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Abstract

This chapter presents a review on spin transfer torque in magnetic tunnel junctions. In the first
part, we propose an overview of experimental and theoretical studies addressing current-induced
magnetization excitations in magnetic tunnel junctions. The most significant results are presented
and the main observable characteristics are discussed. A description of the mechanism of spin
transfer in ferromagnets is finally proposed. In the second part, a quantum description of spin
transport in magnetic tunnel junctions with amorphous barrier is developed. The role of spin-
dependent reflections as well as electron incidence and spin-filtering by the barrier are described.
We show that these mechanisms give rise to specific properties of spin transfer in tunnel junctions,
very different from the case of metallic spin-valves. In the third part, the theoretical observable
features of spin transfer in magnetic tunnel junctions are derived and the validity of these results is
discussed and compared to recent experiments. To conclude this chapter, we study the mechanism
of spin transfer in half-metallic tunnel junctions, expected to mimic MgO-based magnetic tunnel

junctions.

PACS numbers:
Keywords: Spin Transfer Torque, Magnetic tunnel junctions, Tunnelling Magnetoresistance, Current-

induced Magnetization Switching
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I. INTRODUCTION

The study of the coupling between an electrical current and localized spins in transi-
tion metals, leading to giant magnetoresistance effects’**, has renewed our knowledge of
fundamental electronics and opened wide fields of research in this domain. The idea that a
spin-polarized current may in turn act on the local magnetization of such a ferromagnet have
been proposed in the late 1970’s by Berger’, when investigating the interaction between a
domain wall and an electrical current.

However, this torque - usually called spin transfer torque (STT) - exerted by the spin-
polarized current on the local magnetization requires high current densities which can only
be reached in sub-micronic devices (nano-pillars, point contacts or nano-wires). The de-
velopment of thin film deposition techniques, as well as electronic lithography in the early
1990’s led to the fabrication of spin-valve pillars with dimensions as small as 100100 nm?.
Spin-valves, first studied by Dieny et al.” in 1991, consist of two ferromagnetic thin lay-
ers (less than 10 nm-thick), separated by a metallic (Cu, Al) or tunnelling (Al;O3, MgO,
TaOx) spacer. One of the ferromagnet is pinned by an antiferromagnetic system so that its
magnetization direction is only weakly affected by an external magnetic field.

The theoretical demonstration of spin transfer torque in metallic spin valves (SVs) ten
years ago " gave a new breath to giant magnetoresistance related studies’, promising excit-
ing new applications in non-volatile memories technology” and radio-frequency oscillators”.
A number of fundamental studies in metallic spin valves revealed the different proper-
ties of spin torque and led to a deep understanding of current-induced magnetization
dynamics'”' ' Particularly, several theoretical studies described the structure of the
torque in metallic magnetic multilayers and showed the important role of averaging due to
quantum interferences, spin diffusion and spin accumulation' "

Since the first experimental evidence of spin-dependent tunnelling ®, magnetic tunnel
junctions (MTJs) have attracted much attention because of the possibility to obtain large
tunnelling magnetoresistance (TMR) at room temperature'’. The possibility to use MTJs
as sensing elements in magnetoresistive heads, as non-volatile memory elements or in re-
programmable logic gates has also stimulated a lot of technological developments aiming
at the optimization of MTJs” transport properties and their implementation in silicon-
based circuitry™". Because of these applications, MTJs have been intensively studied and
the role of interfaces”', barrier””, disorder”’ and impurities”" have been addressed in many
publications®’. The recent achievement of current-induced magnetic excitations and reversal
in MTJs*™“" has renewed the already very important interest of the scientific community in
MTJs.

The recent observation of spin transfer torque in low RA (resistance area product) MTJs
using amorphous™" or crystalline barriers™”*" opened new questions about the transport
mechanism in MTJs with non collinear magnetization orientations. As a matter of fact,

whereas the current-perpendicular-to-plane (CPP) transport in SVs is mostly diffusive and



governed by spin accumulation and relaxation phenomena ™', spin transport in magnetic
tunnel junctions is mainly ballistic and governed by the coupling between spin-dependent
interfacial densities of states: all the potential drop occurs within the tunnel barrier. The
characteristics of spin transfer torque are thus expected to be strongly different in MTJs
compared to SVs.

In this chapter, we propose a description of spin transfer torque in magnetic tunnel
junctions, highlighting the differences with metallic spin valves. In section II, an overview
of the experiments on spin transfer torque is given as well as a description of the origin of
STT in arbitrary ferromagnetic systems.

In section III, the quantum origin of spin transfer torque in MTJs is described using
a simple free-electron approach. The selection of the incident electrons due to the tunnel
barrier is depicted and the relaxation of the transverse and longitudinal components of
the spin density (spin accumulation) is discussed. It is shown that these two effects may
contribute to a non negligible field-like term (also called out-of-plane component), contrary
to SVs where this term is negligible.

In section IV, we present the angular and bias dependencies of the in-plane and out-
of-plane components of spin transfer torque. The important angular asymmetry usually
observed in metallic systems disappears in magnetic tunnel junctions due to the reduced
influence of the longitudinal spin accumulation on the transverse spin current. Then, in
agreement with different theories and very recent experiments, we show that the bias depen-
dencies of the two components of ST'T exhibit non linear variations due to the specific non
linear transport through the tunnel barrier. We also discuss the existence of other sources
which can strongly affect this bias dependence, such as the existence of interfacial asymme-
try, incomplete absorption of the transverse component of spin current or, most important,
emission of spin waves due to hot electrons.

Finally in section V, we present the influence of increasing s-d exchange coupling on spin
torque and especially discuss the case of half metallic tunnel junctions, which might mimic
MgO-based MTJs. In half metallic electrodes, the spin transfer exponentially decays near

the interface still giving rise to a non zero torque on the local magnetization.

II. OVERVIEW OF EXPERIMENTS AND MODELS

The observation of spin transfer torque in magnetic tunnel junctions is only very recent
(2004) due to the difficulty to obtain high-quality low RA MTJs. As a matter of fact,
as we stressed out in the introduction, observing the magnetic influence of spin transfer
torque requires the injection of high current densities in the MTJs, of the order of 107A /cm?
while conserving a high current polarization. Reducing the thickness of the tunnel barrier
generally leads to both the reduction of TMR, as well as the appearance of pinholes

(metallic conduction channel within the tunnelling barrier). The discovery of spin-filtering



2091 allowed to obtain low resistance magnetic tunnel

effect through MgO crystalline barrier
junctions together with high current polarization, thus fulfilling the requirements for the
observation of STT in MTJs. Diao et al.”” and Huai et al.”” have compared the current-
induced magnetization reversal in MgO-based and AlOx-based MTJ and showed that the
effective polarization p of the interfacial densities of states is significantly higher in MgO-
MTJ (p ~46%) than in AIOx-MTJ (p ~22%), due to spin-filtering effects in crystalline

MgO barrier. Even if the existence of such interfacial polarization is questionable” ", this

estimation illustrates the significant improvement achieved with MgO-based MTJs.

A. Current-induced magnetization switching

1. General properties

As we stated in the introduction, a magnetic tunnel junction is a tunnelling spin valve,
as displayed in Fig. 1, composed of two ferromagnetic electrodes (CoFe, CoFeB) separated
by a tunnelling barrier. One ferromagnetic layer (reference layer) is antiferromagnetically
coupled (usually through a thin Ru layer) to a so-called "pinned layer". This pinned layer
is magnetically coupled to an antiferromagnet (IrMn, FeMn). This technique, known as
synthetic antiferromagnet™, strongly stabilizes the reference layer while reducing the dipolar
field emitted on the free layer. The free layer magnetization may then be oriented by an

external field, while keeping the magnetization of the reference layer in a fixed direction.

Top Electrode

Free Layer [
MgO, AlOx
Reference

Layer — V>0

Pinned Layer —

AntiFerromagnet

—_— - — —

Bottom Electrode

Figure 1: Schematics of a magnetic tunnel junction. The bias voltage is defined positively when

the electrons flow from the reference layer toward the free layer.

The first observation of current-induced magnetization switching in magnetic tunnel junc-
tions has been performed by Huai et al.”” and Fuchs et al.”” in AlOx-based low RA MTJ
(RA<10Q.m?), in nano-pillar with elliptic shape (120x230 nm? in Ref.”").



The influence of spin transfer torque in magnetic tunnel junctions is observed by mea-
suring resistance loops as a function of the external applied field H and the applied bias
voltage V, as displayed in Fig. 2. In this figure, we measured the resistance of a MgO-based
MTJ, composed of CoFeB ferromagnetic electrodes. The resistance loop as a function of the
external field H for a fixed applied bias voltage is given in Fig. 2(a), while the resistance
loop as a function of the bias voltage V' for a fixed external field is given in Fig. 2(b).
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Figure 2: Resistance of a CoFeB/MgO/ColFeB MTJs versus (a) the external field (V=10 mV) and
(b) the applied bias voltage (H=45 Oe). (c) Tunnelling magnetoresistance as a function of the bias
voltage (H=45 Oe). TMR= 83.7% and A = 50 x 100nm?.

One observes sharp resistance jumps in Fig. 2(b) for positive and negative bias which
correspond to the switching of the free layer magnetization from antiparallel to parallel and
vice-versa, respectively. In this junction, the critical current needed to switch the free layer

2, The drop of resistance as a function of the bias voltage is

magnetization is 5x10°A /em
associated with a drop of TMR (see Fig. 2(c)). This drop has been attributed to spin-waves
emissions by hot electrons” as well as to the energy-dependence of the density of states at
the junction interfaces. Note that this drop does not exist in metallic spin valves since only
Fermi electrons significantly contribute to the electrical current in metals.

