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Abstract. Viscous flow, effusion, and thermal transpiration are the main gas trans-
port modalities for a rarefied gas in a macro-porous medium. They have been well
quantified only in the case of simple geometries. This paper develops a model based
on the homogenization of kinetic equations producing effective transport properties
(permeability, Knudsen diffusivity, thermal transpiration ratio) in any porous medium
sample, as described e. g. by a digitized 3D image. The homogenization procedure –
neglecting the effect of gas density gradients on heat transfer through the solid – leads
to macroscopic transfer relations, and to closure problems in R

6 for the obtention of
effective properties. Coherence of the approach with previous literature on the subject
is discussed. The asymptotic limits of the model (rarefied and continuum regimes) are
also studied. One of the main results is that the effect of the geometry on thermal
transpiration has to be described by a tensor which is distinct from the permeability
and Knudsen diffusion tensors.

Keywords: Knudsen diffusion, thermal transpiration, kinetic equation, homogenization
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2 Vignoles, Charrier, Preux & Dubroca

List of symbols

Latin

− a : Velocity of sound (m.s−1)

− a : Thermal diffusivity (m2.s−1)

− Ag : Parameter in eq. (15) (-)

− b(z, ω) : Scattering kernel (m3)

− B : Porous medium intrinsic permeability (m2)

− c : Microscopic molecular velocity

− c : Mean quadratic velocity (m.s−1)

− C : Gas concentration (mol.m−3)

− C ′ : Total mole number including dust molecules per unit volume
(mol.m−3)

− Cd : Dust mole number per unit volume (mol.m−3)

− Cv : Specific heat capacity at constant volume (J.kg−1.K−1)

− ∂Yfs : Interface between domains Yf and Ys

− D : Effective tensor linking mass flux and density gradient (m2.s−1)

− D̃ : Effective tensor linking mass flux and temperature gradient
(kg.m−1.s−1.K−1)

− Dgd : Gas-dust diffusion coefficient (m2.s−1).

− DK : Knudsen diffusion coefficient (m2.s−1).

− dp : Pore diameter (m)

− E : Internal (translational) energy (J.kg−1)

− E : Translational energy tensor (J.kg−1)

− F : External applied force (N.mol−1)

− f : Mass distribution function in space and velocity spaces (kg.m−9.s3))
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 3

− J : Molar flux (mol.m2.s−1).

− K : Effective heat conductivity tensor (W.m−1.K−1)

− kB : Boltzmann’s constant (J.K−1)

− Ke2 : Viscous to effusion flux ratio (-)

− Kn : Knudsen number (-)

− l : Mean free path (m)

− L : Linearized collision operator (kg.m−9.s−4)

− L∗ : Reference length (m)

− M : Molecular mass (kg.mol−1)

− M(f) : Maxwellian velocity distribution (m−4.s4)

− Mn(f) : Maxwellian distribution normalized to unity for half-flux
(m−4.s4)

− Ma : Mach number (-)

− n : Molecule number per unit volume (molecules.m−3)

− n′ : Total molecule number including dust molecules per unit
volume (molecules.m−3)

− nd : Dust molecule number per unit volume (molecules.m−3)

− n : Normal vector (-)

− P : Pressure (Pa)

− Pr : Prandtl number (-)

− Q(f, f) : Collision operator (kg.m−9.s2)

− r : Dust particle radius (m)

− R = NAkB : Perfect gas constant (J.mol−1K−1)

− R0 : Geometrical factor in eq. (7)(m)

− Re : Reynolds number (-)
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4 Vignoles, Charrier, Preux & Dubroca

− Sd : Gas-dust collision section (m2)

− T : Temperature (K)

− Tc : Critical temperature (K)

− T : Tensor entering the definition of the ES-BGK approximation
of the scattering operator (J.kg−1)

− u : Intrinsic mass-average gas velocity (m.s−1)

− v : Extrinsic mass-average gas velocity (m.s−1)

− w : Mute integration variable for molecular velocity (m.s−1)

− x : Space coordinates (m)

− x′ : Large-scale space coordinate (m)

− y : Small-scale space coordinate (m)

− Y : Small space subset

Greek

− α : Closure variable (m.K−1)

− (αgd)tr : Gas-dust generalized thermal diffusion ratio, for which
the only translational contribution of molecules has been retained
(-)

− αT : Thermal diffusion ratio (-)

− β : Closure variable (m4.kg−1)

− γ : Closure variable (m)

− γ : Compressibility factor (-)

− ∆ : Second-order correction to diffusion coefficients (-)

− ǫ : Porosity (-)

− ε : Small parameter for asymptotics (-)

− η : Gas viscosity (Pa.s)

− ζ : Intersection point of a molecular trajectory with a wall (m)
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 5

− Θ : Tensor entering the definition of the ES-BGK approximation
of the scattering operator (J.kg−1)

− λ : Thermal conductivity (W.m−1.K−1)

− (λii)tr : Translational component of thermal conductivity (W.m−1.K−1)

− ν : Kinematic viscosity (m2.s−1)

− ν : Adjustable coefficient for the ES-BGK model (-)

− ξ : Correction factor accounting for non-specular collisions (-)

− πg, π
′
g : Pressure correction parameters for Knudsen diffusion

(Pa)

− ρ : Gas density (kg.m−3)

− ρs : Solid density (kg.m−3)

− σ : Accommodation factor (-)

− σc : Collision diameter (m)

− σv : Internal surface area (m−1)

− Σ : Fluid/solid interface

− Σc : Collision cross-section (m2)

− τ : Relaxation time (s)

− τ : Tortuosity (-)

− ψ : Any function in IR3
c velocity space (-)

− ω : Orientation (sr)

− Ω : Open set of IR3 position space

− Ωv : Collision integral for gas viscosity (-)

− Ωgd : Collision integral for gas-dust diffusion (-)

− ⊗ : Tensor product or outer product

Subscripts and underscripts

− · : vector in 1, c, |c|2 space
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6 Vignoles, Charrier, Preux & Dubroca

− [·]1 : first-order approximation in DGM derivation

− ·c : relative to gas critical point

− ·d : relative to dust

− ·f : relative to fluid phase

− ·g : relative to gas species

− ·K : relative to Knudsen transport

− ·p : relative to pore(s)

