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Abstract

We point out the possibility of the partial conservation of the seniority quantum number when

most eigenstates are mixed in seniority but some remain pure. This situation occurs in nuclei

for the g9/2 and h9/2 shells where it is at the origin of the existence of seniority isomers in the

ruthenium and palladium isotopes. It also occurs for f bosons.

PACS numbers: 03.65.Fd, 21.60.Cs, 21.60.Fw
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The seniority quantum number was introduced by Racah for the classification of electrons

in an ln configuration where it appears as a label additional to the total orbital angular

momentum L, the total spin S, and the total angular momentum J [1]. About ten years

later it was adopted in nuclear physics for the jj-coupling classification of nucleons in a

single j shell [2, 3]. These studies made clear the intuitive interpretation of seniority: it

refers to the number of particles that are not in pairs coupled to angular momentum J = 0.

In nuclear physics the concept of seniority has proven extremely useful, especially in semi-

magic nuclei where only one type of nucleon (neutron or proton) is active and where seniority

turns out to be conserved to a good approximation.

Since the papers of Racah and Flowers appeared, a wealth of further results has been

obtained and it is by now well understood what are the necessary and sufficient conditions

for an interaction to conserve seniority (see chapters 19 and 20 of Ref. [4]). To give a precise

definition of these conditions, we introduce the following notations. We consider a system

of n particles with angular momentum j where for the sake of generality j can be integer for

bosons or half-integer for fermions. A rotationally invariant two-body interaction V̂ between

the particles is specified by its ⌊j +1⌋ matrix elements νλ ≡ 〈j2; λ|V̂ |j2; λ〉 (where ⌊x⌋ is the

largest integer smaller than or equal to x). The notation |j2; λ〉 implies a normalized two-

particle state with total angular momentum λ which can take the values λ = 0, 2, . . . , 2p,

where 2p = 2j for bosons and 2p = 2j − 1 for fermions. The interaction can then be written

as V̂ =
∑

λ νλV̂λ where V̂λ is the operator defined via 〈j2; λ′|V̂λ|j2; λ′′〉 = δλλ′δλλ′′ .

With the above conventions the necessary and sufficient conditions for the conservation

of seniority can be written as

∑

λ

aλ
jIνλ = 0, I = 2, 4, . . . , 2p, (1)

with

aλ
jI√

2λ + 1
= δλI + 2

√

(2λ + 1)(2I + 1)











j j λ

j j I











−
[

16(2λ + 1)(2I + 1)

(2j + 1)(2j + σ)(2j + 2 + σ)(2j + 1 + 2σ)

]1/2

,

where the symbol between curly brackets is a Racah coefficient and σ ≡ (−)2j is +1 for

bosons and −1 for fermions. These conditions have been derived previously in a variety

of ways mostly for fermions [4, 5, 6]. Although Eq. (1) determines all constraints on the
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matrix elements νλ by varying I between 2 and 2p, it does not tell us how many of those are

independent. This number turns out to be ⌊j/3⌋ for bosons and ⌊(2j − 3)/6⌋ for fermions,

the number of independent seniority v = 3 states [7].

Conservation of seniority does not, however, imply solvability. In general, even if an

interaction satisfies the conditions (1) and conserves seniority, that does not imply that

closed algebraic expressions can be given for its eigenenergies and eigenfunctions. As regards

its characterization from the point of view of symmetries, seniority can be viewed as a

partial dynamical symmetry. It is important to clarify first what exactly is meant by a

partial dynamical symmetry which is an enlargement of the concept of dynamical symmetry

as defined, e.g., in chapter 11 of Ref. [8].The idea is to relax the conditions of complete

solvability and this can be done in essentially two different ways:

1. Some of the eigenstates keep all of the quantum numbers.In this case the properties

of solvability, good quantum numbers,and symmetry-dictated structure are fulfilled

exactly, but only by a subset of eigenstates [9, 10].

2. All eigenstates keep some of the quantum numbers. In this case none of the eigenstates

is solvable,yet some quantum numbers (of the conserved symmetries) are retained.In

general, this type of partial dynamical symmetry arises if the hamiltonian preserves

some of the quantum numbers in a dynamical-symmetry classification while breaking

others [11, 12].