Since these first observations, many efforts have been carried out in order to obtain low
critical current magnetization switching in MTJs. Dieny et al.”, Fuchs et al.” and Huai
et al.”” proposed dual type MTJs, in order to reduce the critical switching current. These
structures are of the type™ ColFe;/AlOx/CoFep,../Cu/ColFey, where Cole; and CoFe, are
antiparallel and the Cu/CoFe, interface is used to reflect the minority electrons towards
CoFep,e. 1n order to enhance the spin transfer torque in this layer. With this scheme,
critical current were divided by a factor 3.

Another method has been proposed by Inokuchi et al.”". By inserting a non magnetic
layer made of Zr, Hf, Rh, Ag, Au or V on the top of the free layer, it is possible to reduce the

critical current by one order of magnitude and to reach critical current densities of 5x10°



A.cm™2.

2. STT versus TMR

An interesting point has been underlined by Fuchs et al.”" in their pioneering experiment,
when observing current-induced magnetization switching at 77 K. As displayed on Fig. 3,
the magnetization of the free layer could be switched from antiparallel (black line) to parallel
(red line) by applying an external current. The most interesting is that the magnetization
switching occurred at a bias voltage at which the TMR was roughly zero, as shown by the

arrows on Fig. 3.
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Figure 3: Current-induced magnetization switching in AlOx-based MTJ, measured at 77 K. This
switching is associated with a complete quenching of the TMR. From Ref.

This experiment demonstrates that the TMR decrease does not prevent the spin transfer.
As a matter of fact, whereas the polarization of the collecting electrode decreases when
increasing the bias voltage (due to energy-dependence of the interfacial density of states as
well as magnon emission), the polarization of the incident electrons is only weakly affected.
Consequently, a current-induced magnetization switching may occur although the overall
TMR is zero. In fact, Levy and Fert’” have shown that the contribution of hot electrons-

induced spin-wave emission may play an important role in such systems.

B. Current-induced magnetization excitations

Current-induced magnetization excitations are of great interest for applications, in par-

ticular controlling the noise spectrum of read-head devices or generating hyper-frequencies.



However, the generation of magnetic excitations by a polarized current in MTJs is rather
difficult because of the voltage limitation of the tunnel barrier which undergo electrical
breakdown when submitted to bias voltage of typically 1 V.

A first study of the "spin-diode effect" was published by Tulapurkar et al.”’, in 2005.
The authors showed that the injection of a small radio-frequency ac-current into a MgO-
based MTJ can generate a dc-voltage across the device. This dc-voltage appears when
the frequency of the ac-current is close to the natural frequency of FMR excitations. This
resonance can be tuned by an external magnetic field. By this way, Tulapurkar et al. were
the first to observe a non negligible "effective field" term, b;, which was found to be linear
as a function of the bias voltage. Recent developments of this technique were achieved by
Kubota et al.”*. They will be described in section IV.

Another technique was proposed by Sankey et al.”"". By studying the influence of spin
transfer torque on the ferromagnetic resonance of the free layer, the authors were able to
determine the bias dependence of the spin transfer torque. These results will be described

in section IV.

Parallel State Antiparallel State

3.5
[ 1160 Oe 200 Oe a0

- los
l2.0
l1s
1.0
5 Jos
[ Jo.o
30 33 36 3.9 42 4530 33 36 39 42 45

Frequency (GHz) Frequency (GHz)

Amplitude (107"° Hz™)
Amplitude (1014 Hz1)

Figure 4: Thermally activated FMR spectra of AlOx-based MTJ, as a function of the injected

current in parallel and antiparallel state. From Ref.

The influence of spin torque on thermally activated ferromagnetic resonance was also
studied” """, Petit et al.”” have demonstrated the influence of spin transfer torque on thermal
noise in MTJs. Fig. 4 displays the thermally activated FMR spectra of a AlOx-based MTJ
as a function of the injected current. In parallel configuration, the amplitude of the FMR
peak increases as a function of positive current and decreases when the injected current is
negative (and inversely in antiparallel configuration). Once again, the authors demonstrated

the strong influence of the b; term on the magnetization dynamics.



C. Origin of spin transfer torque

After this short overview on previous relevant experiments, let us describe the physical
origin of spin transfer torque. To do so, we will proceed in two steps: firstly, a phenomeno-
logical description of spin transfer will be presented, using a simple conceptual scheme;
secondly, the expression of spin transfer torque in an arbitrary ferromagnet will derived

from quantum mechanical consideration, justifying the phenomenological approach.

1. Phenomenological description

The principle of spin transfer between two ferromagnetic layers is sketched on Fig. 5.
Let us consider an electrical current, spin-polarized along the P direction (the electrical
current may be polarized by a previous ferromagnetic layer for example). This spin-polarized
current impinges on a N/F interface, where N is a normal metal (or a tunnel barrier)
and F is a ferromagnetic metal whose magnetization M forms an angle § with P, so that
P.M = cosf (§ # 0). Johnson et al.”” and Van Son et al.”' showed that an out-of-equilibrium
magnetization (also called spin accumulation in diffusive systems, or spin density in ballistic
systems) appears at this interface, due to the different spin-scattering rates in the N and
F layers. In our system, since the impinging current is not polarized following M, the
rising out-of-equilibrium magnetization m possesses three components. It can then exert
a torque on the local magnetization M of the form T = —J;/upM x m. Because of the
fast angular precession of the electrons spin around M and due to the relaxation of the spin
accumulation m in the ferromagnet F, the transverse component of the spin accumulation
is quickly absorbed close to the N/F interface, on a length scale Ay, usually smaller than 1
nm in metallic spin-valves'”

Another way to understand spin transfer torque is to consider that the electrical current

S
mne’

possesses an initial polarization, described by the spin current J One part of this im-
pinging current is reflected by the N/F interface, giving rise to a reflected (backward) spin
current J7_;. In the adiabatic regime (the electron spin precession is fast compared to the lo-
cal magnetization dynamics), after a length Ay, itinerant electrons are aligned along the local
magnetization M and the transmitted spin current is then J;. . # J? . The reflected spin
current J7_, being generally small, the net balance of angular moment yields the transverse
component of the incident spin current: J7 . —J7 .. —J7 = J5 | (note that transverse
means transverse to M). Thus, the impinging electrons lose the transverse component of
their magnetic moment which is transmitted to the localized electrons, responsible for the
local magnetization M. This spin transfer is translated in a torque of the form:T = —VJ*.

Stiles et al."” have described the origin of spin transfer torque at a N/F interface, where
N is a metal. The authors proposed three mechanisms giving rise to spin transfer in ballistic

systems. First, the spin dependence of the interfacial reflection and transmission coefficients
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J ?ef

Figure 5: Schematics of spin transfer between two magnetic layers. The polarized electrons flowing
from left to right are quickly reoriented (on a length Ay) when arriving in the right layer. The

balance between inward and outward currents is transfer to the local magnetization.

induces a discontinuity of the spin current so that one part of the transverse component of
spin current is absorbed at the interface. This discontinuity gives rise to a torque in the
plane (P, M) which tends to align P and M. Secondly, the spin precession around the local
magnetization M, after averaging over the whole Fermi surface, gives rise to the complete
absorption of the transverse spin current on a length scale of the order of A\; = 1 nm. Finally,
after reflection by the interface, the electron spin forms an angle with both P and M. This
spin rotation yields the appearance of another component of the spin torque, perpendicular
to the plane (P, M) and called out-of-plane torque.

Thus, these three contributions give rise to a torque exerted by the spin accumulation on

the local magnetization, written as:
T=aMx(MxP)+bMxP (1)

where a; and b; are the in-plane and out-of-plane torque amplitudes. Note that in the
first theories of spin transfer torque by Slonczewski™ " and Berger™”, the authors only
derived a; because they considered that the electron spin remains in the (P, M) plane, as
corroborated by ab—initio calculations'’. These theories apply to metallic spin valves where,
due to the small length A, spin transfer is assumed to take place very close to the interface
However, Edwards et al.”” have derived a sizable out-of-plane torque in metallic spin-valves
using non equilibrium Green’s functions and interestingly, Zhang et al.”” have demonstrated
that taking into account the spin precession in the transport model significantly enhances the
b; term. In magnetic tunnel junctions, both a; and b; term arise from different mechanisms
that will be described in section III.

11



Injecting the spin transfer torque T in the Landau-Lifshitz-Gilbert (LLG) equation, one
obtains the modified LLG equation, describing the magnetization dynamics of the free layer,
submitted to both an external field and a spin-polarized electrical current:

oM

W:—VMX(Heﬂ+bjP)+aMxaa—l\t/l—’yajMx(MxP) (2)

where ~ is the gyromagnetic ratio, « is the Gilbert damping and Heg is the effective field,
including the anisotropy field, the demagnetizing field and the external applied field. From
Eq. 2, the out-of-plane torque acts as an effective field while the in-plane torque acts as
an effective (anti-)damping. As a function of its sign, a; may excite or damp magnetic
excitations in the magnetization M, whereas b; only affects the energy surface of the fer-
romagnetic layer. Different magnetic behavior may be observed: magnetization switching
from a stable state to another, stabilization of magnetic states at low energy minima, or

magnetic excitations (coherent and incoherent precessions).

