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Multigrid preconditioning of Steam Generator  
two-phase mixture balance equations in the  
Genepi software 
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DEN/DTP/STH, CEA-Cadarache, 
Bt 219, F-13108 ST Paul-lez-Durance, France 
E-mail: michel.belliard@cea.fr 

Abstract: Within the framework of averaged two-phase mixture flow simulations of PWR Steam 
Generators (SG), this paper provides a geometric version of a pseudo-FMG FAS preconditioning 
of the balance equations used in the CEA Genepi code. The 3D steady-state flow is reached by a 
transient computation using a fractional step algorithm and a projection method. Our application 
is based on the PVM package. The difficulties of applying geometric FAS multigrid methods to 
the balance equations solver are addressed. The effects on the convergence behaviour of the 
numerical parameters are investigated. An original parallel red-black pseudo-FMG FAS 
multigrid algorithm is also presented. The use of dynamic multigrid cycles leads to perceptible 
improvements in the computation convergences. Numerical tests (academic and industrial 
simulations) underline a noticeable computation speed-up, essentially for a large number of 
freedom degrees: the speed-up reached for 2 or 3 grids ranges between 2 and 3. 

Keywords: two-phase flows; mixture; Steam Generator (SG); nuclear PWR; FAS; multigrid; 
finite element method. 
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1 Introduction 

This paper provides an overview of a multigrid technique 
implemented in the CEA Genepi software (Grandotto and 
Obry, 1996; Obry et al., 1990). This software is dedicated to 
performing 3D simulations of steady two-phase flows in the 
riser of the PWR Steam Generator (SG), see Figure 1(a). 

Figure 1 French nuclear Steam Generator: (a) diagram and  
(b) U-tube bundle motif and homogenisation cell 

 
 (a) (b) 

Typically, a SG riser is a 10 m high and 3 m diameter 
cylinder, whereas the primary tube cell can be described as 
a 2 cm square, filled with 1 cm diameter primary tubes. 
Owing to this scale dispersion, a homogenisation technique 
is preferred to the complete fluid simulation between the 
obstacles, see Figure 1(b). Hence, the Genepi code solves 
the balance equations of an equivalent two-phase mixture in 
a porous-like media. A current challenge involves 
performing high space discretisation computations. 
Typically, we need several millions of elements to reach the 
primary tube cell dimension. An answer can be found in the 
Domain Decomposition Methods (DDM) (Belliard and 
Grandotto, 2002; Belliard, 2003). The implementation of 
DDM is built on the CEA coupling tool Isas (de Gramont 
and Toumi, 1996; Gulden et al., 1997) and the PVM library 
(kn:) with a master (Isas) – slave (Genepi) formalism. By 
implementing DDM, it is possible to carry out simulations 
involving a million cells with 20–30 processors, with each 
processor computing a 1,00,000 cells by sub-domain (about 
the maximum number of cells involved in a standard 
computation using one processor). In this context, new 
acceleration techniques are needed. Multigrid techniques 
can be a possible way to accelerate these computations 
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(Fedorenko, 1961; Bakhvalov, 1966; Brandt, 1977). For 
applications to the Navier-stokes equations, see for instance 
(Désidéri, 1998; Drikakis et al., 1998, 2000; Liu and 
Jameson, 1993). Roughly, a multigrid technique can be 
described as a solution method for (initially linear) systems, 
based on the restriction and interpolation of residuals, errors 
and approximations between a series of nested grids. As the 
equations to solve are strongly non-linear, the multigrid 
method specially dedicated to the non-linear equations is 
taken into account: the Full Approximation Storage (FAS) 
method (Brandt, 1977). This type of method has already 
obtained good results in the incompressible fluid dynamic 
framework (Désidéri, 1998). 

This paper is organised into six sections. A two-phase 
flow model is detailed in Section 2. Section 3 reviews the 
multigrid architecture for the meshes and presents the FAS 
method. Section 4 is devoted to analysing some specific 
points of the FAS correction implementation for the mixture 
balance equations. Strictly speaking, the implementation of 
a geometric pseudo-Full Multigrid (FMG) version of the 
FAS method in Genepi is the object of Section 5. Finally, 
several numerical test cases are presented in Section 6, 
followed by some concluding remarks. 

2 Two-phase flow modelling 

The PDE set to be solved is the usual Navier-Stokes 
equation set for CFD with thermal exchanges and variable 
density (dilatable flow) (Obry et al., 1990; Grandotto and 
Obry, 1996; Aubry et al., 1989; Clerc, 2000): two-phase 
mixture mass, energy and momentum balance equations, see 
Equations (1)–(3). In our application, the stationary flow 
regime is reached by means of a pseudo-time marching  
(or similarly by the outer iterations of a relaxed Picard 
iterative method (Ferziger and Peric, 1996)). However, no 
time marching is applied to the mixture mass balance equation 
(the void waves are not taken into account). Hence, this 
approach leads to producing a solver that is very similar to 
those used in the incompressible fluid dynamic framework. 

( ) 0vβρ∇. = . (1) 

In particular, at each pseudo-time step, a Chorin-like 
scheme (Gresho and Chan, 1990) (velocity prediction and 
projection steps) allows the simultaneous computation of 
the mixture mass flux and mixture pressure. 

• Enthalpy balance equation 

( . ) ( (1 ) )

( ).
t R

T

H v H div x x Lv

Q div H

βρ βρ β ρ
β βχ

∂ + ∇ + −

= + ∇  (2) 

• Momentum balance equation 

* ( * . ) * ( (1 ) )

* * ( ( * *)).
t R R

t
T

v v v div x x v v

g v P div v v

βρ βρ β ρ
βρ β ρ β βµ

∂ + ∇ + − ⊗

= − Λ − ∇ + ∇ + ∇  (3) 
 
 

• Pressure equation 

2 *P v
t

β δ βρ
δ

⎛ ⎞∇. ∇ = ∇. .⎜ ⎟⎝ ⎠
 (4) 

The unknown are H, P and . *v v  is the predicted velocity 
given the estimated pressure P* (Gresho and Chan, 1990). 
At each pseudo-time step δt, the balance equations are 
successively solved: energy (Eq. 2), predicted momentum 
(Eq. 3) and projection (Eq. 4) equations. The velocity and 
pressure are then updated: 

2* tv v Pδ δ
ρ
/

= − ,  (5) 

*P P Pδ= + .  (6) 

Water thermodynamic tables are provided in order to 
compute ρ, x and L as a function of H and P. The µT, χT, ,Λ  

Rv  terms are obtained using of a large set of semi-empirical 
closure relations (Obry et al., 1990). The most common relations 
are the Schlichting model for µT ( T a G Lµ = | |  where a is a 
dimensionless constant, L is a typical vortex length, 
(Schlichting, 1968)) and the drift-flux Lellouche-Zolotar 
model (Lellouche and Zolotar, 1982) for ,Rv  that is based 
on the Zuber-Findlay approach (Zuber and Findlay, 1965). 
The heat source Q in the enthalpy equation is linked to the 
resolution of an energy balance equation for the primary 
flow (solved at the beginning of each pseudo-time step). To 
evaluate this term, other correlations on the heat exchange 
coefficient and the wall temperature are included. 

Space discretisation is done by means of a Galerkine 
FEM (tri-linear Q1: H, v , β, G ; constant Q0: P) leading to 
a weighted integral version of the above-mentioned 
equations (weak formulation) in which the mechanical 
stress term and the energy diffusion term are integrated by 
part. Other physical quantities (i.e., ρ, x, µT, ,Λ … ) are 
included in Q0. The time discretisation is carried out using a 
Crank-Nicholson scheme. Diffusive terms are implicit, as is 
the frictional term (momentum). Generally speaking, the 
advective and drift terms are explicited. Like Gresho et al. 
we also included a Balancing Tensor Diffusivity (BTD) 
correction to increase the stability of the central difference 
advection scheme (Gresho et al., 1984). At each  
pseudo-time step, the arising linear systems are partially 
solved (5–20 iterations) by the preconditioned Conjugate 
Gradient method (CG, advective terms are explicit) or by 
the preconditioned Conjugate Gradient Square method 
(CGS, advective terms are implicit). However, the linear 
elliptic equation giving the mixture pressure is solved by 
LU decomposition. 

According to the hyperbolic type of the flow equations, 
Dirichlet Boundary Conditions (BC) are used at the inlets of 
the domain (mass flux and enthalpy) and Neumann BC at 
the outlets (pressure). It is to be pointed out that the mass  
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flux ( )vρ  is fixed because the user specifies the total mass 
flow rate that has meaning from an engineering viewpoint. 
The other boundaries of the domain are impermeable walls. 
These boundaries are generally considered adiabatic with no 
shear stress (the strong pressure drop induced by the tube 
bundle leads us to disregard the wall shear stress). 