Combinations of 1 and 2 are possible as well, for example, if some of the eigenstates keep

some of the quantum numbers [13].

How do seniority-conserving interactions fit in this classification? If the conditions (1)

are satisfied by an interaction V̂ , all its eigenstates carry the seniority quantum number v

and, consequently, the second type of partial dynamical symmetry applies. The eigenstates

are not solvable in general but must be obtained from a numerical calculation. Nevertheless,

some eigenstates are completely solvable for a general seniority-conserving interaction. This

was shown by Rowe and Rosensteel [5, 6] who derived closed, albeit complex, expressions

for the energies of some multiplicity-free (i.e., unique for a given particle number n, angular

momentum J and seniority v) n-particle states in a j = 9/2 shell. This implies a partial

dynamical symmetry of the first kind. So, we conclude that seniority-conserving interactions
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in general satisfy the second type of partial dynamical symmetry but with the added feature

that some multiplicity-free states are completely solvable.

In this Letter we carry the analysis of seniority conservation one step further and we

investigate the problem whether it is possible to construct interactions that in general do

not conserve seniority but which have some eigenstates with good seniority. We recover an

example of this phenomenon which was pointed out earlier for the j = 9/2 shell by Escuderos

and Zamick [14] and by Zamick [15], and we find that it also occurs for f bosons.

To shed light on this problem of partial seniority conservation, we analyze the four-particle

case. The motivation for doing so is that the conditions (1) can be derived from the analysis

of the three-particle case [4]. We might thus expect possible additional features to appear

for four particles which will indeed be confirmed by the analysis below.

A four-particle state can be written as |j2(R)j2(R′); J〉 where two particles are first cou-

pled to angular momentum R, the next two particles to R′ and the intermediate angular

momenta R and R′ to total J . This state is not (anti-)symmetric in all four particles and

can be made so by applying the (anti-)symmetry operator P̂ ,

|j4[II ′]J〉 ∝ P̂ |j2(I)j2(I ′); J〉

=
∑

RR′

[j2(R)j2(R′); J |}j4[II ′]J ] |j2(R)j2(R′); J〉,

where [j2(R)j2(R′); J |}j4[II ′]J ] is a four-to-two-particle coefficient of fractional parentage

(CFP). The square brackets [II ′] label the four-particle state and indicate that it has been

obtained after (anti-)symmetrization of |j2(I)j2(I ′); J〉. The label [II ′] defines an overcom-

plete, non-orthogonal basis, that is, not all |j4[II ′]J〉 states with I, I ′ = 0, 2, . . . , 2p are

independent. It is implicitly assumed that I and I ′ as well as R and R′ are even.

The four-to-two-particle CFPs are known in closed form in terms of 9j symbols and,

furthermore, the overlaps 〈j4[II ′]J |j4[LL′]J〉 and the matrix elements 〈j4[II ′]J |V̂λ|j4[LL′]J〉
can be expressed in terms of them. The expressions are rather cumbersome and are not

given here but it is accepted that the overlaps and matrix elements are known as algebraic

expressions of the intermediate and final angular momenta.

We assume in the following that J 6= 0, corresponding to four-particle states with seniority

v = 2 or v = 4. By definition a seniority v = 2 four-particle state is

|j4, v = 2, J〉 = |j4[0J ]J〉. (2)
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A seniority v = 4 state is constructed from |j4[II ′]J〉 with I, I ′ 6= 0 and it is orthogonal to

the state (2). It can thus be written as

|j4[II ′], v = 4, J〉

= |j4[II ′]J〉 − 〈j4[II ′]J |j4[0J ]J〉|j4[0J ]J〉. (3)

If there is more than one v = 4 state for a given J , the indices [II ′] serve as an additional

label. Seniority conservation of the interaction V̂ implies

〈j4, v = 2, J |V̂ |j4[II ′], v = 4, J〉 = 0 (4)

or
〈j4[0J ]J |V̂ |j4[II ′]J〉
〈j4[0J ]J |V̂ |j4[0J ]J〉

= 〈j4[0J ]J |j4[II ′]J〉. (5)

Insertion of the values for the four-to-two-particle CFPs yields the conditions (1).