− ·s : relative to solid phase

− ·tr : translational contribution

− ·v : relative to viscous transport

− ·∗ : reference quantity

1. Introduction

This work has been motivated by several physico-chemical studies,
among which the study of CVI (Chemical Vapor Infiltration) (Naslain
and Langlais, 1990) and its variants, especially including a thermal
gradient, like TG-CVI (Golecki, 1997; Leutard et al., 2002), the rapid-
densification process (Narcy et al., 1995; Bruneton et al., 1997), and
the forced-CVI process (Lackey, 1989; Vaidyaraman et al., 1995).
Such processes are privileged routes for the fabrication of high-quality
carbon-carbon and other ceramic-ceramic composites (Naslain, 1999),
which are used in various aerospace applications, as well as in braking
technology. They involve the penetration of a hot fibrous medium
by reactant gases which are transported and eventually react, either
homogeneously (by pyrolysis), or heterogeneously, thus yielding a ce-
ramic or carbon deposit, which is going to act as the matrix of the
fiber-reinforced composite. Since high temperatures and low pressures
are required, and that the pore sizes may be as low as a fraction of
a micrometer, the description of the gas transport in such a process
is rather involved. Indeed, it features a combination of viscous flow,
interspecies diffusion and Knudsen flow, also called ”free molecular
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 7

flow”, ”rarefied gas flow”, ”effusion”, ”Klinkenberg regime”, etc . . . .
The intermediate regime between viscous flow and effusion is often
referred to as ”slip-flow regime”, or ”Darcy-Klinkenberg regime”.

It is also to be pointed that when ceramic-ceramic composites
are in their nominal conditions of use, they suffer chemical dam-
age from the surrounding atmosphere ; the mechanisms of such a
degradation also involve gas transport and heterogeneous reaction at
high temperatures and low pore dimensions (Lamouroux and Camus,
1994).

Except in isothermal CVI condition, thermal gradients are present
in the studied porous media, and their role may be large, since chemi-
cal reactions are usually highly dependent on temperature. Gas trans-
port is also affected by thermal gradients through various couplings,
among which : i) the perfect gas law which states that density is
inversely proportional to temperature, and ii) the dependance of the
transport coefficients (viscosity, binary and Knudsen regime diffu-
sivities) on temperature (Hirschfelder et al., 1963). The additional
phenomena that also has to be accounted for is the possibility of mass
transport due to thermal gradients, which is predicted by the classical
Linear Irreversible Thermodynamic theory (Hirschfelder et al., 1963),
and has two expressions inside porous media : i) the intermolecular
Soret effect (thermodiffusion), which is gas segregation under the ac-
tion of temperature gradients, and ii) thermal transpiration (Mason
and Malinauskas, 1983), which is the equivalent of Knudsen diffusion
with respect to thermodiffusion.

Rarefied gas flow in isothermal and non-isothermal conditions have
been described in past works, leading to the phenomenological frames
known as ”Dusty-Gas Model” (Mason and Malinauskas, 1983) and
”Binary Friction Model” (Kerkhof, 1996). They provide averaged trans-
port equations for porous media considered as being homogeneous.
The ”Dusty-Gas Model” (DGM) approach is based on the consider-
ation of Stefan-Maxwell diffusion laws in the limit that one of the
gaseous components (the ”dust”) becomes large in size and weight,
and is held fixed with respect to the laboratory frame. This model
makes use of kinetic theory results, and uses the fact that up to first-
order approximation, the viscous and diffusive fluxes are independent
from each other. However, a thorough discussion by Kerkhof (Kerkhof,
1996) points out that equations based on gas-gas momentum transfer
are used in the case where no such transfer predominates or even
occurs at all. As an alternative to the DGM, the author proposes the
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8 Vignoles, Charrier, Preux & Dubroca

”Binary Friction Model” (BFM), which insists on the combination
in parallel of Knudsen and viscous transport, both in series with
binary diffusion, and represents the effective forces exerted on the
fluid components as resulting from frictional contributions arising
from the various transport modalities. This model starts from the
already averaged equations for the transport modalities, with pore-
averaged macroscopic quantities, and combines the contributions in
an appropriate manner. However, it is to be pointed out that it could
be physically incorrect to use geometrical averaging before using the
moments approximations in the rarefied regime. This point needed
to be checked out, and this is one of the questions addressed in this
paper.

The identification of transport coefficients, and in particular of the
precise impact of the pore geometries, has been treated mostly in
isothermal conditions. The limiting cases of pure viscous flow (i.e.
Darcy regime), pure diffusive flow, and pure Knudsen flow have been
often separately addressed. Other works have considered the transi-
tion between two of the three transport modalities, mainly binary and
Knudsen diffusion, by means of random walk algorithms in idealized
3D images of porous media (Burganos and Sotirchos, 1989; Tomadakis
and Sotirchos, 1991) or by variational methods applied to media
considered through their n-point correlation distributions (Strieder
and Prager, 1968; Strieder, 1971). The consideration of slip-flow in
addition to viscous flow in a change-of-scale methodology has been
formally presented in (Whitaker, 1987). Homogenization performed
on the same problem has been dealt with in (Skjetne and Auriault,
1999).

Thermal transpiration has been studied by numerous authors on
the basis of kinetic equations, but almost always in the geometry of a
straight cylindrical tube. See e.g. a short review in (Sharipov, 1996).
It has already been shown, in such geometries, that working directly
with the ”Bhatnagar-Gross-Krook” (BGK) approximation of the ki-
netic equations (Loyalka, 1969) gives results for the ”thermomolecular
pressure difference” which are not too far from the Dusty-Gas Model
predictions (Gupta and Storvick, 1970). However, no method has been
reported for the precise numerical evaluation of thermal transpiration
parameters in the rarefied regime for general porous media described
by a 3D image.

The purposes of our research project are thus the following :
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 9

− To derive a coherent change-of-scale formalism yielding macro-
scopic equations for non-isothermal pure gas transport in a porous
medium, starting directly from kinetic equations , and to discuss
it with respect to the Dusty-Gas Model and other formulations ;

− To design a tool allowing to compute effective properties for
Knudsen transport, and for thermal transpiration in whatever
porous medium, to test it and to examine its results, comparing
them to other referenced works when possible.

After a first part where the essential physics are presented and the
Dusty-Gas Model is discussed, we will present in this document a
formulation for pure gas transport (that is, not including binary diffu-
sion) in non-isothermal conditions as it appears from homogenization
theory (Bensoussan et al., 1978; Bardos et al., 1997) when applied
to the Maxwell-Boltzmann kinetic equation. The associated energy
transport is also treated. The performed change of scale provides a
set of macroscopic variables and equations, as well as a set of closure
problems that are to be solved at microscopic scale. This theoretical
model will be discussed with respect to the DGM theory. A companion
article (Vignoles et al., 2007) will present a numerical implementation
of this theory, validation tests and a discussion of the results.

