by a radial outward component not shown here. Towards the periphery (fig.2c-e),

the flow gets of Batchelor type with five distinct zones: two boundary layers on the disks,

a shear layer at mid-plane and two zones enclosed between the two. These last two zones

are characterized by a weak but non zero tangential velocity component. The shear layer

thickens when the local radius r∗ increases. Contrary to the laminar case reported by Kilic

et al. [29], there is practically no radial inflow around z∗ = 0.

A good agreement between the numerical results and the experimental data is obtained

even the values are quite weak. The RSM model catches the appearance and the thicken-

ing of the shear layer. On the other hand, the size of the LDV probe volume in the axial

direction (1 mm) is not negligible compared to the boundary layer thickness. It is the main

reason why the agreement between the numerical predictions and the measurements is less

satisfactory in the boundary layers as it can be seen figure 2.

The transition between the Stewartson and Batchelor flow structures can also be seen in

figure 3 from the radial evolution of the boundary layer thickness δ for the same set of pa-

rameters. Very close to the rotation axis, the axial flow impinges the disks and creates very

large boundary layers on both disks, whose size decreases with the local radius as expected

[43]. The flow is then of Stewartson type. During the transition, δ increases as already

observed by Poncet [35] for rotor-stator flows (Γ = 0). For r∗ ≃ 0.47, the flow is clearly of
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Batchelor type and then, δ decreases towards the periphery of the cavity. It confirms the

visualizations of the laminar flow between co- and counter-rotating disks (−0.2 ≤ Γ ≤ 0.87)

performed by Gauthier et al. [43]. They found indeed that the boundary layer thickness of

the slower disk decreases for increasing values of the radial location r∗.

We investigate the influence of the Reynolds number on the mean flow. Figure 4 presents

radial profiles of the tangential velocity component for Γ = −1, G = 1.8 and four Reynolds

numbers at different axial locations. The numerical predictions of the RSM model are com-

pared to present LDV measurements and to the velocity measurements of Ravelet [21] for

Re ≥ 105. These data are also compared to the local disk 1 and disk 2 velocities, which are

respectively Ω1r and −Ω2r. The numerical data for Re ≥ 6.28 × 105 merge almost into a

single fitting curve. It means that there is practically no effect of the Reynolds number on

the mean field ever since the flow is turbulent. For Re = 2 × 105, a significant increase of

the magnitude of Vθ is observed whatever the axial position, which is characteristic of the

laminar regime. The critical Reynolds number for the transition from the laminar to the tur-

bulent state is thus overestimated compared to the one obtained by Ravelet [21]: Re = 105.

Nevertheless, the present velocity measurements performed on the same experimental set-up

as [21] confirm the numerical results. Compared to the previous measurements, an effect

of Re is observed on the radial profiles of Vθ at the periphery of the cavity. In fact, the

critical Reynolds number for the laminar to turbulent state transition depends strongly

on the boundary conditions and especially on the conditions imposed in the radial gap

0.925 ≤ r∗ ≤ 1. We recall that a linear profile is imposed in the numerical code for Vθ, that

does not take into account any recirculation zone and that could explain this difference.

This tendency for relaminarization of the RSM model has already been noticed by Poncet

et al. [34, 35] in the rotor-stator configuration. As a conclusion, there is no significant effect

of the Reynolds number on the mean flow for Re ≥ 105, which confirms the results of Cadot

et al. [16] and Ravelet [21].

Figure 5 presents the corresponding streamline patterns. The mean flow is divided into

two symmetric poloidal cells, whose size is equal here to 0.5H along the axial direction and

independent of the Reynolds number. In the radial direction, the diameter of the largest

eddies observed is of the order of the disk radius R, showing this scale is the order of the

energy scale injection. Experimentally, Ravelet [28] observed a weak dissymmetry of the

flow in the (r, z) plane, which disappears for increasing values of the Reynolds number.
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The influence of the aspect ratio of the cavity G on the mean field has also been investi-

gated for 0.01 ≤ G ≤ 1.8 (fig.6) and a given Reynolds number Re = 1.3 × 106. Note that

the radial and most of all the axial velocity components are quite weak compared to the

tangential one and to the disk velocity. For G = 1.8, the boundary layers are separated as

already mentioned and the mean tangential velocity component is constant in the core of the

flow. For G = 0.01, the flow is of torsional Couette type with merged boundary layers as Vθ