This parabolic two-phase flow solver will be the 
smoother of our FAS algorithm. Hence, during a multigrid 
cycle m, a given number of pseudo-time steps n was 
performed. 

The mixture qualifier for the flow will be omitted in the 
rest of the paper. 

3 The FAS method 

Within the framework of the weighted residual method, a 
typical problem is finding s (s ∈ V, V is a Hilbert space) 
which is the solution of: 

( ) ( ) ( )d 0i i ir s T s x v Vφ φ:= = ∀ ∈∫  (7) 

where {φi} is a basis of V, T(s) represents a non-linear 
residual function of the solution s and ri(s) is the weighted 
integral of the residual. If u is an approximation of the 
solution s, error is defined by e := s – u. Roughly speaking, 
a multigrid technique is an iterative method designed to 
solve this equation for a given grid Ω0 (here, called the 
finest grid; 0{ }iφ  nodal base of Ω0), based on a series of 
successive estimations of the error on a hierarchy of nested 
coarser grids Ωl, 0 < l ≤ lmax where lmax represents the index 
of the coarsest grid. In this section, the meaning of 
embedded meshes in a multigrid architecture will be 
recalled and the FAS method will be explained. Details will 
also be given on the restriction and prolongation operators 
used to transfer FE fields between the meshes. 

3.1 The FE multigrid architecture 

The embedded FE meshes are built as follows. Let there be 
a coarse Q1 FE mesh of a given computational domain, 
ΩH = {EH}, see Figure 2(a). Let it be that each coarse mesh 
element is divided by r (e.g., 2) in each direction. Therefore, 
each hexahedral element is divided into r3 (e.g., 8)  
smaller ones and a finer FE mesh of the computational 
domain, Ωh = {Eh} is obtained, see Figure 2(b), with  
H = 2h. 

Using this process, all the coarse mesh nodes belong to 
the node set of the finest mesh and all the coarse mesh nodal 
functions ,i

Hφ  

1
1{ ( ) ( ) }

H

i
H H H E H H HV H Q E Eφ φ φ|∈ = ∈ Ω | ∈ ,∀ ∈Ω  (8) 

can be described by the nodal functions of the finest mesh 
,i

hφ  

1
1{ ( ) ( ) }

h

i
h h h E h h hV H Q E Eφ φ φ|∈ = ∈ Ω | ∈ ,∀ ∈Ω .  (9) 

 

In other words, the FE function sets were embedded: 
VH ⊂ Vh. Performing this refinement process recursively 
drives to a embedded mesh set: 

max max 1 1 0l lV V V V−⊂ ⊂ ⊂ ⊂ .  (10) 

The same relations exist for the pressure approximation 
spaces 2 0{ ( ) ( ) element }

ll l e l l lW L Q e eψ ψ|= ∈ Ω | ∈ ,∀ ∈Ω : 

max max 1 1 0l lW W W W−⊂ ⊂ ⊂ ⊂ .  (11) 

Figure 2 A cross-section of a SG riser (a) coarse mesh and  
(b) fine mesh 

 
(a) 

 
(b) 

3.2 The FAS method 

A multigrid method (Brandt, 1977; Désidéri, 1998) – a 
Correction Scheme (CS) method for linear systems or a 
FAS method for non-linear systems – is based on a nested 
sequence of two-grid methods. In a two-grid method, 
discretised equations are smoothed on the fine grid Ω0 using 
a linear or non-linear iterative method. Fine-grid residual 
r0(s) (and approximation u0 for FAS) are restricted 0

1( )R  on 
the coarse grid Ω1 in order to compute error. This error is 
then prolongated 1

0( )P  on the fine grid to correct the  
fine-grid approximation. The two-grid algorithm stands as 
follows: we focus on our non-linear steady state equations 
to be solved, similar to Equation (7), the time terms are not 
taken into account. On the fine mesh Ω0, the discretised 
equation is: 

0 0 0 0 0
0

( ) ( )d 0i iT s x x V BCφ φ= ∀ ∈ +∫  (12) 

where V0 is defined by Equation (9), T0 is a non-linear 
discretised operator and s0 represents the sought solution on 
Ω0. We start the two-grid cycle with an approximation  
on Ω0: (u0)m, with m representing the cycle counter,  
see Figure 3. 
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1 Only perform some passes of a smoother (cp0 
iterations) for the fine mesh equation. We obtain the 
approximation 0

0
cpu  and the (non-linear, stationary) 

residual 0 0
0 0 0 0( ) ( , ( ) ( )d , ).cp cpT ir T u x xφ= − ∫… …  

2 Restrict 0
0
cpr  and 0

0
cpu  (FAS only) on the coarse mesh 

Ω1: 

00
1 01ˆ cprr R=  (13) 

00
1 1 0

cpR uu = . (14) 

The two restriction operators are not the same  
(see below). 

3 Solve (ideal method, black boxes in Figure 3 or smooth 
(non-ideal method, black circles) a corrected balance 
equation on the coarse mesh Ω1. The corrected equation 
is –V1 defined by Equation (8): 

1 1 1 1 1 1( ) ( )I I IT u x dx S Vφ φ= ∀ ∈∫  (15) 

111 1 1( ) ( )I I IS T x dxu rφ= +∫  (16) 

Hence, a coarse mesh correction e1 is obtained and 
defined using the coarse mesh solution 11 1 1:u e u u= −  
in the FAS case. 

4 Prolong (interpolate) the coarse mesh correction on the 
fine mesh and correct the fine mesh approximation  
(α is a relaxation coefficient): 

1
0 0 1e P e=  (17) 

01
0 0 0( ) cpmu u eα+ = + .  (18) 

5 Test the convergence. If this is not satisfactory, then a 
new multigrid cycle is to be used. 

Figure 3 Multigrid cycles 

 

The multigrid algorithm consists in replacing the  
coarse-grid solver (Step 3) of the two-grid algorithm by 
calling a nested sequence of two-grid methods involving 
coarser grids. Several multigrid cycles can be defined (e.g., 
see Figure 3). In the FMG cycle version, instead of starting 
the multigrid cycle from the finest grid Ω0, the process 
begins with the coarsest grid (see Figure 4). Several coarsest 

grid 
maxlΩ  iterations are performed to reach a prescribed 

error level. The prolonged approximation is then used as 
initial data to begin a two-grid algorithm on the finer grid 

max 1l −Ω . After reaching a prescribed error level on this grid, 
the prolonged approximation is used once again as initial 
data to start a three-grid algorithm on the grid 

max 2l −Ω  and so 
forth. This method provides a very good approximation on 
the finest grid in order to start the multigrid cycle. During a 
multigrid cycle, on each level, the error value to be reached 
by the smoother is not necessary a fixed constant and may 
depend of the current grid level (Désidéri, 1998; Drikakis  
et al., 2000; Saulnier, 1997). 

Figure 4 Full Multigrid cycle 

 

There are two ways to construct coarse-grid operators T1(). 
The first way is to build a coarse-grid operator from the 
discretisations of the balance equations on the coarse grid 
Ω1 itself (geometric multigrid version). Thus, the coarse 
grid geometry is involved in the computation of the T1() 
operator. Discrepancies between the grids can arise in the 
case of space-length-dependant terms (i.e., geometric 
modelisation of obstacles). The second way is based on the 
fine-grid (Ω0) equation discretisation only, according to the 
definition (arithmetic multigrid version): 

0 1
1 1 1 1 0 0 1 1( ) ( )d : ( ) ( )d .i iT u x x R T P u x xφ φ=∫ ∫  (19) 

Only the geometric multigrid version is taken into 
consideration in this paper. The arithmetic version leads to a 
high coherence between the coarse-grid and fine-grid 
discretisations, but is more costly to implement it with a 
code-coupling tool involving many communications 
between the tasks (for each computation of T1u1). 

The FAS method is essentially a sequential one. Parallel 
versions can be found in the BPX preconditioning method 
of Bramble et al. (1990). In the BPX method, restrictions of 
the finest grid approximation are first transferred to allthe 
grids. All the corrections are computed on the grids in a 
parallel manner. In other words, each length scale is 
corrected separately from the others. All the corrections 
then are prolonged on the finest grid to correct the finest 
approximation. 