2. Phenomenology of gas transport and existing models

2.1. Dusty-Gas Model

The DGM is based on the mass balance relations for n + 1 species,
of which the first n are true gas molecules and the (n + 1)th species
(the ”dust”) has a huge molecular mass, a vanishing mole fraction,
a uniform spatial distribution, and is held motionless. We restrict
ourselves to the case where only one gas species is present.

2.1.1. Flux-gradient relation

The flux-gradient relation resulting from the analysis of (Mason and
Malinauskas, 1983) follows from the Stefan-Maxwell multicomponent
relationships where the dust and the gas are the two involved species.
They may be presented under the following form :

nd(1 − ∆gd)

nDgd

[

J

C
+
B

η
(∇P − CF)

]

=
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10 Vignoles, Charrier, Preux & Dubroca

−∇ lnP + F/RT −
nd(αgd)tr

n+ nd
∇ lnT (1)

In this equation, the fluxes are on the left-hand side and the forces on
the right-hand side. The Knudsen diffusion and thermal transpiration
coefficients are identified as :

DK =
nDgd

nd(1 − ∆gd)
(2)

αT =
nd(αgd)tr

n+ nd

(3)

In the dusty-gas limit, nd goes to zero, but so do the Dgd and αgd

factors, in such a way that the defined coefficients do converge to
some finite limit. One of the weaknesses of the original derivation is
that no explicit dependance of the various gas-dust coefficients to the
small parameter nd is given. Another unclear point is that nothing
is said of the dust volume fraction φd when one takes the limit. Is
it held constant ? The only answer to this question is the (implicit)
assumption that all quantities, after taking the limit, are averaged
over the whole space. By doing so, care has to be taken in order to
reduce progressively the molecular mobility as the size grows ; this
point has never been mentioned in the historical presentation of the
DGM.

The extrinsic velocity (filtration velocity) v = J/C obeys the
following relation :

v = ǫu = −

(

PB

η
+DK

)

∇P

P
− αTDK

∇T

T
(4)

and, by making use of the perfect gas law, one obtains the classical
Darcy-Klinkenberg expression for mass fluxes.

The Dusty-Gas Model coefficients DK , B/η, and αT are evaluated
from various dimensionless collision integrals. Let us discuss them in
more detail.

2.1.2. The viscous transport coefficient B/η

Two contributions are evident in this term, one from the gas which
is viscosity, and the other from the porous medium, which is per-
meability. Classical models are available for viscosity, either directly
from kinetic theory (Chapman and Cowling, 1970; Hirschfelder et al.,
1963), or from critical temperature and molar volume (Reid et al.,
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 11

1987). Pure gas viscosities almost do not depend on pressure, while
they depend on the square root of the molecular mass and tempera-
ture. It is convenient for later use to introduce the notion of molecular
mean free path l, such that the kinematic viscosity η/ρ be the product

of the mean quadratic speed c =
√

8RT/πM and of l :

ν =
η

ρ
=

1

3
c l (5)

If the perfect gas law applies, then l is proportional to T/P .
The pore Knudsen number will taken as the ratio of this mean free
path to the pore diameter :

Kn =
l

dp

=
3η

ρcdp

(6)

It is a measure of the degree of gaseous rarefaction.
The permeability may be obtained from a modified Stokes law for

spheres or from a Poiseuille law for hollow cylinders. From the original
formulation, one has :

B =
1

R0nd

(7)

where R0 is a geometrical factor proportional to the dust particle
radius r, and nd varies as r−3. Since no other details on the latter
dependency is known, it is usually preferred to use the following
expression (see e. g. (Tomadakis and Robertson, 2005)):

B = ǫτv
−1 d

2
p

32
(8)

where τv is a “tortuosity factor” , i.e. a corrective factor usually larger
than 1 which represents the precise effect of the pore geometry on
viscous transport, and dp is an estimation of the mean pore hydraulic
diameter (e.g. using Jäger’s formula 4ǫ/σv for a generalized cylin-
der, σv being the internal surface area in m−1). The inclusion of the
porosity inside formula (8) accounts for the law of mixtures (the fluid
does not flow inside the solid parts), and the tensorial nature of the
tortuosity factor accounts for the possible anisotropy of the porous
medium.
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12 Vignoles, Charrier, Preux & Dubroca

2.1.3. The Knudsen transport coefficient DK

This coefficient is evaluated following the same principle as before,
that is, the classical Chapman-Enskog relation is adapted to the case
of a gas-dust interdiffusion pair. The resulting expression of DK is :

DK =
3π

32
c ·

1

ndSdΩgd

·
1

1 − |αT |/5
(9)

The 1
ndSd

term represents the influence of the porous medium (Sd

varies with r2 and nd with r−3), while the Ωgd
−1 term accounts for

the precise kind of gas-dust collision through the collision integral. Ωgd

is unity for elastic specular collisions, 13
9

for elastic diffuse collisions
(obeying Knudsen’s cosine law), and 1 + π

8
for inelastic scattering

(i.e. also obeying Knudsen’s law but with temperature accommoda-
tion). Other more sophisticated models exist when there are gas-wall
interactions before contact. The last term in equation (9) is a second-
order correction depending moderately on pressure, and features the
thermal transpiration parameter αT :

1

1 − ∆gd
=

1

1 − |αT |/5
=
P + πg

P + π′
g

(10)

Instead of evaluating the coefficients πg and π′
g through the dusty-gas

limit approach, a simpler approximation is proposed (Mason et al.,
1967) :

πg =
2

5

T (λii)tr

[DK ]1
and π′

g ≈ 0.9πg (11)

where (λii)tr is the translational component of the gas thermal con-
ductivity :

(λii)tr =
15

4

R

M
η (12)

and [DK ]1 is the Knudsen diffusion coefficient without pressure cor-
rection.

Again, it is usually found convenient to reformulate DK into a form
where the pore geometrical quantities appear explicitly :

DK =
ǫ

3
cdpτK

−1P + πg

P + π′
g

ξ (13)

Note that the precise contribution of the porous medium geometry
appears, as for permeability, through the law of mixtures and the
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 13

presence of a tensorial tortuosity factor. The value of τK for a cylin-
drical pore is 1. The factor ξ = Ω−1

gd accounts for the precise type of
molecule-wall collisions.