(fig.6a) varies linearly in the median region of the flow. This is to be compared to the value

G = 0.012 obtained in the rotor-stator configuration [35]. For intermediate values G ≃ 0.4,

both boundary layers interact. The transition between the two main regimes is continuous

and not clear from the Vθ-profile. Nevertheless, if we consider the Vz-profile (fig.6c), we can

clearly see that the axial velocity component is almost zero whatever the value of G, expect

for G = 0.4, where the fluid moves towards the upper and lower disks. The transition can

also be characterized by considering the Vr-profiles (fig.6b), which exhibit the thinning of

the boundary layers for increasing values of the aspect ratio.

B. Flow structure for −1 ≤ Γ ≤ 0

Another interesting feature in counter-rotating disk flows is the influence of the ratio Γ

between the two rotating disk speeds (fig.7). The Reynolds number and the aspect ratio of

the cavity are respectively fixed to Re = 1.3 × 106 and G = 1.8. We focus on the counter-

rotating disk case for which −1 ≤ Γ ≤ 0.

In the exact counter-rotating regime (fig.7a), the flow is symmetric and two cells with

the same size 0.5H coexist. For small rotating speed differences, the structure of the mean

flow is strongly dominated by the faster disk (fig.7b). Varying the ratio Γ displaces the

shear layer towards the slower disk. The cell close to the lower disk invades almost the

whole interdisk spacing for Γ = −0.7 (fig.7d). For Γ = −0.2 (fig.7e), the flow structure

resembles the one observed in the rotor-stator configuration [35] with streamline patterns

parallel to the rotating axis. This transition between the two cell and the one cell regimes

can be seen also from figure 8. It presents the evolution with Γ of the dimensionless size

Sc/H of the smallest cell (along the upper disk) in the axial direction defined in figure 7b.

In the smooth disk case, we notice that Sc decreases rapidly for decreasing values of |Γ| in

the range −1 ≤ Γ ≤ −0.8 (see also fig.7a-c) following Sc/H ∝ −2.2Γ. For smallest values
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of |Γ|, the cell is reduced to a very thin region attached to the upper disk (fig.7d), which

disappears progressively along the external cylinder and so Sc tends to zero.

In figure 8, our results are compared to the ones obtained by Kilic et al. [29] and Gan et

al. [31], who performed calculations for −1 ≤ Γ ≤ 0 and G = 0.12 using a classical k − ǫ

turbulence model. Considering that the k−ǫ prediction of these authors is in relatively good

agreement with the smooth disk case, the comparison given in figure 8 may be meaningful

to get an idea of the effect of aspect ratio. For Re = 105, Kilic et al. [29] found that the

evolution of Sc against Γ is non monotonous. It decreases more slowly from Γ = −1 to

Γ = −0.2 than in our case. It is a combined effect of both the Reynolds number and the

aspect ratio of the cavity. For Γ = −0.4, they observed a double transition: from laminar to

turbulent flow and from Batchelor to Stewartson type of flow. The decrease of Sc is much

faster with Γ in the laminar case [29]. For Re = 1.25×106, Gan et al. [31] obtained streamline

patterns different from the ones shown in figure 7 for Γ = [−0.8;−0.2] essentially because of

the small value of G. A large cell along the slower disk is still observed for Γ = −0.4. This

cell is trapped by the main flow due to the faster disk in the zone 0.3 ≤ r∗ ≤ 0.45.

C. Turbulence field in the exact counter-rotating regime

As already mentioned above, the influences of both the Reynolds number and the aspect

ratio are relatively weak (compared to the effect of the ratio Γ between the rotation rates).

In the following, we focus on the exact counter-rotating regime Γ = −1 and Re and G are

fixed respectively to Re = 6.28 × 105 and G = 1.8.

Figure 9 presents the axial profiles of the six components of the Reynolds stress tensor.