4 A pseudo-FMG FAS algorithm 

Here, analysis concerning the specific aspects of the 
geometric FAS preconditioning of the balance equations 
(Eqns. 2–4) is carried out for our numerical scheme. Here, 
the 1u  term of Equation (14) represents the enthalpy, the 
primary fluid temperature, the mass flux and the pressure. 
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Similarly, the 1r  term represents the energy balance residual 
and the momentum balance residual. It is to be pointed out 
that it was chosen to restrict the mass flux instead of the 
velocity in order to be compatible with the free divergence 
mass flux constraint. Similarly, the errors concerning the 
specific enthalpy, the primary fluid temperature, the mass 
flux and the pressure must be computed and prolonged on 
the fine grid. 

After having provided the expressions of the correcting 
terms, restrictions and prolongation operators, it was 
decided to focus on the strong variations of the forcing 
terms following the space discretisation scale and the use of 
the FEM and the Chorin’s projection algorithm. Moreover, 
the specific treatment of the BC and the primary flow 
energy balance equation was also emphasised. 

Except for the mass flux, the locations and values of the 
BC are the same for all grids. Concerning the mass flux at 
inflow (Dirichlet BC), it is important to maintain the fine-
grid nodal mass flux values G  across the embedded coarse 
grids. Because the inlet porosities may be different from 
these coarse grids, similar user-specified mass flow rates 

inlet

( )in S
Q GdSβ= ∫  for all the grids lead to different inlet 

mass flux values. To avoid BC discrepancies between the 
grids, the fine-grid inlet mass fluxes and enthalpy values are 
restricted on the coarse-grid inlet nodes. By doing this, 
priority is given to obtaining identical inlet mass fluxes for 
nodes shared by different grids. 

The FAS method is not implemented for the primary 
fluid energy balance equation. This equation is very easily 
and quickly solved on the primary curvilinear grid. 
However, as it is implied in the RHS source term of the 
mixture energy balance equation, the fine-grid correction of 
the primary fluid temperature is useful to enhance the 
specific enthalpy convergence. Hence, a coarse-grid 
restriction and a coarse-grid error of the primary fluid 
temperature are computed. The curvilinear fine-grid 
temperatures are transferred on the fine grid-elements and 
sent to the coarse-grid task. The coarse-grid temperature 
errors are computed as element fields and sent to the  
fine-grid task. A fine-grid correction is then performed. 
However, as no FAS correction is used for the coarse-grid 
primary fluid energy balance equation, the fine-grid 
temperature convergence cannot be expected. Therefore, if 
this temperature correction is not stopped, the enhanced 
convergence benefit will be lost in terms of the enthalpy. 
The stoppingtime is chosen to be equivalent to twice the 
time need to flow along the primary tubes. 

4.1 Coarse-grid correction terms 

We have to compute the i
lS  term of Equation (16) for the 

energy, momentum and mass balance equations.  
These terms are formed by two parts. The first term 

( ) ( )di
l l lT u x vφ∫  is built using the restricted variables u . 

The second term is the restricted nodal residual and is 
completely defined by the chosen restriction, in this case, 

the nodal weighted average restriction. It is important to 
remember that the mass balance equation restricted residual 
is equal to zero because this equation is solved up to the 
computer precision on the finer grid. The fine-grid mass 
flow 1 1l lGβ − −  is always divergence-free, but generally this 
is not true for the coarse-grid restricted flow. 

The first parts of the correction terms are the coarse-grid 
residuals of the fully non-linear steady-state flow balance 
equations, built with the restrictions of the specific  
enthalpy Hl, the primary temperature l ,pT  the mass flux 

øverrightarrow lG  and the pressure lP . The values of the 
coefficients implied in these coarse-grid correction terms 
(denoted restricted coefficients) are evaluated using these 
restricted variables. For instance, the restricted density is 
defined by ,l ll ( H  P )ρ . 

• Energy balance equation 

( ) ( )d d ( )[ ( )

div( (1 ) )]

d ( ) ( )( )

i i
l l l l l l l

ll l Rl ll

i i
ll l l l l T

T u x v v x G H

x x vL

v x Q dv x H

φ φ β

β ρ

φ β φ β χ

≡ .∇

+ −

− + ∇ ∇

∫ ∫

∫ ∫
 (20) 

• Momentum balance equation 

( ) ( )d d ( )[ ( ) ]

d ( )[ ( (1 ) )]

d ( )[ ( )]

d ( ) ( ) .

i i
l l l l l l l l

i
l l l l l l l Rl Rl

i t
lll l l T l

i
l ll l l

T u x v v x v v

v x div x x v v

vv x vP

vv x g BC

φ φ β ρ

φ β ρ β ρ

φ β β µ

φ β ρ

≡ .∇

+ − ⊗

− ∇ − ∇ + ∇

Λ− − +

∫ ∫
∫
∫
∫

 (21) 

• Pressure equation 

( ) ( )d d ( ) ( ).E E
ll l l l l GT u x v v xψ ψ β≡ ∇.∫ ∫  (22) 

Equation (22) is not solved directly, but the free-divergence 
projection of the gap mass flux is reinforced: ( )l lG G− . 
Concerning the non-linear features, the weakness lies in the 
use of the coarse-grid pseudo-time step value in the 
computation of the BTD correction. 

4.2 The restriction and prolongation operators 

Specific restriction operators 1l
lR −  are defined following the 

restricted quantities. The nodal variables (e.g., 1 1
ii

l lu G− −≡ ) 
are transferred by canonical restrictions: 

1
iI

l luu −= .  (23) 

Here, the fine-grid node i and coarse-grid node I are the 
same nodes. The nodal-function weighted integrals  
(e.g., weighted residuals 1

i
lr − ) are restricted by weighted 

mean restrictions: 
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1 1( )I iI
l i l

i

x rr φ −= .∑  (24) 

The variables by element e (e.g., pressure 1 1
E e
l lu P− −≡ ) are 

transferred by means of volume weighted restrictions (here, 
1

e
lV −  are fine element volumes): 

1 1
E e eE

ll l l
e E

V u Vu − −
∈

= .∑  (25) 

The prolongation operator 1
l

lP−  used is the tri-linear 
interpolation. It is to be pointed out that the weighted mean 
restriction is the transposed operator of the prolongation 
operator. This operator couple verifies the rule to obtain a 
mesh-size independent rate of convergence, see Albers 
(2000) and references within: 

2P Rm m m+ >  (26) 

where mP and mR are defined as the orders of the 
interpolation plus one order used for prolongation and 
restriction (here, 2 + 1) and 2m is the order of the partial 
differential equation to be solved (here, 2). 

4.3 Pressure computation 

The pressure evolution in the Chorin-Gresho algorithm 
(Gresho and Chan, 1990) is based on successive updates of 
an initial coherent pressure distribution. This initial pressure 
P0 is obtained by a Consistent Pressure Poison Equation 
(CPPE) solver (Gresho, 1991) using an initial mass flux 0G . 
The latter is built from a user guess mass flux (see below). 
Next, a pressure update is performed at each free divergence 
space projection. The mass flux based on the solution *v  of 
the discrete version of the linearised predicted momentum 
balance equation (Eq. 3) can be expressed as 

* ( ) *.n nG H P vρ= ,  Solving the discrete version of the 
pressure equation (ref pressure equation), the pressure and 
mass flux updates read: 

1 ,*
( )d

2
d

e i
i n i e

i

P v
G G t

v

δ βφ
δ

βφ
, + ∇

= − /
∑ ∫

∫
 (27) 

and 
, 1 ,e n e n eP P Pδ+ = −  (28) 

with n representing the pseudo-time step counter. It is 
important to remark that there is a minus sign in  
Equation (28) owing to the integration by part of the stress 
term. Moreover, at the beginning of the computation, the 
free divergence constraint must be satisfied for the initial 
mass flux 

0
.G  Based on a given mass flux userG  and using 

a Lagrange multiplier technique (Gresho et al., 1984), a free 
divergence mass flux 

0
G  can be found, as near as possible 

to user.G  In fact, the correction to be applied is similar to 

Equation (27) correction substituting 
1nG +
 (respect. *G ) by 

0
G  (respect. userG ). 

This initialisation procedure is used as a guideline to 
design a mass flux and pressure update step after the FAS 
correction steps on coarse and fine grids. 

On the fine grid, two error terms can be potentially 
prolonged from the coarse grid: the mass flux error and/or 
the pressure error. Simultaneously applying these two error 
corrections breaks the coherence between the velocity and 
the pressure. The mass flux error correction is applied and 
then a new fine-grid pressure field solving the CPPE is 
computed, before running the Picard iterations. 