The pressure dependency factor may be recast into a more suitable
form, neglecting the tortuosity factor :

P + πg

P + π′
g

=
2/3 + Kn

2/3 + 0.9Kn
(14)

Collecting together the viscous and Knudsen contributions to mass
transport, one gets the evolution of its contribution between contin-
uum and free-molecule limits, as a function of the Knudsen number
:

PB

η
+DK = ǫcdp

(

3π

256
τ−1
v Kn−1 +

1

3
τ−1
K

Ag + Kn

Ag + 0.9Kn
ξ

)

(15)

where Ag is of order 2/3.
It is interesting to note that the dimensionless ratio of Knudsen

flux to viscous flux is, in a straight pore (Kerkhof, 1997; Froment and
Bischoff, 1979) :

Ke2 = 1/NDiN =
ηDK

PB
=

256

9π

τv
τK

Kn
Ag + Kn

Ag + 0.9Kn
ξ (16)

It is another measure of the rarefaction degree, which differs from the
Knudsen number by approximately one order of magnitude — that
is, the ratio Ke2 between slip-flow and Darcy velocities is unity when
the Knudsen number is about 1/10.

2.1.4. The thermal transpiration factor αT

As mentioned briefly before, the authors of the DGM did not use the
exact approach that they have built up, but used rather a simplified
estimation, based on the fact that the inverses of the thermal diffusion
factors are linear in the mole fraction. The DGM estimation of the
thermal diffusion factor is then :

∣
∣
∣α−1

T

∣
∣
∣ = 2 +

5Rρ[DK ]1
M(λii)tr

(17)

The sign of αT is indeed negative, which means that the gas has
tendency to migrate towards the hotter side of the medium.
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14 Vignoles, Charrier, Preux & Dubroca

Developing all coefficients in the preceding expression yields an ex-
plicit dependence of αT on temperature, pressure, and porous medium
related quantities :

−α−1
T = 2 +

8P

5RT
(πσ2

cΩv).ǫdpτK
−1ξ (18)

The tensorial character of the transport coefficient has been dropped
here since it is not present in the hypotheses that have been used
for the derivation of such an approximate expression. Neglecting any
contribution from the precise geometry (porosity, tortuosity) the fol-
lowing approximate relation should hold :

−α−1
T = 2 +

4

3
ξKn−1 (19)

Some remarks have to be made :

− The low-pressure limit for αT should be close to −1/2.

− The high-pressure limit should be zero (αT ∝ Kn).

The proposed evaluation of αT does not take into account the
precise knowledge of the porous medium geometry. In particular, it is
not told in detail whether the factor 2 in eqn. (18) should be altered by
a tensorial quantity representing the anisotropy of the pores. Indeed,
this is one of the weaknesses of the Dusty-Gas Model in itself, for
which the geometrical factor computation is left to posterior identifi-
cation to the user of the theory. Indeed, the authors report that the
best way to use the model in practice is to consider the number 2 in
eq. (19) as an adjustable parameter, as well as πg and π′

g in eq. (10).
The necessity for this adjustment arises from several factors : first,
as mentioned, the model does not account for geometrical effects ;
second, the model has been compared to experiments in which some
extra effects like adsorption/desorption in micropores (Angstrom to
nanometer sizes) can play a role in the rarefied limit.

2.2. Binary Friction Model

The original presentation of the Binary Friction Model (Kerkhof,
1996) is made in an isothermal hypothesis, however, guidelines are
given for the rather straightforward incorporation of thermal transpi-
ration, through a thermal-creep contribution to the frictional forces.
In the case of a pure gas, both models are expected to yield equal
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HOMOGENIZATION OF KINETIC EQUATIONS IN POROUS MEDIA 15

formal results. The formalism proposed by Kerkhof does not provide
clues for the identification of the transport coefficient from kinetic-
theory level quantities such as collision integrals ; in addition to the
formal equivalence to the DGM in the pure-gas case, this is a sufficient
reason for not describing it here in details.

2.3. Results from the resolution of kinetic equations in

cylindrical pores

In parallel with the attempts to extract a macroscopic formalism
from kinetic-theory considerations, much work has been done on the
direct resolution of the kinetic equations in a straight pore. The
Bhatnagar-Gross-Krook (BGK) approximation has been used (Loy-
alka, 1969), and more recently the s-model (Sharipov, 1996). The
attention has been brought on the precise molecule-wall interaction,
which may be partially diffuse and partially purely elastic, and on the
amount of thermal accommodation between wall and molecules.

It appears from such works that the relationships obtained through
the evaluation of the moments are similar to the DGM/BFM for-
malisms, and the slip (Knudsen diffusion) and creep (thermal tran-
spiration) coefficients have been evaluated numerically. The gradient
is taken only along the pore length. No account of porosity is made.

These results, as well as the DGM predictions, will be used as
a benchmark for the approach that is going to be developed in the
following parts.

3. Homogenization of Maxwell-Boltzmann’s equations in a

porous medium for a single gas

The present derivation of mass and heat transfer for a single gas in
a porous medium has been presented in a more exhaustive fashion
in (Charrier and Dubroca, 2003a; Charrier and Dubroca, 2003b). We
will recall the main results in the following sections. The considered
gas-wall collisions will be partially elastic, and partially diffuse with
thermal accommodation, according to an accommodation factor σ =
(8/π)(ξ−1 − 1) ranging between 0 and 1.
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16 Vignoles, Charrier, Preux & Dubroca

3.1. Local problem formulation

Let us denote Ω, the open set in IR3 occupied by the porous material,
Ωs ⊂ Ω the open subset of Ω occupied by the solid phase, Ωf the open
subset occupied by the gas and Σ the interface between Ωf et Ωs. In

all the following n = n(x), x ∈ Σ, denotes the normal to Σ at point

x, outgoing from Ωs.