These components are normalized by the local disk 1 velocity Ω1r. For example, R∗
rr is

defined as: R∗
rr = v′2

r /(Ω1r)
2. As in all rotating disk problems [34], turbulence is mainly

concentrated in the boundary layers with the same turbulence levels in the upper and lower

disk boundary layers. The main difference with the rotor-stator configuration is that turbu-

lence is also generated in the median region of the interdisk spacing and is due to the shear,

stretched by the recirculations. The Von Kármán arrangement is indeed known to produce

an intense turbulence in a compact region of space [14]. The magnitudes of the three normal

components (in principal axes) are almost the same in the equatorial plane. It means that

turbulence is quasi isotropic in that region. The cross components are quite weak except for
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the R∗
rθ component, which behaves like the normal components with a bump at mid-plane.

As expected, the maximum of the turbulence Reynolds number Ret = k2/(νǫ) = 5836 is

located in the shear layer close to the periphery of the cavity, where the highest values of

the local Reynolds number Rer = Ω1r
2/ν are obtained (fig.10a). This maximum is to be

compared to the maximum value Ret ≃ 500 obtained by Poncet [35] for Γ = 0 and Re ≃ 106,

which indicates the high turbulence level in that region.

Figure 10b shows the anisotropy invariant map for the Reynolds stress tensor in the whole

interdisk spacing at r∗ = 0.51. The second A2 and third A3 invariants of the anisotropy

tensor aij of the second moments of the fluctuations are defined as: A2 = aijaji and

A3 = aijajkaki [44], where aij = Rij/k − 2

3
δij (δij the Kronecker symbol). The results

of the RSM model satisfy the realizability diagram of Lumley [44]. Very close to the disks,

the turbulence tends to follow the two-component behavior as the wall normal fluctuations

are damped more effectively than fluctuations parallel to the disk. Outside the boundary

layers and especially in the shear layer, the turbulence is fairly close to the isotropic case

(A2 = A3 = 0), which confirms the results observed from figure 9. Note that very close to

the mid-plane, the flow tends to the axisymmetric limit.

V. BLADED DISK CASE: INERTIAL STIRRING

To increase the efficiency of the disks in forcing the flow, we used n blades of height h∗

mounted on both disks. The stirring is called inertial because the fluid is set into motion

thanks to areas of forcing perpendicular to the motion itself. In that case, Ravelet [21]

showed that all mean and turbulent quantities are independent of the Reynolds number in

the range Re = [105, 2 × 106]. Thus, we have chosen to fix the values of Re ≃ 2 × 105

and G = 1.8. In that case, the boundary layers are separated and the flow is found to be

highly turbulent. Moreover, direct comparisons with the experiments of Ravelet [21] can be

performed. The purpose of this section is to propose an efficient way to model the effect of

straight blades on both the mean and turbulent fields.
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A. Flow structure in the exact counter-rotating regime

In the bladed disk case, the flow structure is completely different from the smooth disk

case, where the velocity gradient are located in the boundary layers along the disks and

decrease when the Reynolds number increases. For an inertially driven flow, the mean flow

does not present any appreciable velocity gradient in the vicinity of the blades (fig.11) and

the gradients are distributed in the median region of the flow. The mean flow is divided into

three main regions: a shear layer at mid-plane and two fluid regions close to each bladed

disks. The intensity of the shear at mid-plane is increased compared to the viscous stirring

case. This shear is due to the two recirculation cells. It induces a strong radial inflow

(Vr < 0) around z∗ = 0 and two opposite axial flows towards the disks. The magnitude of

the mean axial and radial velocity components increase from the periphery (fig.11c) to the

rotation axis (fig.11a). From the disk to the top of the blades, the tangential fluid velocity is

fairly close to the local disk velocity. Moreover, a strong radial outflow is created along the

bladed disks and goes with the impellers. At the top of the blades, there is a strong decrease

of |Vθ| interpreted as the wake of the blades. There is a very good agreement between the

numerical predictions and the velocity measurements concerning the Vθ-profiles. A small

difference is observed in the shear layer, where the RSM model predicts a thinner layer than

the one measured by Ravelet [21]. This last author observed, for the same set of parameters,

high energy levels for frequencies inferior to the injection frequency. This contribution is

attributed to the appearance of strong coherent structures in the shear layer not observed

in the smooth disk case and which may explain the weak discrepancies obtained.