On the coarse grid, after the fine-grid restriction at the 
beginning of the new multigrid cycle (m + 1), the  
initial state of the fluid has to be defined seeing that  
the reference divergence has changed: 

1m
Gβ

+
∇. , see 

Equation (22). A projection of the mass flux in the 
prescribed divergence space must be done in first, follow  
by a CPPE solve. More precisely, at the end of the previous 
multigrid cycle m (pseudo-time step n), we have  
(strong formulation): 

1 mn n
G G Gβ β β

−
∇. = ∇. = ∇. ,  (29) 

1n n
nnG G P O

t
β β

δ

−
−

= − ∇ + ,  (30) 

where nO  stands for all the other momentum balance 
equation terms not mentioned. Hence, the following is 
obtained: 

nnP Oβ∇. ∇ = ∇ .  (31) 

( *, *)G P  shall represent the mass flux/pressure couple after 
the change in the reference divergence (beginning of the 
multigrid cycle m + 1 and the pseudo-time step n + 1). 
Without changing the reference divergence, this initial 
couple would be equivalent to ( , ).

n nG P  With change, this 
new couple should satisfy: 

1
*

m
G Gβ β

+
∇. = ∇. ,  (32) 

1
* * *

nG G
P O

t
β β

δ

−
−

= − ∇ +  (33) 

with *O  computed based on ( *, *).G P  To enforce the new 
divergence constraint, the Lagrange multiplier technique 
(Gresho et al., 1984), produces: 

1m m
G Gβ λ β β

+
∇. ∇ = ∇. − ∇. ,  (34) 

* .
n

G G λ= − ∇  (35) 

Let δP = P* – Pn. If we approximate *O  by 
n

O  (negligible 
changes in viscous, convection and gravity terms), it can be 
deduced that: 

1
( )

m m
G GP tβ δ δ β β

+
∇. ∇ ≈ ∇. − ∇. .  (36) 
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It can be observed that Equation (36) is similar to  
Equation (34) with λ replaced by δPδt. Hence, the new 
pressure can be deduced directly from enforcing the new 
reference divergence field: 

* nP P
t

λ
δ

= + .  (37) 

Remark: This algorithm can be understood as a standard 
pseudo-time step computation to obtain the couple ( , )

n nG P  
from the 

1 1( , )
n nG P

− −  couple, followed by a rapid start step 
computation to obtain 

* *( , ).G P  The latter is described by 
an acceleration arbitrary large for a very short time,  
see (Gresho, 1991), using a similar hypothesis: viscous and 
non-linear terms to be negligible: 

*
n

G G P
t

β β δ
δ
−

= − ∇ .  (38) 

Hence, Equation (33), may be written as follows (using the 
same δt for the two steps): 

1
*

n n n
nnG G G G P P O

t t
β β β δ β

δ δ

−
− −

+ ≈ − ∇ − ∇ + .  (39) 

4.4 Porosity and forcing terms 

In our geometric version of the FAS multigrid method, the 
porosity and spread obstacles fields are independently 
computed on each grid. A unique inner technological  
device description is used (U-tube bundle, U-tube support 
plates, … described by a mesh) with several computation 
domain meshes: one by grid Ωl. On each grid, intersections 
between the computation domain cells and the U-tube 
bundle/U-tube support plates are carried out, leading to the 
computation of the porosity and obstacle fields. 
Consequently, these fields are different in discontinuity 
regions (e.g., boundaries of the U-tube bundle) following 
the considered grid or equivalently the geometrical scale 
addressed. Hence, the forcing terms may differ strongly. For  
example, friction forces (induced by the U-tube bundle or  
the support plates included in the cell) may be applied to a 

coarse-grid node, but not to the equivalent fine-grid node, 
see Figure 5. 

Figure 5 Forcing terms 

 

Moreover, the geometric approach to determine the  
coarse-grid forcing terms limits the total number of grids 
involved in the multigrid computation. For instance, three 
grids is the maximum for a 250,000-cell computation. As a 
matter of fact, with hexahedral elements in 3-D geometry, 
the coarsening ratio between two consecutive grids is 8 and, 
for a four level multigrid algorithm, the cell number ratio 
between the finest and the coarsest grid is 84 = 4096. Hence, 
the coarsest grid for this computation should only contain 
about 60 cells. The quality of the simulation would be very 
poor. In this case, it limits the multigrid algorithm to only 
three grids. 

4.5 Dynamic multigrid cycle 

Because the coherence of the several formulations between 
the grids is not generally assumed, the error reduction 
associated with the high efficiency of the multigrid solver is 
drastically reduced after some cycles. It leads to the stalled 
regime illustrated in Figure 6(a). It shows the typical 
evolution of the relative error of the fine mesh enthalpy and 
of the energy balance equation residual during a static cycle 
FAS two-grid computation. After 400 pseudo-time step 
iterations (≡ 40 two-grid cycles),the magnitude of the error 
reaches 10–5 and no longer decreases. However, as 
mentioned in the numerical result section, about 60% 
pseudo-time steps of a Genepi standard computation were 
saved to reach this residual magnitude. 

Figure 6 Pseudo-FMG FAS two-grid cycles: evolution of the energy residual and enthalpy error. Clotaire mock-up simulation; 22,400 
cells (a) static cycle and (b) dynamic cycle 

 
(a) (b) 
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To overcome this drawback, the decrease in the error 
needed to be tested and the multigrid cycles required being 
dynamically managed. The goal is to go back to the 
standard Genepi algorithm, without FAS corrections of the 
fine-grid variables, as soon as the stalled regime is  
detected. The following coarse-grid indicator set indl 
(Ωl, l = 1, … lmax) is recommended: 

1
2 2

2

(| | | | )
( )

| |

m m
ll L L

l l ref
l L

abs e e
ind e

e

−−
=  (40) 

where el represents the coarse-grid error (enthalpy or mass 
flux), m is the multigrid cycle counter, ||L2 denotes the 
discrete L2-norm, ref

2l Le| |  is a reference L2-norm (here, 
1

2l Le| | ) and abs(...) represents the absolute value function. 
The fine-grid Ωl–1 correction is monitored by the stalled 
regime detection of the coarse-grid Ωl computed error. For 
each coarse-grid task, dynamic multigrid cut-off criteria 

MG
lε  can be set. The default value (user managed) for an 

industrial SG simulation is 5 × 10–3 for the specific enthalpy 
error criterion, whereas the mass flux criterion is based on 
the latter multiplied by a given factor (one by default). 
When a coarse-grid Ωl error verifies: 

( ) MG
l l lind e ε< ,  (41) 

a FAS correction is no longer applied for the fine-grid Ωl–1 
balance equation concerned by this variable. And when, this 
condition is reached both for the specific enthalpy and the 
mass flux, the coarse-grid Ωl task is halted. Figure 6(b) 
shows the convergence of the fine mesh enthalpy error in 
the same test case as in Figure 6(a). After 37 two-grid 
cycles, the above criterion is satisfied for the enthalpy and a 
FAS correction is no longer applied to the fine-grid energy 
balance equation. 

4.6 Computer implementation 

The computer implementation of the pseudo-FMG FAS 
algorithm is based on a CEA code-linker tool denoted Isas 
(de Gramont and Toumi, 1996). In a master-slave context, 
the user defines several coupled boundaries for each Genepi 
slave (one task by grid). In the case of the FAS method, the 
coupled boundaries involve all the nodes of the 
computational domains, except the nodes associated with a 
Dirichlet BC. The master Isas collects such information and 
sends the corresponding external requests to the slaves.  
At each coupling iteration, the slaves simultaneously send 
the requested data, following the boundary condition nature 
of the external requests. These requests are balance 
equation corrections (coarse grid) or error corrections (fine 
grid). Next, each slave receives its own data to refresh the 
values of their coupled boundaries. After that, all the tasks 
perform some pseudo-time steps (not necessary the same 
amount cpl, l = 0, …, lmax) during the smoother step. 

A sequential two-grid pseudo-FMG FAS computation 
begins by a coarse-grid solving without FAS correction  
during the first 0

1cp  pseudo-time steps (user managed).  

If this number is big enough (of the same magnitude that the 
pseudo-time step number required to solve the coarse-grid 
problem alone), a true FMG method is obtained. If it is only 
equal to the current number of pseudo-time steps cp1, then a 
pseudo-FMG method is obtained. After that, the non-ideal 
FAS two-grid slash-cycles begin. 

5 A parallel pseudo-FMG FAS algorithm 

The two-grid pseudo-FMG FAS method presented above is 
essentially a sequential method. An easily implemented 
parallel version (in comparison of the BPX method) of our 
multigrid algorithm is found in a red-black colouring 
method. Several meshes named Ω0 (finest), …, 

maxlΩ  
(coarsest) were considered. Hereafter, the symbols ul, 
l = 0, …, lmax, denote the variables (specific enthalpy and 
mass flux), wl the associated variables (primary fluid 
temperature and pressure) and rl the steady-state non-linear 
balance equation residual on the grids Ωl. Let us notice that 
m multigrid cycles (denoted by (.)m+1) are equivalent to m 
cpl pseudo-time steps (denoted by ( 1). lm cp+ ). 