The solid phase is characterized by its density ρs, its specific heat at
constant volume Cv and its thermal conductivity λs. These quantities
are assumed to be known and constant. We assume also that the
mechanical deformations in the solid can be neglected and that only
the thermal energy is evolving. Hence the only unknown in the solid
phase is the temperature field T (x, t) defined on Ωs whose evolution
is given by the classical heat equation

ρsCv∂tT − divx(λs∇T ) = 0. (20)

The gas will be described by a kinetic model. We denote f =
f(x, t, c) the mass distribution function and the evolution of the gas
is given by the Boltzmann equation in Ωf

∂tf + c · ∇xf = Q(f, f), (21)

The collision operator Q is defined by

Q(f, f)(v) = ρ−1
∫

IR3
w

∫

S2

[f(c′)f(d′) − f(c)f(d)] b(c − d, ω)dddω,

(22)
where c′ and d′ are given by

c′ = c − [(c − d).ω]ω, (23)

d′ = d − [(d − c).ω]ω, (24)

and where the scattering kernel b(z, ω) = |z|Σc(|z|, cos(z, ω)) depends
on the interaction potential between molecules which is considered
and the cross-section Σc is given by (see (Cercignani, 1987))

Σc(z, cos θ) = r2 cos θ (25)

(hard sphere potential),

Σc(z, cos θ) = r2|z|κ−1 cos θ, κ ∈ [0, 1[ (26)

(variable hard sphere potential)
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In any case, the collision term satisfies the following fundamental
properties ensuring conservation laws and H-theorem

∫

IR3
c

Q(f, f)ψ(c)dc = 0, ∀ψ(c) = α + β · c + γ|c|2, (27)
∫

IR3
c

Q(f, f) ln(f)dc ≤ 0, (28)
∫

IR3
c

Q(f, f) ln(f)dc = 0 ⇔ Q(f, f) = 0 (29)

Q(f, f) = 0 ⇔ f = exp
(

α + β · c + γ|c|2
)

(30)

Macroscopic quantities (density, momentum, total energy) are de-
fined by

ρ =< f >, ρu =< fc >, ρE =< f
1

2
|c|2 > (31)

where < ψ >=
∫

IR3
c

ψ(c)dc is the velocity space averaging operator.

The particles bouncing back from a wall collision result partly from
a specular reflection and from a diffuse reflection. Let σ be the accom-
modation factor, that is, the fraction of diffusely reflected particles.
Then, the distribution of particles outgoing from the interface Σ obeys
the following expression :

f(x, c)|x∈Σ,c·n(x)>0 = σ
(∫

w·n<0
|w · n(x)|f(x,w)dw

)

Mn(T (x))(c)

+(1 − σ)f(x, c − 2c · n n) (32)

where Mn(T ) is a Maxwellian distribution with an average velocity
equal to zero and temperature T , normalized by the condition

∫

c·n>0
(c · n)Mn(T )(c)dc = 1

, so that Mn(T ) is given by :

Mn(T )(c) =
1

2π(RT/M)2
exp(−

|c|2

2RT/M
). (33)

The continuity of the energy flux on Σ takes the following form :

∫

IR3
c

f(x, c)
|c|2

2
(c · n(x))dc + λ∇xT (x) · n(x) = 0, x ∈ Σ, (34)
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18 Vignoles, Charrier, Preux & Dubroca

Finally the microscopic model we will consider writes

∂tf + c · ∇xf = Q(f, f) ,x ∈ Ωf , (35)

ρCv∂tT = (divxλs∇xT ) ,x ∈ Ωs, (36)

f(x, c)|c·n>0 = σ
(∫

w·n<0
|w · n|f(x,w)dw

)

Mn(T )

+(1 − σ)f(x, c− 2c · n n) ,x ∈ Σ, (37)

λs∇xT.n = −
∫

1

2
|c|2f(x, c)c · ndc ,x ∈ Σ, (38)

Such a model obeys the following properties :

− Global conservation of mass and energy are ensured

− The H-theorem is verified, that is, the local entropy production
is positive (under the convention used by physicists).

3.2. Homogenization

3.2.1. Space decoupling

It will now be assumed that the space variable may decoupled into
two contributions, differing by their scale :

x = x′ + y (39)

where x′ has broad variations (i.e. ψ(x′) is a local average of ψ(x))
and y has short-scale variations (i.e. ψ(y) is a local perturbation
of ψ(x) with respect to ψ(x′)). Let us define an integration support
Y ⊂ Ω for y, which is a small space region, split into two subsets Ys

and Yf with share a common frontier ∂Yfs. The ratio ε = x/y is a
small parameter allowing to use the tools of asymptotic analysis. By
taking the limit ε→ 0, one simultaneously changes scale in space and
takes a hydrodynamic limit for the fluid.

It is here considered that the fluid and the solid are in local equilib-
rium, so that only one temperature defined on Ω is enough to describe
the system.

Reference quantities will now be chosen in order to put an emphasis
on the change-of-scale procedure :

− A reference length L∗ of the order of |Y |1/3, that is, a macroscopic
length. The parameter ε is dp/L∗.
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− A Knudsen number Kn∗ relative to the macroscopic length L∗ is
introduced ; note that Kn∗ = εKn.

− The reference temperature T∗ depends on the precise application
chosen.

− The reference velocity u∗ is based on the convection velocity. Thus

the Mach number is Ma∗ = u∗/a∗, where a∗ =
√

γRT/M and

γ =
Cp,g

Cv,g
. Note that a∗ is very close to c since γ is close to unity

(e.g. 5/3 for simple gases).

− The reference quantity for the distribution function f is f∗ =
ρ∗/a

3
∗.

− The Reynolds number is Re∗ =
ρ∗u∗L∗

η∗
. Note that Re∗ =

γMa∗
Kn∗

.

− The Prandtl number is Pr∗ =
Cp,∗η∗
λ∗

and is of order unity, a

classical fact for gases.

All quantities may be split into a reference and a dimensionless factor
: ψ = ψ∗ψ̃. By doing so, the microscopic problem may be recast in
the following form :

Ma∗ ∂t̃f̃ + c̃ · ∇x̃f̃ =
1

Kn∗
Q̃(f̃ , f̃) , x̃ ∈ Ωf ,(40)

(

Re∗ Pr∗
γ

a∗,g

a∗,s

)

ρ̃C̃v∂t̃T̃ = divx̃(λ̃s∇x̃T̃ ) , x̃ ∈ Ωs,(41)

σ
(∫

w̃.n<0
|w̃.n|f̃dw̃

)

M̃(T̃ ) . . .

. . .+ (1 − σ)f̃(x̃, c̃− 2c̃ · nn) = f̃|c̃.n>0 , x̃ ∈ Σ, (42)

−

(

γ(γ − 1)Pr∗
Kn∗

λ∗,g
λ∗,s

)
∫

1

2
|c̃|2f̃ c̃ · ndc̃ = λ̃s∇x̃T̃ · n , x̃ ∈ Σ, (43)

where a is the the thermal diffusivity λ
ρCp

. In the following, all tildes

will be dropped out for sake of simplicity.