We now turn our attention to the problem of partial seniority conservation and derive the

conditions for an interaction V̂ to have some four-particle eigenstates with good seniority.

Note that there are a number of ‘trivial’ examples of this. For example, if the total angular

momentum J is odd, a four-particle state cannot be of seniority v = 0 or v = 2 and must

necessarily have seniority v = 4. Also, for J > 2p the four-particle state must be of seniority

v = 4. These trivial cases are not of interest here. Instead, we study the situation where

both v = 2 and v = 4 occur for the same J and where a general interaction V̂ mixes the

v = 2 state with a subset of the v = 4 states but not with all. A general seniority v = 4

state is specified by the coefficients ηII′ in the expansion

|j4{ηII′}, v = 4, J〉 =
∑

II′
ηII′|j4[II ′], v = 4, J〉, (6)

where the sum is over q linearly independent combinations [II ′] (with I 6= 0 and I ′ 6= 0),

as many as there are independent v = 4 states. Let us now focus on bosons with j ≤ 5

or fermions with j ≤ 13/2. In these cases Eq. (1) yields only one condition and a general

interaction can be written as a single component V̂λ plus an interaction that conserves

seniority. Consequently, if the condition of partial seniority conservation is satisfied by a

single λ component, it will be valid for an arbitrary interaction. The fact that (6) is an

eigenstate of V̂λ and that this interaction does not mix it with the v = 2 state is expressed
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by

∑

II′
ηII′〈j4[LL′], v = 4, J |V̂λ|j4[II ′], v = 4, J〉

= Eλ

∑

II′
ηII′〈j4[LL′], v = 4, J |j4[II ′], v = 4, J〉,

∑

II′
ηII′〈j4, v = 2, J |V̂λ|j4[II ′], v = 4, J〉 = 0. (7)

There are q + 1 unknowns: the q coefficients ηII′ and the energy Eλ. Equations (7) are also

q + 1 in number and together with a normalization condition on the coefficients ηII′ they

define an overcomplete set of equations in {ηII′, Eλ} not satisfied in general but possibly

for special values of j and J . Furthermore, according to the preceding discussion, if these

equations are satisfied for one λ, they must be valid for all λ and in each case the solution

yields Eλ, the eigenvalue of V̂λ. A symbolic solution of the Eqs. (7) (for general j and J)

is difficult to obtain but, using the closed expressions for the overlaps and matrix elements,

it is straightforward to find solutions for given j and J . In particular, a solution of the

overcomplete set of equations is found for j = 9/2 and J = 4, 6. We thus confirm the finding

of Refs. [14, 15] who noted the existence of these two states that have the distinctive property

of having exact seniority v = 4 for any interaction V̂ (barring accidental degeneracies).

Solution of the Eqs. (7) for j = 9/2 and J = 4, 6 allows the explicit construction of the two

states:

|(9/2)4, v = 4, J = 4〉 =

√

2363

1570
|(9/2)4[22], v = 4, J = 4〉 −

√

65

5338
|(9/2)4[24], v = 4, J = 4〉,

|(9/2)4, v = 4, J = 6〉 =

√

1620896

635341
|(9/2)4[24], v = 4, J = 6〉 −

√

5725

635341
|(9/2)4[44], v = 4, J = 6〉.

(8)

These states are normalized but expressed in terms of basis states that are not orthonormal.

In addition, the solutions Eλ can be used to derive the following energy expressions:

E[(9/2)4, v = 4, J = 4] =
68

33
ν2 + ν4 +

13

15
ν6 +

114

55
ν8,

E[(9/2)4, v = 4, J = 6] =
19

11
ν2 +

12

13
ν4 + ν6 +

336

143
ν8.