A parallel algorithm – with simultaneous message 
exchanges between the tasks – is not compatible with an 
efficient multigrid correction. For instance, considering the 
previously described two-grid cycle (beginning with grid 
Ω1), the variable u0 at the end of the multigrid cycle m + 1 
can be expressed as: 

0 0

0

( 1)1
0 0 0 0( ) ( )m cp m cpm

cpu u It u e++ ≡ ← +  (42) 

with 
* * 01 ( 1)( )1 0

0 0 1 1 0( )m cpm cpe P u R u −= −  (43) 

* *1 1

1

( ) ( 1)
1 1(m cp m cp

cpu It u −= ;  

* * *0 0 0( 1) ( 1) ( 1)0
1 0 0 0( )m cp m cp m cpR u w r− − −, ,  (44) 

where 
0
( )cpIt ...  (resp. 

1
( ))cpIt xxx...,  denotes the action of 

cp0 (resp. cp1) iterations of an iterative solver using  
the initial estimation ‘…’ (and involving a correction  
term build with ‘xxx’). We have m* = m + 1 for the 
sequential algorithm and m* = m for the parallel one. 
Essentially, replacing the index m* = m + 1 by m* = m in the 
error expression leads to an asynchronous corrections  
of the fine-grid approximation 0

0
m cpu  at the beginning of 

multigrid cycle m + 1 (see Eq. 42):  

0 0 1( 1)1 0 1
0 0 1 0 0 1( )mcp m cp mcpu P R u P u−− +   

instead of  

0 1( 1)1 0 1
0 0 1 0 0 1( ) mcp m cpI P R u P u +− +   

(sequential), with I0 representing the identity operator on the 
fine mesh vector space. In the latter expression, the fine-grid 
approximation low frequencies are corrected by the best 
available data. In the former expression, there is a multigrid 
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cycle shift between the fine-grid low frequencies and the 
coarse-grid correction. 

In order to retain the CPU time reduction benefit of a 
parallel coupling algorithm and the multigrid 
preconditioning acceleration, this naive new approach was 
developed, named the red-black pseudo-FMG FAS  
three-grid method, see Figure 7. As in a red-black Jacobi 
method, two groups of grids are set-up (e.g., {Ω0, Ω2} and 
{Ω1} with three grids). The two groups work sequentially 
and all the tasks of the same group work in parallel.  
The groups are set up in a way that two consecutive grids  
do not belong to the same group (odd and even  
numbers). Following this rule, a sequential non-ideal  
two-grid method is applied to each couple of consecutive 
grids. 

Figure 7  A parallel red-black pseudo-FMG FAS multigrid 
cycles. Open circles: smoother without coarse-grid 
FAS correction: filled circles: smoother with  
coarse-grid FAS correction 

 

A task related to an intermediate grid (e.g., Ω1) holds two 
coupled boundaries associated with a coarse and a fine-grid 
FAS boundary condition. The group holding the coarsest 
grid begins to work first. No coarse-grid correction is 
performed at the balance equations during the first  
multigrid cycle. At the end of the first cycle, the estimation 
of the approximation on the intermediate grid Ω1  
results from a two-grid nested iteration computation. 
Similarly, with three grids, at the end of the second  
cycle, the estimation of the approximation on the finest  
grid Ω0 results from a three-grid nested iteration 
computation. 

Hence, at the end of multigrid cycle m + 1, m > 0, the 
following can be expressed 

0 0 01

0

( 1)1 1 0
0 0 0 0 1 1 0( ) ( ( ))m cp mcp mcpmcpm

cpu u It u P u R u++ = ← + −  (45) 

with 

1 1 2 1

1

0 0 0

( 1) ( 1)2 1
1 1 1 2 2 1

0
1 0 0 0

( ( )

( ))

mcp m cp mcp m cp
cp

mcp mcp mcp

u It u P u R u

R u w r

− −= + − ;

, ,
 (46) 

and 
2 2 1 1 1

2

( 1) ( 1) ( 1) ( 1)1
2 2 2 1 1 1( ( ))mcp m cp m cp m cp m cp

cpu It u R u w r− − − −= ; , , .  (47) 

 
 

The following remarks can be made: 

• The low frequency corrections of the  
approximations are synchronised with the  
coarser grid values 1( )

1 max 1, 0 :lm cp
lu l … l+′
+ −= , ,  

1( )1 1
1 1( ) .l lmcp m cpl l l

l l l l l lI P R u P u +′+ +
+ +− +  The index m′ is equals 

to m or m + 1 following the grid index l. Hence the 
fine-grid error correction spends between the sequential 
one (m′ = m + 1) and the parallel one (m′ = m). 

• Concerning the intermediate grids, e.g., Ω1, the balance 
equation correction and the error correction terms are 
simultaneously applied. See Equation (46), leading to a 
loss of efficiency seeing that just after the correction of 
the Ω1 approximation, the RHS of the balance equation 
is modified. 

As for the previously described pseudo-FMG FAS two-grid 
method, static or dynamic cycles can be addressed. In case 
of dynamic cycles, the relative variations of the errors 
defined on the coarse grids are monitored (Ωl with 

max
1 ).ll = Ω…, ,  

6 Numerical tests 

To test the implementation of the FAS method on SG  
two-phase fluid simulations, it was decided to present 
several sequential two-grid and parallel red-black three-grid 
computations belonging to the CEA Clotaire mock-up 
(Campan and Bouchter, 1988). Concerning this mock-up, 
the riser part forms a half cylinder of 0.62 m in diameter and 
9.16 m in height. The inside is filled with a U-shaped tube 
bundle, 7.2 m in height, into which the hot primary flow 
enters. One flow distribution baffle, nine tube support plates 
and one anti-vibration bar are fixed respectively in the 
bottom, upright and curved part of the bundle. Figure 8 
shows meshes of the inner technological devices used to 
compute the porosity filed: the plates and the U-tube bundle. 
The simulation fluid is Freon r114. The averaged mass flux 
is about 550 kg m–2 s–1 and the hydraulic diameter in the  
U-tube bundle is about 2 × 10–2 m. Using this space step to 
mesh the riser leads to about 150,000 cells. 

Except when specified, the BC and the physical and 
numerical parameters are identical for all computations 
(obtained from a Benchmark test case (Campan and 
Bouchter, 1988)). At the inlet the secondary total flow is 
split in cold leg and ıt hot leg parts with different specific 
enthalpies (resp. 1.185 × 105 J kg–1 and 1.193 × 105 J kg–1) 
and mass flow rates (resp. 28.3 kg s–1 and 37.55 kg s–1). 
These flows are mixed in the riser. The pressure is imposed 
at outflow (8.8 × 105 Pa). The primary inlet mass flow rate 
is 60.05 kg s–1 at 361.8 K. The computation is stopped when 
each flow variable u (specific enthalpy, mass flux, pressure, 
primary fluid temperature) has verified the following 
steady-state flow criterion crit: 
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Figure 8 Clotaire inner technological devices (meshes) 

 
1

2

2

| |
| |

n n
L

n
L

u u
crit

u tδ

+ −
≤  (48) 

with crit = 10–3 s–1 or 10–4 s–1. This latter ratio (multiplied 
by δt) is also used to describe the convergence of the flow 
variables in L2-norm. Standard numerical parameters for 
SG’s FAS computations are the following: 

• cp0 = 15, cp1 = 60 and cp2 = 120 

• pre conditioned Picard/CG smoother 

• α = 0.7, 3
1 10MGε −=  and 3

2 10 .MGε −=  

Each fine grid is built by subdividing the coarser grid: each 
coarse-grid cell edge is cut into two parts, leading to eight 
times as many cells. Two fine grids are considered 
involving 22,400 cells and 88,704 cells. Numerical tests are 
performed on a heterogeneous PC cluster available in the 
laboratory and on the CEA supercomputer (Dec-Alpha 
ES40 stations with four EV68 processors). Typically, 
20,000-cell computations are easily run on a PIV Intel 
processor (roughly one hour CPU time and 100 Mb) 
contrary to 100,000-cell computations roughly needing ten 
hours CPU time and 700 Mb on one EV68 processor.  
 
 
 
 
 
 
 

Results are compared in terms of the total pseudo-time step 
number and total CPU and/or total elapsed time. The term 
total refers to the sum of all tasks running in a sequential 
manner. Both the CPU time overhead spent to initialise the 
coupling between tasks and the BC coupling phase 
(preparing data, sending, receiving and using new data) are 
also addressed. 