3.2.2. Identified scalings

The identified scalings are :
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20 Vignoles, Charrier, Preux & Dubroca

− Ma∗ ≈ ε, i.e., the flow is subsonic. This implies that compressibil-
ity effects are small in the presented study. Neglecting them rep-
resents a safe approximation in numerous practical cases (Haddad
et al., 2007)

− Kn∗ ≈ ε, i.e. the gas is in a transition regime,

− As a consequence, Re = γMa∗

Kn∗

= O(1), so the flow is in a laminar
regime.

− In the considered applications (temperatures around 1000 K and

pressures from 1 to 100 kPa), the thermal conductivity ratio λ∗,g

λ∗,s

is small, and scales as ε.

− Since the density ratio ρ∗,g

ρ∗,s
also scales as ε and the mass heat

capacity ratio is of order unity, the thermal diffusivity ratio is

expected to be unity. Thus,
(

Re∗ Pr∗
γ

a∗,g

a∗,s

)

in eq. (41) is also of

order unity.

− In eq. (43), the term
(

γ(γ−1) Pr∗
Kn∗

λ∗,g

λ∗,s

)

≈ ε−1, that is, there is a

weak coupling between the gas and the solid.

The scaled equations may be now rewritten as :

ε ∂tf + c · ∇xf =
1

ε
Q(f, f) ,x ∈ Ωf , (44)

ρCv∂tT = divx(λs∇xT ) ,x ∈ Ωs, (45)

f |c·n>0 = σ
(∫

w·n<0
|w · n|f dw

)

Mn(T )

+(1 − σ)f(x, c− 2c · nn) ,x ∈ Σ, (46)

λs∇xT.n = −
∫

1

2
|c|2fc · n dc ,x ∈ Σ, (47)

3.2.3. Expansion of the variables

We look for an expansion of T (x) and f(x) in successive powers of ε
:

T ε(x′,y)|y=x′/ε = T ε
0 (x′,y) + εT ε

1 (x′,y) + ε2T ε
2 (x′,y) + . . . , (48)

f ε(x′,y, c)|y=x′/ε = f ε
0 (x′,y, c) + εf ε

1 (x′,y, c) + ε2f ε
2 (x′,y, c) . . .(49)

Inserting these expressions into eqs. (44-47) and collecting like
powers of ε together leads to the following relations :
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Order 0:

−divy(λs∇yT0) = 0,y ∈ Yf , (50)

c · ∇yf0 = Q(f0, f0),y ∈ Yf , (51)

f0(y, c)|c·n>0 = σ
(∫

w.n<0
|w · n|f0 dw

)

Mn(T0)

+(1 − σ)f0(y, c− 2c · nn), y ∈ ∂Yfs (52)

λs∇yT0.n = 0, y ∈ ∂Yfs, (53)

Order 1:

−divy(λs∇yT1) = divy(λs∇x′T0) + divx′(λs∇yT0), (54)

L(f1) − c · ∇yf1 = c · ∇x′f0, (55)

f1|c·n>0 = σ
(∫

w·n<0
|w · n|f0 dw

)
d

dT
Mn(T0)T1

+ σ
(∫

w·n<0
|w · n|f1 dw

)

Mn(T0)

+ (1 − σ)f1(x, c− 2c · nn),y ∈ Σ (56)

λs∇yT1 · n = −λs∇xT0.n −
∫

1

2
|c|2f0c · n dc, y ∈ Σ, (57)

where L is the linearized collision operator defined by

L(g) = Lf0
(g) = Q(f0, g) +Q(g, f0). (58)

Order 2:

ρsCv∂tT0 = divx′(λs(∇x′T0 + ∇yT1))

+divy(λs(∇x′T1 + ∇yT2)), (59)

∂tf0 + c · ∇x′f1 = Q(f1, f1) + L(f2) − c · ∇yf2, (60)

λs(∇x′T1 + ∇yT2) · n = −
∫

f1
1

2
|c|2(c · n) dc, y ∈ Σ. (61)

3.2.4. Closure and auxiliary problems

An important result is that f0 is an absolute Maxwellian distribution,
independent of y, with temperature T0 ; its average over velocity space
is the zeroth-order approximation for the density ρ0. Thus, ∇x′f0/f0

can be written as a linear combination of ∇x′T0 and ∇x′ρ0.
On the other hand, the coupling between T and f is weak. Phys-

ically, this means that the solid phase, being much more conductive
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than the fluid phase with respect to heat, ensures by itself the buildup
of the thermal gradient, which is then communicated to the fluid. So
there is no effect of ρ on T to be taken into account.

It is then justified to seek f1 and T1 in the form :

f1 = −f0 (α · ∇x′T0 + β · ∇x′ρ0) (62)

T1 = γ · ∇x′T0 (63)

Let L be a linearized collision operator. It may be deduced directly
from the Boltzmann collision operator Q :

L(f) = Q(f, f0) +Q(f0, f) (64)

Alternately, it may be given by models. In the BGK approximation
(Loyalka, 1969), the linearized operator L is evaluated analytically.
Indeed, it has the form :

L(f) = f
d

df

(
1

τ
[M(f) − f ]

)
∣
∣
∣
∣
∣
f=f0

(65)

After some algebra, the final form of L(f) is :

L(f) =
1

τ







f0

ρ0







5
2
− M |c|2

2RT0

Mc

RT0

M
RT0

(
M |c|2

3RT0
− 1

)






·






ρ
ρu
ρE




− f







(66)

The same work has been performed on the Ellipsoidal Statisti-
cal (ES-BGK) model, for which E in eq. (66) is replaced by E =
1
2ρ
〈fc ⊗ c〉, and M(f) in eq. (65) is replaced by :

G(f) =
ρ

√

det (2πT )
exp

(
1

2
(v − u)T T −1 (v − u)

)

(67)

where T = RT
M

(1 − ν)Id + νΘ, and Θ = 2E − ρu ⊗ u. The coefficient
ν allows to adjust the Prandtl number that stems out of the model.
In the monatomic gas case, the correct choice for ν is -1/2.