2. Spin transfer in an arbitrary ferromagnet

All along this section, we consider the s-d model in which two populations of electrons
coexist: itinerant electrons (sp-type or itinerant d-type electrons) and localized electrons (d-
type mainly). The localized electrons give rise to the local magnetization of the ferromagnet.
We also assume that the d local moments remain stationary. This model applies to the
electronic structure of ferromagnetic electrodes whose compositions lie on the negative slope

side of the Slater-Néel-Pauling curve”” (Ni, Co, NiFe, CoFe).

a. [Itinerant electrons dynamics The motion of itinerant electrons in the ferromagnetic
materials are represented by the non-relativistic single electron Hamiltonian including s — d

coupling:
2

H=2 4 U@)- Jule.S) (3)

2m
where the first and second terms are the kinetic and potential energies, while the third term

is the s — d exchange energy, S; being the unit vector of the local magnetization due to the
localized electrons and Jy; the s-d exchange constant. Let us define the local spin density

m(r,t) and the local spin current density of itinerant electrons J; as

m(r,t) = \I/*(r,t)galll(r,t) (4)
52
Js = —%]m{ql*(r,t)avrlll(r,t)} (5)

and the temporal derivative of the spin density is:

d hod . o d

12



where ¥ = (KI/T,\IN) is an arbitrary 2-dimension Hartree-Fock wave function. The two

dimensions refer to up (1) and down () spin projection of the Hartree-Fock wave function.

From the time-dependent Schrodinger equation ihdV /dt = HW, we obtain the spin den-
sity continuity equation:

dd—r;‘ — VI, 4 2‘77”50, < m (1)

To correctly describe the ferromagnetic system under consideration, one should add the

interactions between electrons and lattice, for example. In diffusive regime, one can introduce

m .

a spin relaxation term which depends on the spin density” I'(m) = et

dm 2J 54 m
= V], + =g _
o + 5 Saxm o (8)

Eqgs. 7 and 8 are of great importance to understand the role of spin transport in STT.

One can see that the temporal variation of the spin density (or spin accumulation) arises
from the contribution of three sources: the spatial variation of spin current density, the
torque exerted by the background magnetization and a scattering source which acts as a
spin sink.

b. Localized electrons dynamics The Hamiltonian of a single localized spin submitted

to a time dependent external field and to an external current flow is:

guB 2J 4
H=-9%%¢,B—
n e h

where ¢ is the Lande factor, pup is the Bohr magnetron, Sg is the localized spin, B is the

Sqm = —Q’“‘TBsd.Beff (9)

external magnetic field, m is the out-of-equilibrium spin density of the itinerant electrons
and B¢ is the effective field due to the combination between the external field and the
itinerant electron spin density. Applying Ehrenfest theorem"' leads to

d< S > guB
— =" = 2 < 8> xBYS 10
o 7 < 8> X (10)

where <> denotes averaging over all the localized states, < § >= S;. We can rewrite this
equation as:

dSq guB 254
d_ _IHbg B_Zlg 1
di TGRS pooarm (11)

The first term includes all the interactions with magnetic fields, like external field, magne-

tocrystalline anisotropy. The second term arises from the presence of itinerant electrons.
In order to take into account the damping of the localized spin, one has to consider a
more complete Hamiltonian that includes many body interactions which leads to the usual
Landau-Lifshitz-Gilbert equation:

dSq gIB 2J5q dS,
45a _ WBg g g 5, x 204 12
di B o4 o odXmEase X -y (12)

where « is the phenomenological Gilbert damping coefficient.

13



c. Modified LLG dynamic equation Averaging Eq. 12 over all the electrons of the
structure and setting g = 2, and v = 2up/h, we obtain the modified LLG equation:
dM dM

Js
W:—VMXHeff—’yM—;Mxm—FOéMXW (13)

Here M is the local magnetization, m is the out-of-equilibrium spin accumulation or spin

density of itinerant electrons, and

HI(MQU 2Aex

H.;; = M et

V’m — 47 M.e. + H...e, (14)

where Hp is the anisotropy field, A., is the exchange constant, and 47 M. is the demagneti-
zation field. The term proportional to J,, is a torque exerted by the spin accumulation m on
the local magnetization M, similar to the one given in Eq. 8. It is interesting to note that
only the transverse spin accumulation m has an influence on the background magnetization

state in the form of a torque T along two axes:

T:_JSdMxm:—JSd[ml,MxP—myMX(MXP)] (15)
1B HB

where P is the unit vector parallel to the magnetization of the pinned layer and M is the unit
vector parallel to the magnetization of the free layer. The first term in the right-hand-side
of Eq. 15 is called the field-like term (or out-of-plane torque, or current-induced interlayer
exchange coupling) and the second term is the usual Slonczewski term (or in-plane torque).

The time scale of itinerant spins dynamics is two orders of magnitude shorter than the
time scale of the background magnetization dynamics. So one can consider, in a first ap-

proximation, that the itinerant spins can be described by the steady state equation (see Eqs.

7 and 8):
2Jsd

—VIs(r, 1) = Mm% M (ballistic system) (16)
—VIs(r, 1) = Qijdm x M + ZE (diffusive system) (17)
sf

Eqgs. 16-17 imply that the spatial transfer of spin density per unit of time from the itinerant s-
electrons to the localized d-electrons (left-hand side terms) is equivalent to a torque exerted
by the transverse spin accumulation on the local magnetization (right-hand side terms),

modulated by the relaxation of the spin accumulation in diffusive regime.

D. Theories of spin transfer in magnetic tunnel junctions

Slonczewski first proposed a free electron model of spin transport in a MTJ with an

amorphous barrier””, deriving TMR, in-plane spin transfer torque and zero bias interlayer

14



exchange coupling (IEC). This first model only considered electrons at Fermi energy, ne-
glecting all non-linear tunnel behaviors (consequently, the out-of-plane torque was found to
be zero). In a two band model, the torque was written as:

er’(kt — k{RD)(kf — K7)

T = “2YM x (M x P 1
27r2d(/<;2—|—k%)2(/<;2—|—kf)2€ VM x (M x P) (18)

where x is the barrier wave vector, k4 | are the Fermi wave vectors for majority and minority
spins, d is the barrier thickness and V', the bias voltage across the junction. Note that this
model is restricted to rectangular barrier, so very low bias voltage. More recently, combining
Bardeen Transfer Matrix formalism (BTM) and his previous results on the relation between
torques and spin currents’, the author proposed a more general formula for in-plane torque

in magnetic tunnel junctions™”

h
T:Z[F++—|—F+_—F__—F_+]m><(mXP) (19)
2meV
Fcrcr’ = 3 Vz,a;q,cr’ (20)
Pyq

—h?
Vp.oiq.o’ = %/dydz(@bp,craw?bq,a’ — Ggor w@bp,cr) (21)

where tb and ¢ are the orbital wave functions for right and left interface. This relation stands
for electrons whose energy is close to the Fermi energy. The author underlined interestingly

that Eq. 19 may be simplified if the integrals I',, can be separated in the form:
Fcrcr’ X DL,UDR,U’ (22)

where Dy g, is the density of states at the left (right) interface, for spin projection o. In
this case, it is straightforward to see that the torque exerted on the right layer is reduced
to:

TRzgpLMX(MXP) (23)

where Pp is the interfacial polarization of the density of states, as defined by Julliere
This leads to a bias asymmetry of the spin transfer torque, since the polarization Py, is bias
dependent for only one direction of the applied voltage. The condition of this separability
has been discussed by Slonczewski”’, Belaschenko et al.”” and Mathon et al.”". These authors
have suggested that the phase decoherences, induced by disorder in realistic junctions, could
reduce the polarization factors to a product between the interfacial densities of states. It
seems that this assumption is valid in magnetic tunnel junctions with not so thin barriers,
especially in amorphous AlOx-based MTJs.

Theodonis et al.””"" recently presented a tight-binding model (TB) of MTJs, taking into
account more realistic band structures than the usual free electron model. These studies

showed that the in-plane torque should present an important bias asymmetry while the
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out-of-plane torque should be of the same order of magnitude with a quadratic dependence
on the bias voltage. This is in agreement with recent studies of Wilczynski et al.”" and
Manchon et al.””, based on free electron model, as discussed in this chapter.

The role of magnons have been addressed by Levy et al.” and by Li et al."”. It was
shown that magnons emission may strongly influence the bias dependence of spin transfer
torque contributing to modify the absorption length A;. This mechanism will be discussed
in section IV.

Finally, note that all these theories assume amorphous barriers and a plane wave de-
scription of the transport, although most of the experiments are carried out on crystalline
MgO-based MTJs. A recent publication from Heiliger et al.”” addresses the characteristics
of spin transfer torque in Fe/MgO /Fe crystalline junctions. The dominant contribution of

Ay symmetry strongly influences spin torque feature.

III. QUANTUM ORIGIN OF SPIN TORQUE IN MAGNETIC TUNNEL JUNC-
TIONS

We will now describe the spin transport in magnetic tunnel junctions. Although most of
the experiments are nowadays performed in crystalline MgO-based MTJ, one can get a first
insight of TMR and spin torque by simply considering a free electron model of magnetic
tunnel junctions.

We first introduce the free-electron model, and then depict the spin transport in a MTJ
with non-collinear magnetization directions. Afterward, we will describe the role of the
barrier on the spin transfer torque. Finally, the origin of the torques and coupling between

the two ferromagnetic layers will be explained.

A. Free electron model

The basis of our calculation is depicted in the top panel of Fig. 6. The out-of-equilibrium
magnetic tunnel junction is modeled by a "conductor" (in the sense that the tunnel barrier is
not infinite) linking two magnetic reservoirs (F7, and Fg) with non collinear magnetizations
and with different chemical potentials py and pr™ (> pr). A bias voltage V = (ug —
pr)/e is applied across this "conductor”". One has to consider all electrons with majority
spins (solid arrows) and minority spins (dotted arrows), originated from left (rightward
arrows) and right electrodes (leftward arrows). In low bias limit (ur & ug), the charge
transport can be approximately determined by the electrons originated only from the left
electrode with an energy between Fr and Ep — eV

In our case (middle panel of Fig. 6), the magnetic tunnel junction is composed of two
ferromagnetic layers, F, and Fr (made of the same material, for simplicity), respectively

connected to the left and right reservoirs and separated by an amorphous tunnel barrier.
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Figure 6: Schematics of the magnetic tunnel junction with non collinear magnetization orientations.
Top panel: spin-dependent out-of-equilibrium transport in a conductor linking two reservoirs F7, and
Fr (whose electrochemical potentials are respectively uz, and pg) with non collinear magnetization
orientations. The solid arrows represent the majority spins and the dotted arrows represent the
minority spins. Middle panel: MTJ with non collinear magnetization orientations. Bottom panel:
Corresponding energy profile of the MTJ. In free-electron approximation, the local density of states
are parabolic for majority (solid line) and minority (dotted line) electrons with a splitting between

the two spin sub-bands equals to the exchange interaction Jg4.