These expressions give the absolute energies of the two states and are valid for an arbitrary

interaction among j = 9/2 fermions. The states are completely solvable, independent of
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FIG. 1: Experimental and calculated energy spectra of 94Ru and 96Pd. The 94Ru and 96Pd spectra

are calculated with g9/2 interactions derived from 92Mo and 98Cd, respectively, which are seniority

breaking. All levels up to 3 MeV are shown. The two solvable v = 4 states are indicated in thick

lines.

whether the interaction conserves seniority or not. Their excitation energies Ex are not

known in closed form, however, since the Jπ = 0+ ground state is not solvable for a general

interaction. In contrast, a generally valid result is the difference between the excitation

energies, which can be written as

Ex[(9/2)4, v = 4, J = 6] − Ex[(9/2)4, v = 4, J = 4]

= −1

3
Ex[(9/2)2, J = 2] − 1

13
Ex[(9/2)2, J = 4]

+
2

15
Ex[(9/2)2, J = 6] +

18

65
Ex[(9/2)2, J = 8],

associating the excitation energies of the J = 4 and 6, seniority v = 4 states in the four-

particle system with those of the J = 2, 4, 6 and 8, seniority v = 2 states in the two-particle

system.

Another interaction-independent result that can be derived concerns transition matrix

elements. For example, the electric quadrupole transition between the two states (8) is

characterized by the B(E2) value

B(E2; (9/2)4, v = 4, J = 6 → (9/2)4, v = 4, J = 4)

=
209475

176468
B(E2; (9/2)2, J = 2 → (9/2)2, J = 0).

This again defines a parameter-independent relation between a property of the two- and

four-particle systems.
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FIG. 2: E2 decay in the (9/2)4 system as obtained with a seniority-conserving interaction. The

numbers between the levels denote B(E2) values expressed in units of B(E2; 2+
1 → 0+

1 ) of the

two-particle system.

There are several nuclear regions with valence neutrons or protons predominantly confined

to an orbit with j = 9/2, which can be the 1g9/2 or 1h9/2 shell. Of particular interest are

the nuclei 94Ru (Z = 44) and 96Pd (Z = 46) which have four proton particles or holes in the

1g9/2 shell and a closed N = 50 configuration for the neutrons. The yrast J = 2, 4, 6, 8 states

in both isotopes can, to a good approximation, be classified by seniority v = 2 [16]. For any

reasonable interaction the solvable J = 4, 6 states are only a few hundreds of keV above the

v = 2 states with the same J . This is illustrated in Fig. 1 which shows the observed yrast

states in 94Ru and 96Pd and compares them with the levels calculated with two different

interactions derived from 92Mo and 98Cd, respectively. For a constant interaction the 94Ru

and 96Pd spectra (four particles and four holes in the g9/2 shell) are identical. The difference

between the calculated spectra in Fig. 1 gives an idea of the uncertainty on the energy which

might be of use in the experimental search for the Jπ = 4+
2 , 6+

2 states [17].

Partial seniority conservation sheds also some new light on the existence of isomers as

observed in this region [18]. Figure 2 illustrates the E2 decay in the (9/2)4 system as

obtained with a seniority-conserving interaction. It displays a pattern of very small B(E2)

values between v = 2 states which is typical of the seniority classification in nuclei near mid

shell (n ≈ j + 1/2) and which is at the basis of the explanation of seniority isomers [16].

The decay of the two solvable J = 4, 6 states is qualitatively different, with B(E2) values
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that are an order of magnitude larger. The results derived here imply that, in spite of being

close in energy, the two solvable v = 4 states do not mix with the v = 2 states, even for

an interaction that does not conserve seniority. Within a (9/2)4 approximation, the pattern

shown in Fig. 2 is stable since any breaking of the seniority quantum number of the yrast

J = 4, 6 states can occur only through mixing with the other v = 4 levels which lie more

than 1 MeV higher. Furthermore, the v = 4 components in the yrast states can be probed

by detecting the M1 decay out of the solvable v = 4 states since the M1 operator cannot

connect components with different seniority.

A search for solutions of Eqs. (7) did not reveal other cases of partial seniority conservation

in fermionic systems with other j and/or J . However, numerical studies [19] have shown its

existence in bosonic systems, in particular for f bosons, where we have been able to find

analytic energy expressions for several boson numbers, again valid for a general interaction.

These findings suggest that the mechanism of partial seniority conservation with an arbitrary

interaction occurs in systems that are ‘only just’ not entirely solvable (i.e., j = 9/2 for

fermions and j = 3 for bosons). This will the subject of future investigations.

We wish to thank Larry Zamick, Alex Brown, Ami Leviatan, and Igal Talmi for illumi-

nating discussions.
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