In the following, the exact form of L(f) will only be of concern
when one goes to the numerical computations. The vectorial clo-
sure variables α = (αi(y, c))i=1,2,3, β = (βi(y, c))i=1,2,3, and γ =
(γi(y, c))i=1,2,3 are solutions of auxiliary problems defined in the ele-
mentary cell Y :
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





−L(f0αi) + f0c · ∇yαi = −f0ci

(

−
3

2T0
+
M |c|2

2RT 2
0

)

, in Yf

αif0 − σ

(

−
2

T0

+
M |c|2

2RT 2
0

)

γi = σ
∫

w·n<0
|w · n|αif0Mn(T0)dw . . .

. . .+ (1 − σ)αi(y, c− 2c · nn)f0(y, c− 2c · nn) ,
in ∂Yfs, and ∀c · n > 0

(68)







−L(f0βi) + c · ∇y (f0βi) = −
f0

ρ0

ci, in Yf

βi = σ
∫

w·n<0
|w · n|βiMn(T0)dw . . .

. . .+ (1 − σ)βi(y, c− 2c · nn), in ∂Yfs, and ∀c · n > 0

(69)







−divy (λs∇yγi) = 0 , in Yf

λs∇yγi · n = −λsni , in ∂Yfs

(70)

Eq. (68) may be somewhat simplified taking into account the ex-
pression of f0 (eq.(52) and f1 (eq. (56) :







−L(f0αi) + f0c · ∇yαi = −f0ci

(

−
3

2T0

+
M |c|2

2RT 2
0

)

, in Yf

αi − σ

(

−
2

T0
+
M |c|2

2RT 2
0

)

γi = σ
∫

w·n<0
|w · n|αiMn(T0)dw . . .

. . .+ (1 − σ)αi(y, c− 2c · nn), in ∂Yfs, and ∀c · n > 0

(71)

3.2.5. Averaging and macroscopic relations

On a macroscopic scale, a description is sought only for the macro-
scopic variables ; accordingly, one has to simultaneously integrate in
velocity space and perform an average on the local support Y . The
asymptotic transport model takes then the following form :

ǫ∂tρ0 − divx

(

D∇xρ0

)

− divx

(

D̃∇xT0

)

= 0 (72)

ρsCv,s∂tT0 − divx

(

K∇xT0

)

= 0 (73)
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where the tensorial effective coefficients are built with the closure
variables obtained from problems (71, 69, 70) in the following way :

D =
〈

−f0c ⊗ [β]Yf

〉

(74)

D̃ =
〈

−f0c ⊗ [α]Yf

〉

(75)

K =
[

λs

(

Id + ∇yγ
)]

Ys

(76)

Here angular brackets still denote velocity-space averaging, and
the square brackets denote the extrinsic coordinate-space averaging :

[ψ]Yi
=

1

|Y |

∫

Yi

ψ(y)dy. The two averaging procedures are intimately

mixed since the gas is not in continuum regime inside the pores, so
there is an implicit need of a space region of size |Y | in order to
perform a velocity-space averaging in a short enough time interval.

3.3. Discussion

3.3.1. Comparison with existing models

The macroscopic relations yield a formal result that is similar to
the approaches presented in the preceding sections. For instance, the
extrinsic fluid velocity is :

v = −D
∇P

P
−

(

D̃
T

ρ
−D

)

∇T

T
(77)

A term by term identification with the DGM relation (4) is then
possible. Two remarks arise immediately. First, D and D̃ should be
functions of pressure and temperature.

The precise dependence of the transport coefficients on P and T
will be obtained numerically (Vignoles et al., 2007) ; however, the
study of limiting regimes will help to check the validity of the model.
This will be done in the following sections.

Second, the permeability, Knudsen diffusion coefficient, and ther-
mal diffusion ratio may be extracted fromD and D̃. It is then possible
to have more precise information about the tensorial character of
these three quantities in a general porous medium. Examination of the
closure problems (68) and (69) in the rarefied limit shows that these
problems differ by the fact that, unlike β, the thermal transpiration
variable α is couple to the solid-phase thermal conduction variable γ
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through the interfacial boundary condition. Accordingly, the result-
ing fields may not be directly similar in a complex porous medium,
and the tensors D̃ and D may differ by their principal directions
and anisotropy ratios. Again, this will be verified numerically in the
companion paper (Vignoles et al., 2007).

3.3.2. Rarefied limiting regime

In the rarefied limit (Kn → ∞), the closure problem (69) is simpler
since the linearized operator L(f) may be taken equal to zero, but one
extra hypothesis of finite horizon has to be made in order to obtain
a convergence of D towards a finite value.

In a straight pore, an analytical formula is obtained for β. Its off-
axis components are null, and the axial (z) component obeys the
following equation :






|ĉ|∇n(ĉ)βz = −cz in Yf

βz = σ
∫

w·n<0
βz|w · n|Mn(T0)dw

+(1 − σ)βz(y, c− 2c · nn) in ∂Yfs

, and c · n > 0

(78)

where ĉ stands for the vector (cx, cy, 0). Let us define the intersection
point of a particle lying at y with the wall ζ(y,nc) ; a solution of
(78) is :

β(y, c) =
cz
|ĉ|

|y − ζ | (79)

where it is seen that the half-chord length appears. Evaluation of the
effective coefficient D is then carried out :

Dzz =
1

Yf

∫

Yf

∫

IR3
c

czβzf0dcdy

=

√

RT0

8πM

1

Yf

∫

Yf

∫ 2π

ω=0
|y − ζ(y,n(ω))|dωdy (80)

The integral in (80) is, up to a proportionality factor, the chord length
average of the pore. This result is identical to the result of Kennard
(Kennard, 1938). In the case of a cylindrical pore, the final result is :

D11 =
1

3
c.dp (81)

which is identical to the Knudsen diffusion coefficient.
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The evaluation of coefficient D̃11 is very similar to the preceding
development, since eqs. (71) and (69) only display minute differences.

Indeed, the modified variable αz

(

−
3

2T0

+
M |c|2

2RT 2
0

)−1

obeys strictly

the same equation as βz in the fluid, and the boundary condition
differs only by the addition of γz to βz in the left-hand side of eq.
(69). However, γz is constant in a straight tube, and hence has no
influence on the computation of D̃. Thus, in the rarefied limit, since

< |c|2 > tends to 2RT0/M , the ratio
D̃11T0

D11ρ0

tends to 1/2, as predicted

by the DGM.