The z-axis is perpendicular to the plane of the layers and the magnetization of Fp, is oriented
following z: My = Mpz. The magnetization Mg of Fg is in the (z,z) plane and tilted from
M7 by an angle 8. In this configuration, the spin density in the ferromagnetic layer possesses
three components : m = (m,, my,m.). In Fr, (we obtain the same results considering Fg),
the transverse components are m, =< ¢ > and m, =< ¢V >, where o' are the Pauli spin
matrices and <> denotes averaging over orbital states and spin states, i.e. averaging over
electrons energy F, transverse momentum & and spin states. The transverse spin density in

the left layer is then given by < ot >=< ¢% +io¥ > :
my +im, =< ot >=2 < Uyt > (24)

In other words, the in-plane torque is given by the imaginary part of < o™ >, while the
out-of-plane torque is given by its real part. One can understand the product < W*TW+ > as
a correlation function between the two projections of the spin of the impinging electrons. In
ballistic regime, the spin of an electron impinging on a ferromagnet with a spin polarization
tilted from the background magnetization precesses around this magnetization' ", Locally,

its two projections T and | following the quantization axis (defined by the background mag-
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netization) are then non-zero. As a result, the electron contributes locally to the transverse
spin density m, and m,. If the electron spin is fully polarized parallel or antiparallel to this
magnetization, no precession occurs and its contribution to the transverse spin density is
zZero.

We remind that we defined majority (minority) states as the spin projection parallel
(antiparallel) to the magnetization of the left electrode. Therefore, < WU+ > is the
fraction of electrons whose spin is following « (real part) and y (imaginary part) in spin
space.

In Keldysh out-of-equilibrium formalism>"”, the conductivity is calculated considering
the contribution of the electrons originating from the left reservoir and from the right reser-
voir (top panel of Fig. 6). The out-of-equilibrium Green function G(r,t,v',t') (or Keldysh

Green function) is defined as a superposition of these two contributions:

G(r,t,r' )= LY (v, ) U5 (2", ) + fRVUR (v, 0) UF, (', 1) (25)
where Wp () (7,1) are the electron wave functions originating from the left (right) reservoir
at the location » and time ¢ and fr(gr) are the Fermi distribution functions in the left and

right reservoirs.

Thus, the Schrodinger equation of the magnetic tunnel junction is:

2 0 0
o = <2p—m—|—U—Jsd(o-.Sd)> (;) - (;) (26)

where o the vector in Pauli matrices space : o = (¢%,0Y,0°)T, I is the electron energy, U

is the spin-independent potential along the junction:

Jsq(0.8q) = Jeq0® and U= FEp for x <y

r —

Jsq(0.84) =0 and U(x)=U, —

eV for a1 <z < a9y
Ty — 21

Jsq (0.8q) = Jsq(07cosf + 07 sinf) and U= FEp—eV for x>,

We consider that the potential drop occurs essentially within the barrier and we assume
the bias voltage is low compared to the barrier height (V' << U/e). This allows to use
WKB approximation to determine the wave functions inside the barrier. Furthermore, the
free electron approximation implies parabolic dispersion laws which also restricts our study
to low bias voltage.

In the 2-dimensional Hartree-Fock representation, spin-dependent current and spin den-

sity are defined using the out-of-equilibrium lesser Keldysh Green function:
G;:; (T, T’) _ /dc <fL {\IIUL/(T)* (’P/) \I;z(T) (T) n \I}z/(i)* (’P/) \I;z(i) (’P)}
i (05 ) 050 () + 0 ) wi () (27)
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where fr, = f%(¢), fr = f°(e + V), and f°(¢) is the Fermi distribution at 0 K. In-plane
(a;M x (M x P)) and out-of-plane torques (b;M x P) can now be determined from Eq.

24, whereas spin-dependent electrical current densities are calculated from the usual local

definition:
b + ia; = J_ <ot >= QiSd o // N (v, 2, €)rdrde (28)
m, = Jsd ao // (x,2,€) Gu (x,x 6)] kdrde (29)
Jrpy = 0 G ! drd
) = 47Tm6 6_:1: " o TT(u)(xvx ) |o=wrdrde (30)
J = JT + J¢ (31)

GT_T‘"(:I;, x,€) and Gﬁ"(:p, x,€) are the energy-resolved local density-of-states (LDOS) for up-
and down-spins respectively, whereas [ GT_T""(:I;, z,¢)de and [ Gﬁ"(:p, x,€)de give the density
of up- and down-electrons at location x along the structure.

To illustrate the above calculation, we use material parameters adapted to the case of
Co/Al;03/Co structure: the Fermi wave vectors for majority and minority spins are respec-
tively k} = 1.1 A1, kfp = 0.6 A~!, the barrier height is U — Ep = 1.6 €V, the effective
electron mass within the insulator is m.;;=0.4"" and the barrier thickness is d=0.6 nm.
These parameters have been choosen to fit the experimental I-V characteristics of the mag-
netic tunnel junctions studied in Ref.””. In all this section, the magnetizations form an angle
of §=90°. We will justify this choice in the following.

B. Spin transport in a MTJ

Although spin-dependent tunnelling is a well known process, the description we give here
is of great importance to understand the specific characteristics of spin transfer torques in
tunnelling transport. In this part, we will consider the linear approximation in which the bias
voltage V; is low enough so that the current is due to Fermi electrons injected from the left
electrode. When the electrodes magnetizations are non collinear, the electrons are no more
described as pure spin states, but as a mixing between majority and minority states. For
example, let us consider one electron from the left reservoir, initially in majority spin state,
impinging on the right electrode (see Fig. 7 - step 1). The first reflection (step 2) at the Fy /[
interface do not introduce any mixing since the insulator is non magnetic. However, when
(the transmitted part of) this electron is reflected or transmitted by the second interface I/ Fr
(step 3), the resulting state in the right electrode is a mixing between majority and minority
states since the quantization axis in the right electrode is different from the quantization
axis in the left electrode. Then, the transmitted spin is reoriented and precesses (step 4)
around the magnetization of the right electrode. Furthermore, the reflected electron (step

5) is also in a mixed spin state and precesses around the left electrode magnetization. In
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Figure 7: Schematics of the principle of spin transport in a magnetic trilayer with non collinear

©)

electrodes magnetizations. Step 1: the electron spin is polarized along the magnetization of the
left electrode. Step 2: After the first reflection/transmission by Fp /I interface the reflected and
transmitted parts remain in a pure spin state. Step 3: The reflection/transmission by the second
interface I/ Fr reorients the electron spin. Step 4 and 5: The transmitted and reflected spins precess

around the local magnetization.

other words, after transport through the barrier, the electron spin is reflected /transmitted
with an angle. This reorientation gives rise to spin transfer torque.

Note that there is no reason why the electron spin should remain in the plane of the
electrodes magnetization. We will see that after the reorientation, the electron spin possesses

three components in spin space (and so two transverse components).

C. Incidence selection in an amorphous barrier
1. k-selection due to tunnelling

It is well know that in non magnetic tunnel junctions, the transmission of an imping-
ing electrons dependent on its incident direction. As a matter of fact, the effective barrier
thickness involved in the tunnelling process is larger for grazing incidence than for nor-
mal incidence. The transmission coefficient decreases exponentially with the in-plane wave
vector k, so that only electrons whose wave vector is close to the perpendicular incidence
significantly contribute to the tunnelling transport.

Furthermore, in magnetic tunnel junctions, the transmission coefficients also depend on
the spin projection of the electrons, as well as on the magnetic configuration of the ferromag-
netic electrodes. This "k-selection" is illustrated in Fig. 8(a). As discussed previously, when
the electrodes magnetization are non-collinear, the spin of an impinging electron, originally
in a pure spin state, is reoriented after reflection so that the reflected state is in a mixed spin

state. In our case, only the reflection coefficients of the conserved spin part are reported in
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Figure 8: (a) Reflectivity of initially majority (solid line) and minority (dotted line) electrons as a
function of the in-plane wave vector; (b) reflection angles 1 (solid line) and ¢ (dotted line) of an
initially majority as a function of k. The applied bias voltage is V, = 0.1 V and 6=90°. Insert:

definition of the reflections angles.

Fig. 8(a).

Note that only a very small part of the injected polarized wave is flipped during the tun-
nelling process. However, this does not mean that spin transfer torque is small in M'T'Js, since
only coherent mixed states contribute to the transverse spin density, which is responsible of

the spin transfer torque.

2. Spin selection due to ferromagnets

Following the previous discussion about spin reorientation (see Fig. 7), it is possible
to deduce the angles at which the electron spin is reflected by the barrier. We define the
azimuthal angle n and the polar angle ¢ as indicated in the insert of Fig. 8(a).

Fig. 8(b) displays these angles as a function of the in-plane wave vector x. The azimuthal
angle n varies between -64° to +-77° while the polar angle ¢ remains very small (less than 0.2°,
which means that the electron spin stays very close to the quantization axis, as discussed
above). At x = 0.6 A" (corresponding to kfp), n = 0 which indicates that the effective spin
density lies in the plane of the magnetizations (M, Mg). Finally, the polar angle does not
vary with the distance, which means that the reflected electron spin precesses around O,

with a small angle ¢. A "bulk" spin transfer results from the interferences of all the reflected
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Figure 9: Reflection angles as a function of the s-d exchange constant, for a Fermi electron initially

in majority spin state. The parameters are the same as in Fig. 8.

electrons.