6.1 A mixing pipe simulation 

To begin with, our geometric version of the FAS multigrid 
scheme is tested in the best possible industrial 
configuration: i.e., without porosity and forcing terms 
discrepancies between the several grids. Hence, the 
simulation of a mixing flow in a pipe is addressed as a 
model problem. It is a simulation of a virtual ‘Clotaire’ 
mock-up, without any inner device, describing the mixing of 
cold and hot flows in a vertical pipe of 9.16 m in height. 
The set of balance equations is (1), (3) and (2) with β = 1, 

0Λ =  and Q = 0. Fine and coarse grids are shown in  
Figure 9(a) and (b) (real mock-up meshes). In Table 1, 
results from a standard computation (without FAS),  
a two-grid pseudo-FMG FAS computation and a two-grid 
nested iteration method one (coarse grid then fine grid 
computation, (Désidéri, 1998)) are compared. 

Figure 9 Fine (22,400 cells) and coarse grids (2,800 cells) for 
the two-grid pseudo-FMG FAS computation of the 
mixing pipe: (a) 3D view and (b) cross-section view 

 
 (a) (b) 
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Table 1 Mixing pipe simulations (steady-state: 10–3 s–1); 
Pseudo-FMG FAS method: cp0 = 15, cp1 = 60, 
α = 0.7, 4

1 10 ,MGε −=  Picard/CG smoother;  
crit = 10–3 s–1; 22,400 cells. One Ω0 pseudo-time step 
equals about 7.3 Ω1 pseudo-time steps 

Standard  Nested it.  Psd-FMG FAS  

Ω0 Ω1 Ω0 Ω1 Ω0 
Psd-time step 
counter 

2,064 1,040 488 1,201 300 

CPU time (s) – 264.1 – 350.9 – 
CPU time (s) 3,909.4 – 1,046.6 – 693.2 
Including (overhead): 
Coupling 
initialisation 

– – – 17.5 59.2 

BC coupling – – – 16.9 30.6 
Interpolations – – 114.5 – – 
Memory 
(Mbyte) 

95.5 8.1 99.3 15.8 98.0 

Speed-up  
(CPU time) 

– – 3.0 – 3.7 

Speed-up  
(psd-time step) 

– – 3.3 – 4.4 

Globally, as shown in Figure 10, the pseudo-FMG FAS 
method drastically reduces the amount of fine-grid  
pseudo-time steps needed to reach the steady-state. The 
speed-up value is equivalent to about 7. Of course, in terms 
of CPU time or total pseudo-time step number inferior, 
speed-up values are obtained (owing to the extra coarse-grid 
computation): 3.7 and 4.4 respectively. The CPU time 
overhead is about 10% of total CPU time owing to the data 
exchanges. The two-grid pseudo-FMG FAS method is 
clearly more efficient than the two-grid nested iteration 
method, even if coarse-grid computational work is slightly 
more demanding for the FAS method. For the two cases, 
obtaining the steady-state flow on the coarse grid requires 
about 1,000 pseudo-time steps (time for the physical 
propagation of the inlet information on the coarse grid). 

Figure 10 Mixing pipe simulations: comparison of the 
convergence histories of the fine-grid variables for the 
FAS method and the standard solver in L2 norm. 
Pseudo-FMG FAS method: cp0 = 15, cp1 = 60, 

4
1 10MGε −= , α = 0.7; Picard/CG smoother 

 

The dynamic multigrid cycle cut-off criterion on the  
coarse grid is only reached at the end of the computation. 
Figure 11 shows the variations in the corrections of the  
fine-grid variables u, in the relative discrete L2 norm 
((|unew – uold|L2)/|uold|L2). This ratio can be as small as 10–4 or 
10–6. Hence, it appears that no stalled regime is reached for 
the corrections of the variables. In the same figure, the 
discrete L2 norm of the fine-grid steady-state  
non-linearbalance equation residuals are shown. Several 
strong decreases in the energy balance equation residual can 
be observed each time the specific enthalpy correction is 
applied. 

Figure 11 Mixing pipe simulations: convergence histories of the 
fine-grid variable corrections 1

0 1( )P eα  and non-linear 
residuals in L2 norm. Pseudo-FMG FAS method: 
cp0 = 15, cp1 = 60, 4

1 10MGε −= , α = 0.7; Picard/CG 
smoother 

 
Extra computations were carried out leading to the 
following remarks. 

• In case of the Picard/CGS smoother (implicit 
convection term), the CPU time speed-up value is 
bigger due to the higher cost of the linear system 
solver: 4.1 instead of 3.7. 

• The fine-grid error relaxation technique here is not a 
crucial point but slightly increases the method 
convergence: 3.7 instead of 3.5 (α = 1.0) for the CPU 
time speed-up. 

• The FMG FAS method (defined by an initial run of 
1,000 coarse-grid pseudo-time steps) is the best  
two-grid solver as expected and leads to the smallest 
number of fine-grid pseudo-time steps. Nevertheless, 
the work overhead on the coarse grid decreases the 
CPU time speed-up: 3.3 instead of 3.7 (pseudo-FMG). 
Hence, the pseudo-FMG approach is preferred. 

6.2 A Clotaire mock-up simulation 

Next, the simulation of the real Clotaire mock-up was 
examined. The porosity and the forcing terms present some 
discrepancies between the grids. Computations are 
performed with the sequential two-grid or parallel red-black 
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three-grid pseudo-FMG FAS methods. Table 2 displays 
results for the standard computation and two-grid methods: 
the nested iteration method, the pseudo-FMG FAS method 

and the FMG FAS method. Figure 12 shows the 
convergence histories of the fine-grid flow variables with 
the pseudo-FMG FAS method. 

Table 2 Clotaire mock-up simulations (steady-state: 10–3 s–1); sequential two-grid FAS method: 22,400 cells, cp0 = 15, cp1 = 60  
(first cp1 = 900; FMG FAS) α = 0.7, 3

1 10 ,MGε −=  Picard/CG smoother. One Ω0 pseudo-time step equals about 7.3 Ω1  
pseudo-time steps 

Standard  Nested it.  Psd-FMG FAS  FMG FAS  

Ω0 Ω1 Ω0 Ω1 Ω0 Ω1 Ω0 

Psd-time step counter 1,472 699 768 1,782 630 2,566 645 
CPU time (s) – 269.5 – 694.0 – 654.3 – 
CPU time (s) 3,478.6 – 2,049.6 – 1,625.1 – 1,664.8 
Speed-up (CPU time) – – 1.5 – 1.5 – 1.5 
Speed-up (psd-time 
step) 

– – 1.7 – 1.7 – 1.4 

 
Figure 12 Clotaire mock-up simulations: comparison of the 

convergence histories of the fine-grid flow variables 
for the two-grid pseudo-FMG FAS method and the 
standard solver in L2 norm. Pseudo-FMG FAS method: 
22,400 cells, cp0 = 15, cp1 = 60, 3

1 10MGε −= , α = 0.7; 
Picard/CG smoother 

 

As shown in the table, the overall performances of the 
nested iteration method and the pseudo-FMG FAS method 
are similar for this test case. It is to be pointed out however 
that the number of fine-grid pseudo-time steps is smaller for 
the FAS method, which highlights better convergence 
properties. However, the pseudo-FMG FAS algorithm needs 
twice the coarse grid pseudo-time steps than the nested 
iteration method, leading to the same speed-up. The CPU 
time speed-up is lower than in the case of the mixing pipe 
simulation: 1.5 instead of 3.7. As a matter of fact, the 
dynamic multigrid cycles are stopped before obtaining the 
10–3 s–1 steady-state criterion and after this point, the 
standard method is run. This can be seen in Figure 13.  
It shows the variations in the corrections of the fine-grid 
flow variable 
 
 

Figure 13 Clotaire mock-up simulations: convergence histories of 
the fine-grid flow variable corrections 1

0 1(( ))P eα  and 
non-linear residuals in L2 norm. Two-grid pseudo-FMG 
FAS method: 22,400 cells, cp0 = 15, cp1 = 60, 

3
1 10 ,MGε −=  α = 0.7; Picard/CG smoother 

 

2
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u u
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and of the non-linear balance equation residuals in the 
relative discrete L2 norm. Consequently, the choice of a 
lower value for the steady-state criterion leads to a decrease 
in the FAS acceleration performances considering that the 
method is run: the CPU speed-up is equivalent to about  
1.4 for the value 10–4 s–1. 