B. Flow structure for −1 ≤ Γ ≤ 0

We perform the same analysis as in the smooth disk case by varying the ratio Γ between

the two rotating disk speeds. Figure 8 presents comparisons between the smooth and bladed

disk cases concerning the size Sc of the cell along the slowest disk for −1 ≤ Γ ≤ 0. The same

behavior is obtained but the transition between the two cell and the one cell structures (Sc →

0) is slightly delayed. It occurs in the inertial stirring case for Γ ≃ −0.65, which is close

to the experimental value obtained by Cadot and Le Mâıtre [19] in the same configuration

Γ = −0.69 and the analytical one obtained by Dijkstra and Van Heijst [9] for Re → 0 in
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the smooth disk case Γ = −2/3. The measurements of Ravelet [21] reveal a transition for

Γ = −0.78. It confirms the similitude observed by [19] between the smooth disk flow with

a large viscosity and the mean flow in the inertial stirring case.

The transition from the two cell to the one cell structures can be seen also from figure

12. Compared to the smooth disk case, the cell along the slowest disk is larger for Γ = −0.8

(fig.12b). For Γ = −0.7, only a small recirculation subsists along the upper disk and

completely disappears for Γ = −0.6. For Γ ≥ −0.6, the same pattern is observed with

streamlines parallel to the rotation axis.

C. Turbulence field in the exact counter-rotating regime

To enable direct comparisons with the viscous stirring case, figure 13 presents the axial

profiles of the six components of the Reynolds stress tensor at the same radius r∗ = 0.81 and

for the same values of G and Γ. The main difference between the smooth and the bladed

disk configurations is that, in the latter case, the turbulence intensities vanish towards the

disks. Apart from that, turbulence is also mostly generated at mid-plane because of the

shear stretched by the recirculations. The blades induce a much stronger shear zone in the

equatorial plane compared to the smooth disk case as already seen from the mean velocity

profiles (fig.11). Thus, the turbulence levels, regarding the normal Reynolds stress compo-

nents (fig.13a), are almost 20 times larger than for viscous stirring and quite comparable to

the mean fluid velocity. It confirms the previous measurements of Cadot et al. [16] in steady

regimes of turbulence in the Von Kármán geometry. They found that the fluid velocity

fluctuations are close to the fluid mean velocity and 6 times larger in the bladed disk case

than in the smooth disk case. In the present study, the R∗
rr component is much weaker than

the two other normal components, which indicates the turbulence anisotropy in the core of

the flow. The cross components are also stronger than in the smooth disk case. The level

of the R∗
rθ component (fig.13b) is of the order of R∗

rr. Note that the maximum of the R
∗1/2

θθ

component obtained at mid-plane (z∗ = 0) using the RSM model is in excellent agreement

with the asymptotic value measured by Ravelet [21] for Re ≥ 104 (relative error inferior to

0.1%). Nevertheless, one must remark that only a single measurement point is available,

and consequently it is hard to derive definite conclusions. Another point is that the periodic

unsteadiness introduced by the blades is not exactly accounted for in the calculation and
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may explain small discrepancies in the mean velocity profiles.

To study the influence of the number n of blades and their height h∗ on the turbulent field,

figure 14 shows radial profiles of the turbulence kinetic energy k∗ normalized by (Ω1Rc)
2 for

various impeller configurations. These profiles are plotted at mid-plane where the maximum

of k∗ prevails. As expected, k∗ increases towards the periphery of the cavity, it means for

increasing local Reynolds number. Then, k∗ decreases for radial locations in the gap between

the disks and the external cylinder. We can first notice the very weak level of turbulence

kinetic energy in the smooth disk case compared to the other bladed disk cases. Secondly,

the influence of the blade number n is quite weak for n = 4, 8 or 16. Only very close to

the rotation axis, we can notice a different behavior in the configuration with 16 blades.