The strong dependence of i as a function of the in-plane wave vector x, combined with the
r-selection close to the normal incidence (see Fig. 8(a)), implies that the effective spin of the
transmitted electrons possesses an important out-of-plane component. In other words, the
effect of the spin-dependent tunnelling is to strongly enhance the out-of-plane component
of the spin torque, compared to metallic spin valves. As a matter of fact, in metallic spin-
valves, the whole Fermi surface contributes to the spin transport so that the effective angle
n is very small'” and correlatively the out-of-plane torque is negligible.

Fig. 9 shows the dependence of the angles as a function of the s-d exchange constant
Jsq for perpendicular incidence k = 0. Quite intuitively, the precession angle ¢ increases
with Jsq whereas the initial azimuthal angle n decreases in absolute value with Jg3. The
spin-filtering effect (the selection between majority and minority spin during the reflection
process) increases with Js4 so that the reflected spin direction gets closer to the plane of the

magnetizations.

D. Spin filtering in crystalline structures

Besides the two fundamental tunnelling selection mechanisms discussed above, an ad-
ditional spin filtering mechanism was proposed by Butler et al.””" which takes advantage
from the electronic structure of both electrode and insulator crystalline materials compris-
ing MTJ. It is based on the fact that only electrons of certain wave function symmetries
can easily propagate through the barrier. For instance, in Fe(001) only the majority spin

channel has electronic states with Ay symmetry at the Fermi level which in it turn includes
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s-like character in it. On another hand, the same Ay band in MgO(001) forms an evanescent
state in the MgO gap with the smallest decay rate’™’'. As a result, Fe|MgO|Fe(001) tunnel
junction has a very large conductance in parallel state due to fairly transparent A; majority
channel at k) = 0. Antiparalle]l magnetizations configuration, on a contrary, is low conduc-
tive since the A; symmetry states does not exist in the minority band structure around the
Fermi level ™

Spin transfer torque is nowadays usually observed in MgO-based crystalline junctions,
whereas only few theoretical work has been done on spin transfer in crystalline structures.
The first theoretical studies of Heiliger et al.”” on MgO-based MTJs indicate a dominate
contribution of the A; symmetry on spin transport which may affect the observable charac-

teristics of STT, as discussed in section V.

E. Torques and coupling

The mechanisms we previously described are at the origin of spin-dependent plane waves
in the MTJ. The interferences between these waves give rise to an out-of-equilibrium mag-
netization m which couples the ferromagnetic electrodes.

In the linear regime under consideration, the three components of spin density in the left

electrode can be described as follows:

mly +imly, = A(V)sin § ()= et o) (32)
m', +im', = A(V)sing (e—i<k1+kz><x—x1> il =) - > (33)
m!, = BY(V) - kil <TIT 2iki(o=e1) T =2k (@ > (34)

miy, = BHV) + k% (ritemamm 4 pe2iboma)) (35)

where A(V), BTV and TI’¢ are coefficients depending on the junction parameters and on

the bias voltage ' and ky 5 are the wave vectors of majority and minority spin, respectively.

()

Considering m_;’ in Eqs. 32-35, two components can be distinguished : the first one

Filkitk)(@=e1) " and due to the interference between the incident wave

is proportional to e
with majority (resp. minority) spin and the reflected wave with minority (resp. majority)
spin; the second one is proportional to e~i1=#2)(*==1) and due to the interference between
the reflected waves with majority and minority spins. We note that the first components
of mI_L and mﬁ_
between the incident wave with majority spin and the reflected wave with minority spin

; are complex conjugated so that their sum is real. Then, the interference
does not contribute to in-plane torque but only to out-of-plane torque. In-plane torque is

then generated by the coherent interferences between reflected electrons with opposite spin

projection (o e~ ik —k2)(l’—x1))‘
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Figure 10: Projections of spin density due to Fermi electrons in perpendicular incidence from the
left electrode, as a function of the distance from the interface. Top panel: m, component of spin
density (solid line); the dashed lines are the envelopes of the curve. Middle panel: m, component
of spin density. Bottom panel: m, component of spin density due to initially majority (solid line)
and minority (dotted line) spin projection; the dashed lines are the mean values of the oscillations.
The applied bias voltage is V3, = 0.1 V. The vertical line on the right is the interface between the

left electrode and the tunnel barrier.

Concerning m.r, it is composed of one component proportional to e*?¥1(z=e1)

i?ikg (l’—l’l)

, one com-
ponent proportional to e and one constant as a function of x. The two formers are
due to the interference between waves having the same spin projection but with opposite
propagation direction while the latter is due to interference between waves having the same
spin projection and the same propagation direction.

Fig. 10 displays the details of the spin density components m,, m, et m, (described in
Eq. 32) in the left electrode as a function of x, when V, = 0.1 V. m, possesses a quite
complex behavior with two periods of oscillation (the dashed lines show the envelope of the
curve), whereas m,, is reduced to a single oscillation (The oscillation period kq + k2 vanishes
when summing the contribution of majority and minority spins); m. oscillates around mean

values represented by horizontal dashed lines.
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Note that the conservative part of the out-of-plane torque (interlayer exchange coupling
at zero bias™ %) is only proportional to e="¥1+k2)@=21) " But at non zero bias, the dissipative

part of the out-of-plane torque is proportional to both e~ *kitk2)(z=o1) apd e=ilki—ho)(z=21)

IV. OBSERVABLE PROPERTIES

Up to now, in order to describe the quantum origin of spin torque in MTJ, we focused
on Fermi electrons and low bias voltage. To depict the observable properties of spin transfer
torque in MTJ, we should take into account all the electrons from the left and the right

electrodes so as to include non-linear processes.
A. Angular dependence
norm

J
as a function of the angle § between the electrodes magnetizations, at V, = 0 and V;, = 0.1

and

Fig. 11(a) shows the normalized in-plane and out-of-plane components, a b

Y

V. The normalized torques are defined as:
"™ = T/T(90°) sin ¢

It clearly appears that both components are proportional to sin @ (the deviation from sin @
is smaller than 107*). This dependence is strongly different from what was predicted in
metallic spin valves'™' " (see Fig. 11(b)) and has been attributed” to the single-electron
nature of tunnelling.

As a matter of fact, in metallic spin-valves, the spin accumulation, due to spin-dependent
scattering at the interfaces, modifies the potential profile seen by the electrons. This effect
is due to the multi-electrons nature of diffusive transport, since the transport of one electron
spin is affected by the spin accumulation rising from the whole spin polarized current. This
spin accumulation strongly influences the angular dependence of the stack resistance and
spin transfer torque

On the contrary, in magnetic tunnel junctions, because of the important height of the
tunnel barrier (~ 0.8 — 3.3 eV), all the potential drop occurs inside the insulator and the
spin accumulation (i.e. the feedback of the current-induced longitudinal spin density on the
spin current) is negligible. In this case, the angular dependence of torque is determined by
the angular dependence of the transmission matrix, as discussed in Ref.”” and yields a sine
shape. In the following, we will estimate the spin density for § = 7 /2.

Note that, at zero bias, the out-of-plane torque is still non-zero, contrary to in-plane
torque. The conservative part of the out-of-plane torque (interlayer exchange coupling at
zero bias) comes from the contribution of electrons located under the Fermi level ™. At
zero bias, the currents from left and right electrodes are equal, but the electron propagation
still corresponds to the scheme shown in Fig. 7: the mixing between majority and minority

states induces a transverse component in the spin density.
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Figure 11: (a) Angular dependence of normalized in-plane (solid line) and out-of-plane torque

(dotted line) in a magnetic tunnel junction; (b) Angular dependence of normalized in-plane torque

in a metallic spin-valve. From Ref.

B. Decay length of spin density

As discussed in section 1 C 2, spin transfer torque is estimated from the transverse com-
ponent of the spin density. This spin density (or spin accumulation in diffusive systems)
usually decays due to quantum interferences or spin-dependent scattering, so that spin torque

is generally assumed to be an interfacial phenomenon.

1. Ballistic interferences

In the present model, no spin-diffusion is taken into account and the Fermi surface is
assumed spherical. Fig. 12 displays the two components of transverse spin density as a
function of the location in the left electrode. The interference process between polarized
electrons yields a damped oscillation of the in-plane component m, (giving rise to the out-
of-plane torque) as presented in Fig. 12(a). We can distinguish two periods of oscillation
Ty = 2m/ <k} — k%) and Ty, = 27/ <k} + k%) whereas at zero bias, only T, appears (see
inset of Fig. 12(a)). This can be easily understood by considering electrons from left and
right electrodes. The transverse spin density in the left electrode due to electrons from the

right electrode is:

mI_R = (V) sin e~ r—h2)le=a1) (36)
miR = C¢(V) sin P~ (ki—h2)(z=x1) (37)
where CTHV) are coefficients depending on the junction parameters and on the bias
voltage' ‘. It is now possible to show that in the general expression of transverse spin density

my = mg +imy = ml +mip +mly+mig

the terms proportional to e~¥1=%2)(#=1) vanish at zero bias due to the cancellation of con-

tribution of electrons from the left and right reservoirs at zero bias voltage (A(0) + A*(0) =
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Figure 12: Total spin density as a function of the location in the left electrode: (a) In-plane spin
density - inset: In-plane spin density at zero bias voltage; (b) Out-of-plane spin density. These
quantities are calculated at V, = 0.1 V.