3.3.3. Continuum limiting regime

In the case of small Knudsen number (or small collision time τ), the
closure variables may be rescaled using τ as a small parameter. In the
BGK case, by comparison of eqs. (71-70) and (66), it is recognized
that (dropping out indices i for sake of simplicity) :

α =
α(−1)

τ
+ α(0) + τα(1) + . . . (82)

β = β(0) + τβ(1) + . . . (83)

γ = γ(0) + τγ(1) + . . . (84)

with :

α(−1) = b0 + b1 · c + b2|c|
2 (85)

β(0) = d0 + d1 · c + b2|c|
2 (86)

(87)

and γ(0) is not coupled with α. Moreover, from the boundary con-
dition on α in eq. (71), it appears that b1|∂Yfs

= 0 and b2|∂Yfs
=

0.
The linearized operator term in eq. (71) reads :

L(αf0) =
f0

τ















1

ρ0







5
2
− M |c|2

2RT0

Mc

RT0

M
RT0

(
M |c|2

3RT0
− 1

)







︸ ︷︷ ︸

ρ0
~d

·






〈αf0〉
〈αf0c〉

〈αf0|c|2/2〉






︸ ︷︷ ︸

~ρ[αf0]

−α














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=
f0

τ

(

~d · ~ρ[αf0] − α
)

(88)

where some ”arrow” notations have been introduced for sake of brevity.

At order -2 in τ , L
(

α(−1)f0

)

= 0, and at order -1 in τ , L
(

β(0)f0

)

=

0, from which one may deduce eqs. (85). Then, at order -1, one has :

c · ∇yα
(−1) = ~d · ~ρ[α(0)f0] − α(0) (89)

The Fredholm alternative implies, since
〈(

~d · ~ρ[α(0)f0] − α(0)
)

f0 ~m(c)
〉

= ~0

or equivalently

~ρ
[

~d · ~ρ[α(0)f0] − α(0)
]

= ~0,

that the following condition be verified :

~ρ
[

c · ∇yα
(−1)

]

= ~0 (90)

Then, for some e0, e1, and e2 :

α(0) = −c · ∇yα
(−1) + e0 + e1c + e2|c|

2 (91)

Recalling the structure at order -2 of α(−1) (eq. (85)), relation (90)
rewrites, after some algebra :

∇y · b1 = 0 in Yf (92)

b1 = 0 on ∂Yfs (93)

∇y

(

b0 +
5RT0

M
b2

)

= 0 in Yf (94)

b2 = 0 on ∂Yfs (95)

and eq. (92) is a continuity equation for b1.
Now, at order 0, and working the same way, one obtains :

c · ∇yα
(0)
i = ci

(

M |c|2

2RT0
−

3M

2RT0

)

+
(

~d · ~ρ[α(1)f0] − α(1)
)

(96)

This equation can be solved in α(1) like eq. (89) has been solved in
α(0), i. e. using the Fredholm alternative again, and the result is :

~ρ

[

c · ∇yα
(0)
i − ci

(

M |c|2

2RT0

−
3M

2RT0

)]

= ~0 (97)
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Making use of eqs. (85) and (91), and restoring the use of indices i,
one obtains :

−∇2
yb1i + ∇yπ =

M

RT 2
xi in Yf (98)

∇y · b1i = 0 in Yf (99)

b1i = 0 on ∂Yfs (100)

, where π is a Lagrange multiplier which is a function of e0 and e2,
and xi is the ith vector of the canonical basis. Clearly, eqs. (98) are
Stokes equations on b1.

Coefficients b0 and b2 may also be computed, but they do not bring
any contribution to D since f0 is an even function in c. After having
dealt with the closure variable α, the same overall procedure may be
repeated for β ; the difference being that there is no term at order -1
for it (see eq. (82)). This comes from the right-hand side of eq. (69)
which contains a 1/ρ0 additional term with respect to eq. (71), which
can also be rewritten (RT/Mη) τ . The result is that d1 in eq. (82) is
solution of the same system as (98) but with a right-hand side in the
first equation equal to η−1xi instead of M

RT 2xi.
The final step of the procedure is now to compute the coefficients

D and D̃ using the first terms of the expansion for small τ :

D =
〈

−f0c ⊗
[

β(0)
]

Yf

〉

(101)

D̃ =

〈

−f0c ⊗

[

α(−1)

τ

]

Yf

〉

(102)

The relation between α(−1) and β(0) implies that, for small τ :

D =
T0

ρ0

D̃ (103)

Accordingly, the velocity average of the fluid (eq. 72) may be rewritten
:

ρ0u = −D∇xρ0 − D̃∇xT0 = −Dρ0
∇xP

P
= −ρ0η

−1B∇xP (104)

which is indeed Darcy’s law in which the permeability B is obtained
by averaging of the closure variables b1 :

Bij = [(d1i)j ]Yf
(105)
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This ends the proof that the continuum regime limit of the pre-
sented model is coherent with past presentations of viscous trans-
port descriptions. The same procedure may be carried out with the
ES-BGK model, with identical results.

4. Conclusion

The non-isothermal transport of a pure rarefied gas in a porous medium
has been treated with a change-of-scale procedure starting from the
kinetic-theory level of description, and making use of the homoge-
nization technique. Macroscopic equations and effective coefficients
have been formally produced and compared to the popular “Dusty-
Gas Model” formalism. The relations found in this work are globally
coherent with the DGM model, and the study of the model properties
in the rarefied and continuum limiting cases gives the well-known
laws for the fluxes (respectively Fick’s law with a Knudsen diffusion
coefficient on one hand and Darcy’s law on the other).

The model has the potential to bring a more precise insight into the
dependence of the coefficients to the geometry of a porous medium.
In particular, it is seen that the thermal transpiration coefficient has
indeed a tensorial nature ; in the trivial case of the rarefied limit in a
straight cylindrical pore, the influence of the porous medium geometry
is equivalent for Knudsen transport and for thermal transpiration is
the same ; however, this is not true in general.

The presented approach has potential applications not only in the
case of porous materials but also in micro-fluidics, i. e. gas flow in
micro-domains (Haddad et al., 2005), providing that the flow has
equivalent pore Knudsen number. Extensions to non-Darcian contin-
uous behavior, i. e. Forchheimer correction, compressibility effects, etc
. . . are feasible along the same guidelines, by taking other scalings like
higher Reynolds or Mach numbers and applying the same procedure.

The exploitation of this approach requires a numerical implemen-
tation of the closure problems : this will be presented in a companion
paper (Vignoles et al., 2007), where the method is presented, validated
and tested on some complex 3D images of porous media.
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