Nevertheless, in the whole flow, four blades seem to be sufficient to force the flow. On the

other hand, the blade height h plays a more important role. The k∗ level is twice higher

when the blades are twice higher too.

It is now established that all mean and turbulent quantities are independent of the

Reynolds number in the range Re = [105, 2 × 106]. The turbulent dissipation is indeed

much stronger than the dissipation due to the boundary layers and hides the dependence on

Re. All these results can thus be extended to higher Reynolds numbers.

VI. CONCLUSION

We have performed some comparisons between numerical predictions using a RSM model

and velocity measurements considering the turbulent flow between two flat or bladed counter-

rotating disks. This configuration known as the Von Kármán geometry is used to produce

an intense turbulence in a compact region of space.

For viscous stirring, the flow is of Stewartson type close to the rotation axis and so exhibits

three distinct regions: two boundary layers and one shear layer at mid-plane. When one

approaches the periphery of the cavity, for r∗ ≃ 0.476, the flow gets of Batchelor type.

Turbulence is mainly concentrated in the boundary layers and in the transitional shear

layer, where turbulence is almost isotropic. Turbulence intensities increase towards the outer

cylinder. When one decreases the aspect ratio of the cavity until G ≤ 0.4, the boundary

layers mixed and the flow is then of torsional Couette type for lower values of G. In the case

of inertial stirring, the impellers are more efficient to force the flow. Thus, the transitional
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shear layer intensifies. Turbulence is so mainly concentrated around z∗ = 0 and vanish

towards the disks. The turbulence intensities are almost 20 times larger than in the flat disk

case. The height of the blades is found to be the preponderant parameter to increase the

turbulence intensities more than the number of blades. In the flat and bladed disk cases, we

have numerically verified the statement of Cadot et al. [16]: “smooth or rough, the efficiency

of a given type of stirrer to set the bulk of the fluid in motion is independent of the Reynolds

number”. Moreover, we have characterized the transition between the two cell and the one

cell regimes. For inertial stirring, it occurs for Γ ≃ −0.65 close to the values obtained by

[9, 19].

The agreement between the numerical predictions and the LDV measurements is very

satisfactory in both cases. For the first time, an easy and efficient way to model the main

effect of straight blades has been proposed. Further experimental works are now required

to provide more comparisons for the turbulent fields but also some calculations for curved

blades.
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[3] T. Von Kármán. Uber laminare und turbulente Reibung. Z. Angew. Math. Mech., 1:233–252,

1921.

[4] G.N. Lance and M.H. Rogers. The axially symetric flow of a viscous fluid between two infinite

rotating disks. Proc. R. Soc. London A, 266:109–121, 1962.

[5] J.B. McLeod and S.V. Parter. On the flow between two counter-rotating infinite plane disks.

Arch. Ration. Mech. Anal., 54:301–327, 1974.

[6] H.J. Pesch and P. Rentrop. Numerical solution of the flow between two counter-rotating

infinite plane disks by multiple shooting. ZAMM, 58:23–28, 1978.

[7] H.O. Kreiss and S.V. Parter. On the swirling flow between rotating coaxial disks: existence

and uniqueness. Commun. Pure Appl.Math., 36:55–84, 1983.

[8] C.E. Pearson. Numerical solutions for time-dependent viscous flow between rotating coaxial



20

disks. J. Fluid Mech., 21(4):623–633, 1965.

[9] D. Dijkstra and G.J.F. Van Heijst. The flow between two finite rotating disks enclosed by a

cylinder. J. Fluid. Mech., 128:123–154, 1983.

[10] C. Yang and S. Liao. On the explicit, purely analytic solution of Von Kármán swirling viscous
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• Fig.1: Sketches of the cavity with (a) relevant notation in the smooth disk case and

(b) straight blades.

• Fig.2: Axial profiles of the tangential velocity component for Γ = −1, Re = 6.28×105

and G = 1.8 at five radial locations: (a) r∗ = 0.346, (b) r∗ = 0.476, (c) r∗ = 0.605,

(d) r∗ = 0.735, (e) r∗ = 0.865. Comparisons between the numerical results (−) and

the experimental data (◦) in the smooth disk case.