C1(0) 4+ CH0)) so that m, reduces to terms proportional to eFilki+k)z=s0)0 = Joyrther-
more, these last terms only give a real component since, as discussed above, the majority
and minority components of m, (giving rise to the in-plane torque) compensate each other.
Consequently, at zero bias, only the conservative part of the out-of-plane torque (zero bias
interlayer exchange coupling) exists, due to the interference between incident and reflected
electrons with opposite spin projection"". But when the bias voltage is non zero, the trans-
port becomes asymmetric and the terms proportional to e~i*1=*%2)(===1) o not compensate
each other anymore which leads to two periods of oscillations as shown in Fig. 12(a).

In-plane component of spin transfer torque, proportional to m,, exits only at non zero
bias and possesses only one period of oscillation Tj (see Fig. 12(b)). It is worthy to note that
the transverse components of spin density is damped by 50% within the first nanometers,
and that the amplitude of the out-of-plane torque is of the same order than the in-plane
torque. This decay length is very large compared to previous theoretical predictions 7" and
experimental investigations on SV’°. As a matter of fact, the ballistic assumption holds for
distance smaller than the mean free path (= 5 nm in Co). In realistic devices, spin diffusion
processes should increase the decay of the transverse components of spin density.

Finally, Fig. 13 shows the out-of-equilibrium longitudinal spin density An defined as
AntT® = ptO(V, = 0.1) =™ (V; = 0). An oscillates and asymptotically reaches a non zero
value. This means that when the bias voltage is turned on, a non equilibrium spin accumu-

lation builds up. However, this effective spin accumulation is very small (AnT— An+ ~ 1077
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Figure 13: Out-of-equilibrium longitudinal spin density throughout the magnetic tunnel junction

for majority (solid line) and minority (dotted line) electron spin projections. The bias voltage is

Vo =0.1V.

electron/atom) and cannot influence spin current building. Therefore, neglecting the role of

longitudinal spin accumulation (spin density) in MTJ is justified.

2. Spin scattering mechanisms

In real magnetic tunnel junctions, one should take into account spin-flip processes induced
by spin-orbit coupling as well as hot electrons-induced spin-waves emissions that occur within
the diffusive ferromagnetic electrodes. Spin-orbit induced spin-flip scattering (Elliott-Yafet
mechanism ™) as well as spin-wave scattering™ lead to spin-diffusion length, [;; of 15-30
nm in usual ferromagnetic electrodes™ . This spin-flip should increase the spatial decay rate
of the spin density by a factor of e~ts”.

Spin-flip scattering by hot-electrons induced spin wave is a spin-flip mechanism that
specifically occurs in magnetic tunnel junctions” . In tunnel junctions, at non zero bias,
spin-polarized electrons from the left electrode impinge to the right electrode with an energy
higher than the local Fermi energy: they are called "hot electrons'. These hot electrons
relax towards the Fermi level by inelastic scattering involving phonon and magnon emission.
Following the Fermi Golden rule, this spin-waves emission increases with temperature and
energy of the hot electrons. Li et al."” have shown that the spin-diffusion length due to this
mechanism is written:

where Jp is the ferromagnetic exchange constant and Er the Fermi energy. The authors
find a spin-diffusion length of about 0.5-2 nm for reasonable parameters. This demonstrates

the essential role of magnon emissions in magnetic tunnel junctions.
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3. Real Fermu surfaces

In order to more accurately describe spin-dependent transport throughout crystalline
barriers™ " (in particular MgO-based MTJs), the role of defaults in the barrier’', or inter-
facial states effects, it is necessary to go beyond the free electron model and consider the
real band structure of the stack.

First principle studies of realistic Co/Cu interfaces™ (so, metallic spin-valves) showed that
the mismatch of the electronic structure at the interface for spin down electrons strongly
reduces the transverse component of spin density. As a matter of fact, the spin-dependent
transmission at the interface becomes more complex. In particular, the electron phase
distribution becomes broad and asymmetric'’. This leads to a rapid interfacial decay of the
transverse spin accumulation in metallic spin-valves. In MTJ, the non spherical nature of
the spin-dependent Fermi surface™ """ should also dramatically alter the transverse spin
density. This could explain the fact that the amplitude of spin torque in the free-electron
model we proposed is two orders of magnitude higher than in experiments.

Heiliger et al.”” recently studied the spin transfer torque in Fe/MgO /Fe crystalline tunnel
junction. The authors showed that the interfacial spin density decay is even stronger in this
type of MTJ than in metallic spin-valves. This decay is attributed to the dominant contri-
bution of Ay electrons for which Fe behaves as a half-metal with respect to this symmetry.
Spin transfer torque arising from the interferences between majority (propagative states)
and minority (evanescent states) electrons, is localized close to the MgO /Fe interface. This

point will be addressed in more details in section V.

C. Bias dependence
1. Free electron model

The bias dependence of in-plane and out-of-plane torques in M'TJ also presents strong
differences with metallic spin-valves. We first calculate the total spin torque exerted on the
left electrode. Following the definition of Ref.” and Ref.””, the total torque is:

i :/ Ve = I (1) (39)
1
Fig. 14 displays the total out-of-plane (a) and in-plane (b) torques as a function of the
applied bias voltage, for different values of the s-d exchange parameter Jy;. Consistently
with Theodonis et al.””, the out-of-plane torque is quadratic whereas the in-plane torque is
a combination between linear and quadratic bias dependence.
Finally, note that a change of sign of spin transfer torque at high positive bias voltage is

expected””. The in-plane torque change of sign should be observed in MTJ with low enough
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Figure 14: Bias dependence of out-of-plane (a) and in-plane (b) torques for different values of s-d
coupling: Jsq = 0.38 eV (open circles), J,q = 0.76 eV (filled circles), J;4 = 1.62 eV (open squares),
Jsa = 2.29 eV (open triangles), Jsq = 2.97 eV (filled squares). Top inset: Bias dependence of
STT for Jsg = 1.62 eV the solid line was calculated following the usual way and the symbols were
calculated using q. 46.

barrier height and high breakdown voltage (MgO seems a good candidate). Nevertheless,
more technological development are needed to fabricate such junctions.

However, Eq. 39 assumes that all the transverse spin density is relaxed within the free
layer. In other words, the initially misaligned incident electron spin eventually aligns on the
local magnetization within the free layer. This assumption seems to be valid, regarding the
previous discussions. Nevertheless, considering weak spin-diffusion processes as well as non-
half metallic junctions (i.e. not like Fe/MgO/Fe), one may assume that the electron spin is
not fully aligned on the local magnetization when leaving the free layer. This assumption
may be valid in magnetic semiconductor-based tunnel junctions, where the spin-diffusion
length is very large™. Fig. 15 displays the bias dependence of out-of-plane and in-plane

torques for different integration depths ¢ (namely, different layer thicknesses):

l’l—t
T partint = / VT = TP (1) — Ty — 1) (40)

71
The bias dependence can change drastically and the out-of-plane torque can even change its
sign (note that the in-plane torque keeps its general shape). These dependencies are strongly
affected by the tunnel barrier characteristics and one should be careful in the analysis of

bias dependence.
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Figure 16: Schematics of the circuit model proposed by Slonczewski~”:

2. Curcuat theory

Slonczewski™ proposed a circuit model to describe magnetic tunnel junctions in the
general case, without restriction of the band structure of the electrodes and of the barrier.
Fig. 16 shows the schematics of this model. Theodonis et al.”” have demonstrated that this
model reproduces well the bias dependence of the in-plane torque. If one considers the two

pure spin states in the quantification axis of the left electrode | 1> and | | >}, they can be
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decomposed on the eigenstates of the right electrode in the following manner:

0 .0
| 1T>1= cos§|T>R —|—sm§|¢>R (41)
.0 0
|¢>L:—sm§|T>R —|—cos§|¢>R (42)

where 6 is the angle between the magnetizations of the electrodes. Then, the probability
for an electron spin o in the left electrode to be observed in a spin projection ¢’ in the
right electrode is P,,» = | < o|¢’ > |*. The associated resistances indicated on Fig. 16 are

inversely proportional to this probability, thus leading to:

0
R77(0) = R°(0) cos™* ) (43)
_ 0
R°7(0) = R°(m)sin™? ) (44)
Using the expression of in-plane spin transfer torque derived by Slonczewski
o T L :
a; =h(J, — J; + (J5 — Jg)cos)/2esin b (45)

where Jp(ryo is the current density of the spin projection o in L(R) electrode, we then find:
Jip — Ji
a; = AP P
2
where JZP(P) are the interfacial spin current densities when the magnetizations are in an-

(46)

tiparallel (parallel) configuration. Theodonis et al.”” claimed that this relation is independent
of the electronic structure or of the adopted description (free electron, tight-binding...). As
a matter of fact, the insert of Fig. 14 shows the STT calculated using Eq. 39 (solid line) and
using Eq. 46 (symbols), which are in very good agreement. From Brinkman’s model™, the
authors demonstrated that the component 7T} is the superposition of a linear contribution
Jp and a quadratic contribution J3, as a function of the bias voltage.

As a matter of fact, Brinkman et al.”" have showed, from a free electron model, that the
current density flowing across a non magnetic tunnel junction whose barrier is asymmetric

and submitted to a bias V' may be described by:

J(V) = L@V = [o(@)AVZ + O(V?) (47)
®= (P +0,)/2 (48)
Ad =0, -, (49)

where ®; and ®, are the barrier height at the left and right interfaces, measured from
the bottom of the conduction band. f; and f; are determined in Ref.”". In the case of a
magnetic tunnel junction, Eq. 47 apply to each spin projection. When the magnetizations
are parallel, the MTJ behaves like a symmetric tunnel junction for each spin projection and
®T £ o+ ADT = A®+ = 0. On the contrary, if the electrode magnetizations are antiparallel,

32



the MTJ behaves like a asymmetric tunnel junction for each spin projection and ®T = @+,

A®T = —Ad*+. The spin density is then:

Jp = (f1(®) = [i(®)V + O(V?) (50)
Jip = =2f,(0)VE+ O(V?) (51)

By this way, Theodonis et al.”” demonstrated that the general form of the Slonczewski term
is a; = a1V + aaV* + O(V?3). The balance between the two bias dependencies, quadratic
and linear, may be modified by varying Jg,.