Again, the true application of the FMG algorithm does 
not increase the CPU time speed-up: the number of fine-grid 
pseudo-time steps is roughly the same as for the  
pseudo-FMG FAS computation, with the first 900  
coarse-grid pseudo-time steps leading to a CPU time 
overhead without compensation. 
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An important feature is the fine-grid correction of the 
primary flow temperature. It provides a substantial increase 
in the enthalpy convergence. Without correction, the 
specific enthalpy convergence is not as fast, owing to the 
coupling of the energy balance equation with the primary 
fluid equation and the physical time needed to propagate the 
primary flow information. 

As a whole, the coarse-grid solution does not greatly 
accelerate the fine-grid computation in comparison to the 
mixing pipe test case with the same mesh; about 57% 
instead of 85% of the standard computation fine-grid 
pseudo-time steps are saved. This can be explained by the 
discrepancies between the grids concerning the porosity, the 
friction and the thermal source terms. They limit the 
decrease in the coarse-grid error: 0

1 1 0 .u R u−  The minimum 
value and, thus, the dynamic multigrid cycle cut-off criteria 
are reached more rapidly, leading to a greater fine-grid 
computational effort seeing that the balance equations are 
solved by the standard method. As shown in Table 1, as 
soon as the coarse-grid computation is converged, the  
fine-grid also converges. This is no longer the case for the 
Clotaire’s simulation, see Table 2. 

Tables 3 and 4 present the sequential two-grid and 
parallel red-black three-grid pseudo-FMG FAS results for 
the 88,704-cell test case. Computations are performed using  
the CEA supercomputer (one node by Genepi task). With 
the 88,704-cell mesh, the Ω0/Ω1 CPU time ratio is slightly 
larger than for the 22,400-cell mesh, which provides the 
MG methods with a greater advantage. 

Table 3 Clotaire mock-up simulations (steady-state: 10–3 s–1); 
sequential two-grid pseudo-FMG FAS method: 88,704 
cells, cp0 = 15, cp1 = 60, α = 0.7, 3

1 10 ,MGε −=  
Picard/CG smoother. One Ω0 pseudo-time step equals 
about 8.4 Ω1 pseudo-time steps 

Standard  Nested it.  Psd-FMG FAS  

Ω0 Ω1 Ω0 Ω1 Ω0 

Psd-time step 
counter 

3,887 1,456 1,710 2,435 1,170 

Elapsed  
time (s) 

29,366.3 1,283.1 14,255.
4 

– 12,001.
0 

CPU time (s) 29,330.5 1,275.6 14,155.
4 

2,340.1 9,198.6 

Including (overhead) 

Coupling 
initialisation 

– – – 176.2 176.3 

BC coupling – – – 190.8 412.9 

Interpolations – – 802.4 – – 

Memory 
(Mbyte) 

696.2 43.8 712.9 75.9 709.5 

Speed-up 
(elaps. time) 

– – 1.9 – 2.4 

Speed-up 
(CPU time) 

– – 1.9 – 2.5 

Speed-up 
(psd-time 
steps) 

– – 2.1 – 2.7 

Table 4 Clotaire mock-up simulation (steady-state: 10–3 s–1); 
parallel red-black three-grid pseudo-FMG FAS 
method: 88,704 cells, cp0 = 15, cp1 = 60 cp2 = 120, 
α = 0.7, 3 3

1 210 , 10 ,MG MGε ε− −= =  Picard/CG 
smoother. One Ω0 pseudo-time step equals about 
8.4 Ω1 pseudo-time steps and 41.2 Ω2 pseudo-time 
steps. Coarsest and finest grids run first 

Standard  Psd-FMG FAS  

Ω0 Ω2 Ω1 Ω0 

Psd-time step counter 3,887 2,202 1,773 1,005 

Elapsed time (s) 29,366.3 – – 9,714.5 

CPU time (s) 2,9330.5 510.3 1,752.0 7,800.3 

Including 

Coupling 
initialisation 

– 3.6 179 175.8 

BC coupling – 111.8 185.6 346.8 

Memory (Mbyte) 696.2 10.1 76.2 709.5 

Speed-up (Elaps. 
time) 

– – – 3.0 

Speed-up (CPU time) – – – 3.1 

Speed-up (psd-time 
steps) 

– – – 3.1 

Figure 14 shows the convergences of the fine-grid flow 
variables. For this high space resolution computation, the 
performance of the pseudo-FAS method is higher than for 
the nested iteration method. More specifically, the saved 
fine-grid pseudo-time step number is noticeably higher, 
which counterbalances the bigger coarse-grid pseudo-time 
step number. The CPU speed-up is even greater than in the 
case of the 22,400-cell mesh: 2.5 (two grids) or 3.5 (three 
grids) instead of 1.5. 

This can be explained by the already mentioned cheaper 
coarse-grid pseudo-time step cost and a lower efficiency of 
the standard method in terms of convergence (3,887 psd-time 
steps required to reach the steady-state criteria instead of 
1,472). These points are related to the large number of 
degrees of freedom owing to the high space resolution. 
Using the parallel red-black three-grid pseudo-FMG FAS 
algorithm, the fine-grid (resp. intermediate-grid) pseudo-time 
step number is reduced once again in comparison with the 
sequential two-grid results: 1,005 instead of 1,170 (resp. 
1,773 instead of 2,435). Moreover, taking advantage of a 
parallel run (Ω0 in parallel with Ω2), the three-grid 
computation elapsed time speed-up, the CPU speed-up and 
the pseudo-time step speed-up are all very similar. This 
supports the relevance of the parallel red-black pseudo-FMG 
FAS method for a large number of freedom degrees. 

As with the 22,400-cell mesh, the dynamic multigrid 
cycle cut-off criterion is reached before the end of the fine-
grid computation. The slope changes in the convergence 
curves, displayed in Figure 14, are related to the solver 
change (standard Genepi solver). Comparing three-grid and 
two-grid runs, the dynamic multigrid cycle cut-off criterion 
is verified about the same time for the mass flux: 25 
multigrid cycles or 375 fine-grid pseudo-time steps. 
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However, the specific enthalpy criterion is verified at the 
same time for the three-grid run, instead of 35 multigrid cycles 
(525 fine-grid pseudo-time steps) for the two-grid run. 

Figure 14 Clotaire mock-up simulations: comparison of the 
convergence histories of the fine-grid mass flux and 
pressure for the FAS method, the nested iteration 
method and the standard solver in L2 norm.  
Pseudo-FMG FAS methods: 88,704 cells, cp0 = 15, 
cp1 = 60, cp2 = 120, 3

1 10 ,MGε −=  3
2 10 ,MGε −=  α = 0.7; 

Picard/CG smoother 

 

Other computations using lower values of 1
MGε  lead to the 

reduction in the fine-grid pseudo-time step number. 
However, this is counter-balanced by the increase in the 
intermediate grid pseudo-time steps … 

6.3 Pseudo-FMG FAS method scalability 

Scalability can be defined as follows. Let there be a problem 
involving nd degrees of freedom solved by a multigrid 
method using nt pseudo-time steps and a given number of 
3D grids. If nd is multiplied by height and an additional grid 
is used, then the number of pseudo-time steps should be nt 
again. 

Figure 15 shows the comparison of fine-grid mass flux 
convergences for the 88,704-cell three-grid, 22,400-cell 
two-grid and 2,800-cell one-grid computations. The figure 
also shows the convergences related to the 88,704-cell, 
22,400-cell and 11,088-cell one-grid standard Genepi 
method computations. During the first 500 pseudo-time 
steps (active multigrid solver), it indicates a fairly good 
scalability of the pseudo-FMG FAS method. The following 
remarks can be made. 

• Standard method computations show similar mass flux 
convergence behaviours for 22,400-cell and 11,088-cell 
test cases (about the same space discretisation 
following the mean flow direction). This points to 
roughly similar convergences for the 11,088-cell and 
22,400-cell two-grid pseudo-FMG FAS method. 

• Subdividing a grid by two in each direction results in 
the doubling of the number of cells in the mean flow 
direction. As the CFL number is kept constant and the 
advection time needed to propagate information in  
the SG remains the same, convergence is two times 
slower for the standard solver when a grid is divided  
by 8. 

• The 22,400-cell two-grid computation shows better 
convergence than the 2,800-cell one-grid standard 
solver computation. As the cp1/cp0 ratio is 4 and the 
pseudo-time step ratio is 2 (constant CFL number),  
8 fine-grid pseudo-time steps onthe coarse grid are run 
for 1 on the fine grid, provoking an increase in the 
convergence. In fact, in the case of equal coupling 
periods (cpl = 20), the mass flux convergences are 
closer, see Figure 17. 