• Fig.3: Radial evolution of the boundary layer thickness δ/H in the smooth disk case for

Γ = −1, Re = 6.28×105 and G = 1.8 (symbols: RSM, line: polynomial interpolation).

• Fig.4: Radial profiles of the tangential velocity component in the smooth disk case for

Γ = −1, G = 1.8 and four Reynolds numbers at different axial locations: (a) z∗ = 0.91,

(b) z∗ = 0.59, (c) z∗ = 0.02, (d) z∗ = −0.59, (e) z∗ = −0.92.

• Fig.5: Computed streamlines between smooth disks for Γ = −1 and G = 1.8: (a)

Re = 2 × 105; (b) Re = 7.8 × 105; (c) Re = 1.3 × 106; (d) Re = 4 × 106.

• Fig.6: Axial profiles of the mean velocity components at r∗ = 0.81 for Γ = −1,

Re = 1.3 × 106 and four values of G in the smooth disk case (RSM).

• Fig.7: Computed streamlines between smooth disks for Re = 1.3 × 106 and G = 1.8:

(a) Γ = −1; (b) Γ = −0.9; (c) Γ = −0.8; (d) Γ = −0.7; (e) Γ = −0.2.

• Fig.8: Size Sc/H of the smallest cell against Γ for G = 1.8 (RSM). Comparison between

(−) the smooth disk case (Re = 1.3× 106), (−−) the bladed disk case (Re = 2× 105)

and previous numerical results of (◦) Kilic et al. [29] and (⋄) Gan et al. [31] in the

smooth disk case.

• Fig.9: Axial profiles of the six Reynolds stress tensor components at r∗ = 0.81 for

Γ = −1, G = 1.8 and Re = 6.28 × 105 in the smooth disk case (RSM).

• Fig.10: Γ = −1, G = 1.8 and Re = 6.28 × 105 in the smooth disk case (RSM): (a)

Iso-turbulence Reynolds number Ret = k2/(νǫ) - (b) Anisotropy invariant map at

r∗ = 0.51: (×) −1 ≤ z∗ ≤ 0, (¤) 0 ≤ z∗ ≤ 1.

• Fig.11: Axial profiles of the mean velocity components for Γ = −1, Re = 2 × 105,

G = 1.8 and straight blades (n = 8, h∗ = 0.2) at three radial locations: (a) r∗ = 0.4,
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(b) r∗ = 0.5, (c) r∗ = 0.6. Comparisons between the predictions of the RSM model

(lines) and the LDV measurements of Ravelet [21] (◦).

• Fig.12: Computed streamlines for Re = 2 × 105, G = 1.8 and straight blades (n = 8,

h∗ = 0.2): (a) Γ = −1; (b) Γ = −0.9; (c) Γ = −0.8; (d) Γ = −0.7; (e) Γ = −0.6.

• Fig.13: Axial profiles of the six Reynolds stress tensor components at r∗ = 0.81 for

Γ = −1, G = 1.8, Re = 2× 105 and straight blades (n = 8, h∗ = 0.2)(RSM). (◦) LDV

data of Ravelet [21] for R
∗1/2

θθ .

• Fig.14: Radial profiles of the turbulence kinetic energy k∗ = k/(Ω1Rc)
2 at z∗ = 0 for

Γ = −1, G = 1.8, Re = 2 × 105 and different bladed disk configurations - comparison

with the smooth disk case (Re = 6.28 × 105) (RSM).
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(a) (b)

Figure 1: Poncet et al., submitted to Int. J. Heat Fluid Flow.
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Figure 2: Poncet et al., submitted to Int. J. Heat Fluid Flow.
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Figure 6: Poncet et al., submitted to Int. J. Heat Fluid Flow.



31

0 0.5 1
−1

−0.5

0

0.5

1

r*

z*

(a)

0 0.5 1
−1

−0.5

0

0.5

1

r*

(b)

0 0.5 1
−1

−0.5

0

0.5

1

r*

(c)

0 0.5 1
−1

−0.5

0

0.5

1

r*

(d)

0 0.5 1
−1

−0.5

0

0.5

1

r*

(e)

S
c
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