Note that the circuit model cannot describe the second component b; of the spin transfer,
since it makes two restrictive assumptions: i) during the transport, the electron spin remains
in the magnetization plane (n = 0 - see Fig. 9) and ii) the spin current is completely absorbed
at the interface (no precession is taken into account, since the electron spin is instantaneously
reoriented along the local magnetization). These two hypothesis ignore the effects which give

rise to the out-of-plane torque

3. Asymmetric junction

Wilczynski et al.”" recently showed that the bias dependence of the torque is strongly
affected by the symmetry of the junction. Considering two different ferromagnetic electrodes
(different thickness or different s-d exchange coupling), the authors show that the bias de-
pendence may be very different from the usual parabolic and second order bias dependence
depicted in Fig. 14.

Slonczewski et al."” recently proposed a study of the influence of elastic and inelastic
tunnelling in the spin transfer torque characteristics. This discussion is restricted to the
in-plane torque and the out-of-plane component is predicted to be in the second order of

bias voltage.

4. Role of magnons emissions

Magnons emission are also expected to play an important role in spin-dependent tun-
nelling transport. As a matter of fact, Zhang et al.”” proposed that impinging electrons
with energy higher than the Fermi level can emit spin waves by flipping their spin near
the MTJ interface, leading to TMR drop as a function of the applied bias voltage. Levy
and Fert”” recently suggested that the partial depolarization of spin-current by spin-waves
emission may give rise to a torque on the local magnetization, and consequently significantly
contribute to spin transfer torque. We give here a summary of the picture proposed in Ref.

The authors considered a system similar to Slonczewski’s” where the barrier is rectangu-

lar and submitted to low bias voltage. In this case, we saw that only in-plane spin transfer
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torque appears (see Eq. 18). The authors showed that in the case of spin-waves emission,

the in-plane torque possesses four sources:
CFH — (Telas T Tint T Tbulktrans T Tbulklong)M « (M « P) (52)

where the four terms stand for the elastic torque (usual in-plane torque), the emission
of interfacial magnons and the emission of bulk magnons acting on the transversal and

longitudinal component of the local magnetization.

a. Interfacial magnons Magnons in general can only be excited by electrons whose
energy is higher than the Fermi level and, their energy is hwé(r) < eV. This leads to the

formulation of the torque due to interfacial magnons excitations, exerted on the left layer:
Ty oc [t sin OV {a, Nj P, + N (P cos 0 + F(0))}

where Nf(r) are the numbers of spins per unit area at the interface (in the left and right
electrodes, respectively), Py, are the interfacial spin polarizations, oy, are coefficients which
include material parameters and F'(6) is a function of # that we do not define here (see Ref."”).
This form is complex and shows quadratic dependence as a function of the bias voltage.
Furthermore, the authors found that the torques induced by interfacial magnon emission,
applied to left and right electrode, are in opposite direction (favors parallel alignment of the

left magnetization and antiparallel alignment of the right magnetization).
T = T (] s ) (53)

To understand this effect, Levy and Fert'” give the following argument. The elastic spin
current polarization arises from the weighted contribution of both left and right magnetic
electrodes.

For the electrode at the higher electrochemical potential, left electrode here, the authors
found that the magnon emitted in this electrode causes the polarization to shift toward the
polarization of the right electrode, which effectively is in the same direction than elastic
torque.

However, for the electrode with the lower electrochemical potential, right electrode here,
this reorientation of the polarization reduces the effect of the elastic term, creating an

additive torque in the opposite direction.

b.  Bulk magnons Considering the electrons which kept their spin close to the interface,
one has to distinguish between two behaviors. Some of these electrons are scattered with
spin-flip in the bulk magnetic lead whereas others are scattered without spin-flip. The spin-
flip scattered electrons contribute to a transverse component of the spin current. This leads

to the torques due to bulk magnon emission, exerted on the left and right electrodes:

Pk rans o V2|12 6in ONP [P, cos 8 + F'(0)] (54)
Tfulk trans o V3/2|t?n|2 sin 0]\/’7{7 (55)

34



where Nlb(r) are the numbers of spins per unit volume. The electrons scattered without
spin flip also contributes to the torque, by affecting the longitudinal component of the spin
current. When incoming in the right electrode, they do not contribute to the torque on this
electrode, but this reduction of the longitudinal part of the spin current contributes to a

torque on the left magnetic lead.

le“lk long \/3/2|tfn|2 sin 0 cos ON? (56)
T:)ulk long =0 (57)

This study suggests that the torque due to magnon emission by hot electrons arises from
4 different mechanisms, and has a self-consistent form. The authors used this theory to
explain the data gathered by Fuchs et al.” (see section II A2). We stress out that this
model is restricted to low bias voltage and the authors point out that other factors may
influence spin torque properties such as the energy dependence of the interfacial density of
states, which was considered in Theodonis et al.””, Wilczynski et al.”" and Manchon et al.

theories.

D. Recent experimental investigations

As discussed in section II, a number of experiments have been carried out in order to
determine the characteristics of sin transfer torques in magnetic tunnel junctions. Early
experimental studies by Fuchs et al.”” demonstrated a linear variation of in-plane torque
as a function of the applied bias voltage. However, no determination of the out-of-plane
component was reported until the publication of very recent experiments.

These experiments are of two types. The first ones use radio-frequency techniques, ad-
dressing FMR or magnetic noise under spin torque, while the second ones use the quasistatic

stability phase diagrams to describe spin torque properties.

1. Radio-frequency signature of spin torque

The spin-diode effect studied by Tulapurkar et al.”™” was firstly explained using a linear
bias dependence for the two terms of spin torque, a; and b;, consistently with the first
study of Petit et al.”” concerning the influence of spin torque in thermally activated FMR
excitations. Although this interpretation has now been questioned by recent experiments,
these studied demonstrated the necessity to take into account an out-of-plane component of
the torque in order to interpret the experimental results.

The very recent studies of Sankey et al.”” and Kubota et al.”* constitute a breakthrough
in the experimental determination of spin torque since the authors were able to reconstruct
the bias dependence of both torque components by fitting the experimental results (note

that Sankey et al.”” give the "torkance""” bias dependence).
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Both studies prove a quadratic bias dependence of the b; term as well as a second order

polynomial dependence of a; (see Fig. 17), confirming the recent theories on spin torque in

MTJ=% Furthermore, both torques are found to be of the same order of magnitude.
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Figure 17: Bias dependence of torkance for the in-plane and out-of-plane torques. From Ref.

The determination of the bias dependence of the out-of-plane component is very tricky
since this torque only induces a small shift in the resonance peaks of the measured signals.
Furthermore, the treatment of temperature issues (temperature dependence of the signal,
thermal activation, Joule effects, Peltier effects and "thermal spin transfer torque"™") as well

as de-embedding procedure must be properly undertaken.

2. Thermally activated phase diagrams

Very recent experiments, not yet published, have proposed to study the thermally ac-
tivated phase diagrams of magnetic tunnel junctions in order to describe the spin transfer
torque bias dependence. Such phase diagram shows the stable magnetic state of the free
layer of a spin-valve device, as a function of both the applied field and the injected current.

A first experiment was performed by Li et al."” in order to get the bias dependence of
torques from the bias dependence of the critical switching fields of the free layer of a MgO-
based MTJ. The authors used short bias voltage pulses to increase the maximum bias voltage
above the quasistatic breakdown voltage without damaging the junction. They succeeded in
describing the in-plane and out-of-plane torques, claiming a linear bias dependence for the
first and a mostly quadratic dependence for the second one. However, contrary to previous
results, the authors give a bias dependence of the form b; oc V.J, where J is the current
density flowing through the junction.

Manchon et al.”" used a slightly different technique, without short pulses and succeeded
to draw a complete phase diagram in two different magnetic configurations: (a) when the

external field is applied along the easy axis of the free layer and (b) when the external field
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Figure 18: Static phase diagrams of magnetic tunnel junction with longitudinal (a) [Sample A] and
transverse applied field (b) [Sample B]. The red circles show the magnetic excitation regions. The

color code refers to the resistance of the stack
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Figure 19: Analytical fits of the critical lines (symbol) of longitudinal (a) and transverse (b) static
phase diagrams, with b; = 0 (black), b; = b2V? (blue) and b; = bV (red).

is applied along the hard axis of the free layer. These diagrams are given in Fig. 18, for two
different samples (A and B).

Assuming, in a first approximation, that the in-plane torque is linear as a function of
bias voltage, several fits of the thermally activated phase diagrams were performed, using
the theory of thermal activation developed by Koch et al.”>"""". Fig. 19 shows the three fits
the authors obtained, assuming b; = 0 (black), b; = byV? (blue) and b; = b,V (red), where
b, 1s a fitting parameter.

Assuming a quadratic bias dependence of the out-of-plane torque term introduces an
significant asymmetry in both longitudinal and transverse stability diagrams that is not
observed experimentally. Furthermore, although no significant difference appears in the
transverse stability diagram when assuming b; = 0 or b; = b2V (black and red curves in Fig.
19(b)), the best fit of the longitudinal diagram is clearly obtained when b; is linear. This
indicates that in our samples, b; should be an odd function of the applied bias V , contrary
to Sankey et al."” and Kubota et al.
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This linear bias dependence is in contradiction with the recent published theories””
predicting a quadratic bias dependence of the out-of-plane torque. These theories assume
amorphous tunnel barrier, low bias voltage, semi-infinite free layer thickness and zero tem-
perature whereas we performed our measurements on MTJs comprising crystalline MgO
barrier at room temperature. Consequently, the differences between our experiments and
these theories may be ascribed to the crystalline nature of the MgQO barrier as well as other
contributions such as spin-waves emissions that have not been considered in the calculations
despite their strong influence on the spin torque bias dependence

The difference with the recent RF measurements™ " are more difficult to interpret. It may
be attributed to the interplay between thermal effects and current-induced magnetization
dynamics. Note that the results obtained by RF measurements strongly depend on the
samples quality”' and may present a linear b; term.