Figure 15 Clotaire mock-up simulations: comparison of the 
convergence histories of the fine-grid mass flux  
(L2 norm). Pseudo-FMG FAS method: cp0 = 15, 
cp1 = 60, cp2 = 120, α = 0.7, 3

1 10MGε −= , 3
2lon 10MG −= ; 

Picard/CG smoother. Scalability test 

 

6.4 Relaxation of the FAS correction on the 
variables 

Relaxation is a crucial point for the Clotaire mock-up 
simulation with the FAS method. Figure 16 shows the 
influence of choosing the relaxation parameter α for  
22,400-cell two-grid computations. It is important to 
consider the mass flux convergence because it is generally 
the variable that demonstrates the slowest convergence. 
Clearly, choosing α in the range [0.4; 0.9] leads to similar 
mass flux convergence histories (even if [0.7; 0.9] seems the 
best interval). However, using a value of 0.95 deeply slows 
this convergence and a value of 1 (i.e., no relaxation) 
induces the divergence of the method. As the relaxation 
parameter value is not crucial for the mixing pipe test  
case, the grid discrepancies (porosity, …) may be pointed 
out. 
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Figure 16 Clotaire mock-up simulations: comparison of the 
convergence histories of the fine-grid mass flux (L2 
norm) function of the relaxation parameter α.  
Pseudo-FMG FAS method: 22,400 cells, cp0 = 15, 
cp1 = 60, 3

1 10 ;MGε −=  Picard/CG smoother 

 

6.5 Choice of the coupling periods 

An important question is choosing the coupling periods cpl. 
Figure 17 illustrates this point for 22,400-cell two-grid 
computations. The dynamic multigrid cycle cut-off criterion 
is fixed at 10–5, allowing to catch all the convergence 
behaviours induced by the multigrid corrections. For the 
same reasons mentioned above, the scope is restricted to  
the mass flux convergence. It is to be remembered that the 
stalled regime is reached after about 1,000 fine-grid  
pseudo-time steps (except for the (cp0 = 15; cp1 = 60) 
computation) and, after this point, a standard method is run. 

Figure 17 Clotaire mock-up simulations: comparison of the 
convergence histories of the fine-grid mass flux  
(L2 norm) function of the coupling periods cpl.  
Pseudo-FMG FAS method: 22,400 cells, 5

1 10 ,MGε −=  
α = 0.7; Picard/CG smoother 

 

As a whole, all the convergence histories are spread near the 
coarse-grid standard solver convergence history and far 
away from that of the fine-grid. However, specific choices 
of the coupling periods can produce the best convergences. 
This is the case of the couple (15; 60). Moreover, some 
similarities in the convergence histories can be found. For 
instance, (15; 30) and (30; 60) lead to the same 
convergence. For these two couples, the coarse-grid/ 
fine-grid ratio is the same. Similar convergence properties 
can also be found for the couples (15; 60) and (15; 120). 
This last point underlines the fact that 60 coarse-grid 
pseudo-time steps  are enough to solve the coarse-grid 
problem. In contrast, if the two coupling periods are too 
close each other, such as (20; 20) or (15; 30), the coarse-
grid problem is not solved with enough accuracy, leading to 
a slower convergence on the fine grid. 

Extra numerical tests have been performed on three-grid 
pseudo-FMG FAS computations. Results confirm the  
two-grid results and the 3-uplet (15; 60; 120) has been 
flagged as the best one. 

6.6 Richardson as a smoother 

A multigrid algorithm involves a smoother action on the 
fine meshes. It is necessary that this smoother both strongly 
dampen the high frequency component of the fine mesh 
approximations u0 and be economical. In the Genepi code, 
the smoother is provided by several relaxed Picard iterations 
(pseudo-time iterations) typically with 5 diagonal 
Preconditioned Conjugated Gradient (PCG) iterations. 
Richardson is a classical cheaper linear system smoother: 

1
0 0 0 0( )j j ju u r uα+ = −  (49) 

with r0(.) representing the fine-grid residual and j 
representing the Richardson iteration counter. However, the 
α parameter requires knowledge of the eigen values of the 
matrix. Because their estimations are not easily obtained 
and CPU time consuming, they are computed with the first 
CG step and kept constant during the Richardson sweep. 
Running a pseudo-FMG FAS two-grid computation using a 
relaxed Picard/diagonal preconditioned Richardson 
smoother (five Richardson iterations per fine-grid Picard 
iteration) produces similar results in comparison with the 
Picard/PCG results. Although an improvement of  
the smother action can be observed at the beginning of the 
pseudo-transien, no extra CPU time is really gained. Owing 
to the small contribution of the linear solver in a  
pseudo-time step, the mean-saved CPU time per fine-grid 
pseudo-time iteration is only equivalent to about 3%. 

7 Concluding remarks 

The FAS multigrid method has been successfully 
implemented and tested in the two-phase flow CFD Genepi 
code; showing better convergence than that obtained with a 
more intuitive method such as the nested method. Moreover, 
the greater the number of grid cells (here, one hundred 
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thousand), the better the speed-up. The high efficiency of 
this scheme has been proven for the simulation of an 
academic problem designed to dampen the errors introduced 
by our geometric multigrid version: a mixing pipe 
simulation. In this test case, without an inner device, there is 
no porosity or/and forcing term discrepancies between the 
grids. As expected, the CPU time speed-up is very good:  
it is about 3.7–4.1 for a 22,400-cell two-grid FAS 
computation, following the smoother choice. In the case of 
industrial simulations such as the Clotaire mock-up 
simulation, the FAS algorithm performance is also good, but 
needs a large amount of computational cells to be really 
efficient. For the 22,400-cell test case, the CPU time  
speed-up is low: roughly 1.5. However, for the 88,704-cell 
test case, a high CPU time speed-up is obtained: about  
2.5 (two grids) and 3.0 (three grids). 

An original parallel red-black version of the  
pseudo-FMG FAS method was proposed. The colour groups 
are set up so that two consecutive grids run a sequential 
two-grid method. Taking advantage of a parallel run, the 
computation elapsed time speed-up, the extscCPU speed-up 
and the pseudo-time step speed-up are very similar. 

To obtain a powerful method implementation in our 
field of interest, several recommendations can be given. 
Firstly, it is worth pointing out that, in terms of the CPU 
time, the true version of the FMG method is not the most 
appropriate solution formaximising the speed-up. For our 
simulations, pseudo-FMG algorithms obtained a better 
score. Secondly, the relaxation of the fine-grid error 
correction is a crucial point required to obtain stable and fast 
convergences. Thirdly, using a dynamic multigridcycle is a 
necessity when dealing with the limitations of the geometric 
version of our algorithm, while being a good way of saving 
CPU time. Moreover, parameter studies were performed, 
which helped define an optimal set of parameter values for 
the best results: a relaxation parameter value about 0.7, 
coarse-grid error criterion value about 10–3 and coupling 
periods cp0 = 15, cp1 = 60 and cp2 = 120 (if any). 

In future, such research could be improved by mixing 
the present FAS algorithm with previously implemented 
parallel decomposition domain methods (Belliard and 
Grandotto, 2002; Belliard, 2003). The FAS multigrid 
schemes provide a way to speed-up the sub-domain solvers 
introducing coarser grids. 
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Nomenclature 

Latin symbols 
cpl Coupling period for grid Ωl 

0
lcp  First coupling period for grid Ωl 

g  Gravity (m s–2) 

G  Mixture mass flux ( )vρ=  

H Mixture specific enthalpy (J kg–1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hls Saturated liquid specific enthalpy (J kg–1) 
lmax Maximal number of computational grids 
L Latent heat (J kg–1) 
m Multigrid cycle counter 
n Outer iteration (or pseudo-time step) counter 
P Pressure (Pa) 

k
lP  Grid Ωk to grid Ωl transfer operator 

Q Heat source (W m–3) 
Sl Coarse-grid (Ωl) balance equation RHS (FAS) 
t Time (s) 
Tp Primary fluid temperature (K) 
v  Mixture velocity (m s–1) 

Rv  Relative velocity (gas minus liquid, m s–1) 

x Static quality (≡ (H – Hls)/L) 
Greek symbols 
α Multigrid relaxation parameter  

β Porosity (:= ωm/ω) 
δt Pseudo-time step (s) 

χT Turbulent diffusion coefficient for the mixture 
energy Equation (kg m–1 s–1) 

µT Two-phase turbulent dynamic viscosity (kg m–1 s–1) 

ρ Mixture density (kg m–3) 

Λ  Two-phase friction tensor (s–1) 

ω Volume of the homogenisation cell (m3) 

ωm Mixture volume of the homogenisation cell (m3) 

Ωl Computation domain grids (0 ≤ l ≤ lmax) 
φi Nodal function 

ψe Element function 

 