These experiments are of great interest because of its relative simplicity. However, further
experimental improvements are needed in order to increase the reproducibility and accuracy
of the measurements and be able to measure both longitudinal and transverse phase diagram

on the same sample without breakdown.

V. FROM WEAK FERROMAGNETIC TO HALF-METALLIC TUNNEL JUNC-
TIONS

To conclude this chapter, we studied the dependence of the in-plane and out-of-plane
torque as a function s-d exchange coupling Jsy, and in particular, the crossover between
ferromagnetic and half-metallic tunnel junctions. As a matter of fact, as previously stated,
Heiliger et al.”” suggested that a crystalline MgO-based tunnel junction may be approxi-
mated by a half-metallic tunnel junction, when considering the dominant contribution of A,
symmetry.

The Fermi energy is kept constant, whereas the energy of the bottom of the minority
electrons conduction band et is modified, as indicated in Fig. 20. This energy is defined
from the Fermi energy as:

Rk}’

2m

¢t =FEp — B =~ (58)

where E} is the absolute energy of the bottom of the conduction band. When ¢+ is close
to T, k} R~ kfp, the metallic electrodes loose their ferromagnetic nature. For ¢+ a2 0, the
Fermi wavevector for minority electrons becomes smaller and the current polarization is
strongly enhanced. In this case, we expect an important spin transfer torque. When et > 0,
kfp becomes imaginary and the electrodes behave like a tunnel barrier for minority spins.
Increasing €t increases the evanescent decay of minority wave functions in the electrodes.
Then, the product < W*TW+ > still exists so that spin torque is non zero and decrease

exponentially from the interface.
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Figure 20: In-plane (solid line) and out-of-plane (dotted line) torques as a function of s-d exchange
coupling. The vertical line shows the limit between ferromagnetic (weak ferromagnetic -WFM- and

strong ferromagnetic -SF'M-) regime and half-metallic regime.

Fig. 20 shows the amplitude of in-plane and out-of-plane torques in the three different
regimes: weak ferromagnetic electrodes (WFM), strong ferromagnetic electrodes (SFM) and
half-metallic electrodes (HM). As expected, in ferromagnetic regime, in-plane and out-of-
plane torques increase until ¢+ = 0 (vertical line). When ¢+ becomes positive, the bottom of
the conduction band of minority electrons lies above the Fermi level: no minority electrons
can propagate because only evanescent states exist near the interfaces for this spin projection.
However, in-plane and out-of-plane torques do not vanish but reach a plateau which slowly
decreases to zero when increasing Jy4 (not shown).

To understand this behavior, we calculated the spatial dependence of the transverse spin
density in the free layer. Fig. 21 shows the transverse spin density in a usual ferromagnet,
¢t = —1.37 eV (which corresponds to J,; = 1.62 eV), as a function of the distance from the
interface with the barrier in the left electrode. The oscillation possesses the same character-
istics than discussed above and we observe that the transverse spin density is damped far
from the interface. When decreasing e, the interfacial spin density increases, due to strong
spin filtering at the interface (strong spin-dependent selection), as shown on Fig. 22.

But when ¢t changes sign, only majority electrons can propagate and the transverse spin

density becomes:

(59)

e—ilki k) (@—a1) _ r’lﬂTei(kl—kQ)(x—xl)>}

den

ml = 16(]1(]2 sin # %{(kg - k4) (

n

. e—i(kl-l—kg)(l’—l’l) _ T,*Tei(kl—kg)(l’—l’l)
mz = —16¢1qosin 0 S{(ks — k4) ( ¥ ! } (60)
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Figure 21: Transverse spin density (black line) as a function of the penetration depth from the

barrier within the left ferromagnetic electrode in a usual ferromagnetic regime. We set ¢t = —1.37

eV and V, = 0.1 V.

where ¢y 5 are the barrier wave vectors at the left and right interface respectively, ky 2(ks34)
are the electron wave vectors in the left (right) electrode for majority and minority spins,
respectively, and den is a coefficient which depends on the junction parameters. Considering
Fermi electrons at perpendicular incidence, very small bias voltage (eV ~ 0) and imaginary

minority electron spin wave vector, ky4) = ik, we obtain straightforwardly:

—ikl(l’—l’l) _ *T ikl(l’—l’l)
ml = 16¢1q2* =) sin 0 R{ (ks — ik) (e h e )} (61)
den
) e—ikl (l’—l’l) _ T,*Teikl (l’—l’l)
mz = —16q1qee™" ") sin 0 S{(ks — 1k) ! } (62)
den

The transverse spin density is a product between oscillating function of k; and exponentially
decaying function of k. Fig. 23 shows the spatial evolution of the transverse spin density
in the case of a half-metallic tunnel junction. All the oscillations are damped very quickly
so that the only important contribution to torque comes from the interface. Contrary to
usual MTJ (where both bulk averaging due to spatial interferences and interfacial spin
reorientation contribute to spin torque), in a strong half-metallic tunnel junction all the
torque comes from spin reorientation due to spin-dependent reflection. In this last case,
the contribution of the spatial averaging between all impinging electrons (s-summation) is
reduced compared to interfacial spin transfer.

The interesting point is that half-metallic tunnel junctions may reproduce the general

properties of MgO-based tunnel junctions. Most of the previous characteristics discussed
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Figure 22: Transverse spin density (black line) as a function of the penetration depth from the

barrier within the left ferromagnetic electrode in a strong ferromagnetic regime. We set ¢t = —0.38

eV and V, = 0.1 V.

earlier (quantum description as well as observable characteristics) are then valid in this type
of junctions. This explains why simple single band per spin models, like the one proposed
by Theodonis et al.”” for simple cubic crystal structure, or Manchon et al.””, assuming
amorphous tunnel barrier, applies to experimental results obtained in crystalline MgO-based
MTJ. Note however that this agreement holds for thick enough MgO barriers and that the
quality of the tunnel junction should strongly affect the half-metallic characteristic. Other
symmetry channels may then contribute to the transport, like resonant interfacial states for
example' "

Kubota et al.”” recently studied the dependence of the critical switching current density
on the thickness of the free layer in a MgO-based MTJ. The authors found that the critical
current density was roughly proportional to the free layer thickness. This indicates that the
transverse spin current is completely absorbed within the free layer, and that consequently
the spin transfer torque seems to take place close to the interface between the insulator and

the ferromagnetic electrode, consistently with the above discussion.

VI. CONCLUSION

As stated in the introduction, since its first prediction’” and observation®"", spin transfer
torque in tunnel junctions was expected to present strong differences compared to spin
torques in metallic spin valves. The single-electron nature of the tunnelling transport, the

specific spin-selection induced by the tunnel barrier, as well as the non linearity of the
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Figure 23: Transverse spin density (black line) as a function of the penetration depth from the

barrier within the left ferromagnetic electrode in half-metallic regime. We set ¢t = 19 eV and

Vo =0.1V.

tunnelling process itself were expected to strongly affect the observable properties of spin
transfer torque.

The smaller role of spin accumulation is also of great importance since the angular depen-
dence of spin torque coeflicient a¢; and b; are unusually small in MTJs. Another characteristic
is the significant amplitude of the out-of-plane component of spin transfer torque, arising
from the spin-selection occurring at the tunnel barrier.

Most interesting, recent experiments based on RF techniques or (quasi-)static measure-
ments have revealed significant non linearities in the spin torque bias dependence, due to
the non-linearity of the tunnelling transport. The most striking element is that these ex-
periments seem to agree with tight-biding or free-electron models, i.e. models making very
simplistic and restrictive assumptions on the energy dependence of the interfacial densities of
states and on the barrier shape. Although it has been widely shown that MgO-based tunnel
junctions possess a complex electronic band structure, these experiments are conveniently
reproduced by parabolic or bell-like band structure. This surprising simplicity may be at-
tributed, as proposed in section V, by the dominant contribution of A; symmetry electrons,
at low bias and not-too-thin barrier width.

However, more accuracy is needed both in the theories and experiments in order to better
describe these specificities. Junctions asymmetries, inelastic scattering or impurities have
been shown to deeply modify the spin torque properties in MTJs. Hot-electrons spin-waves
emission is also known to be of great importance in M'TJs, leading to the so-called "zero-bias

anomaly". This emission is also expected to significantly affect the bias dependence of spin
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transfer torque.

We stressed out the simplicity of the models that have been proposed up to now to
describe spin torques in MTJs. Realistic band structure calculations should enrich our
knowledge of spin torque origins, especially by modifying the spin-filtering mechanism and
the interference process between the majority and minority electrons. The ballistic assump-
tion, namely neglecting all spin-flip scattering, limits the investigation to academic systems.
Taking spin-orbit coupling into account would be of great interest to quantitatively simulate
real magnetic devices.

Finally, nothing have been said in this chapter about the time-domain investigations of
magnetization dynamics in MTJs. Preliminary experimental studies were carried out by
Devolder et al.”” that show interesting magnetic behaviors not observed in metallic spin-
valves until now.

As we tried to show in this chapter, although quite incomplete, the recent research on
spin transfer in MTJs has already revealed rich and exciting issues that only wait for further

theoretical and experimental efforts.
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