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 Abstract.  

 A flexible multi-parameter exactly solvable model of potential profile, containing an 

arbitrary number of continuous smoothly shaped barriers and wells, both equal or 

unequal, characterized by finite values and continuous profiles of the potential and of 

its gradient, is presented. We demonstrate an influence of both gradient and curvature 

of these potentials on the electron transport and spectra of symmetric and asymmetric 

double–well (DW) potentials. The use of this model is simplified due to one to one 

correspondence between the algorithms of calculation of the transmittance of convex 

barriers and energy spectra of concave wells. We have shown that the resonant 

contrast between maximum and minimum in over-barrier reflectivity of curvilinear 

barrier exceeds significantly the analogous effect for rectangular barrier with the same 

height and width. Reflectionless tunneling of electrons below the bottom of gradient 

nanostructures forming concave potential barriers is considered. The analogy between 

dynamics of electrons in gradient fields and gradient optics of heterogeneous photonic 

barriers is illustrated.  

 

PACS: 73.63.-b, 03.65.Ge, 42.25.Bs  



 

 

I - Introduction.  

 

 The ability to tailor the potential of electrons on the scale of their de Broglie 

wavelength has opened the new horizons in nanoelectronics. Dynamics of quantum 

particles in these heterogeneous fields, shaped by continuous spatial variations of 

potential as well as its gradient, attracts a growing attention in several fields of atomic, 

optical and solid state physics. Namely, engineering of complicated potential barriers for 

controlled transport of electrons in semiconductor superlattices and heterostructures /1-

3/, is widely used in microelectronic systems. This approach, generalized for traveling 

and tunneling regimes in motion of quasiparticles, proves to be the useful tool for 

analysis of the dynamics of polaritons in molecular crystals /4/ as well as quantum 

defects /5/ and magnetic moments /6/ in solids. A special attention was brought to 

periodical potentials, particularly to the dynamics of atom wavepackets in magnetic 

potentials, supported by current – carrying wires /7/ and, in particular, to the control of 

atomic ensembles and matter waves in optical lattices, arising from a set of interfering 

laser beams /8-10/. A wealth of literature has been devoted to transport and trapping 

of quantum objects in the double-well (DW) potentials of both natural and technological 

origin /11-13/.  

 By analogy with gradient optics, dealing with the propagation of electromagnetic waves 

through heterogeneous photonic barriers /14/, we will consider here the dynamics of de 

Broglie waves in gradient nanostructures, characterized by variety of smoothly shaped 

potential profiles. Since the characteristic spatial scales of potentials discussed are 

comparable with the de Broglie wavelength of a quantum object, the perturbative 



approach or WKB approximation fail in such cases, and exact analytical solutions of the 

Schrödinger equation are in need. A few well known exactly solvable potentials were 

pioneered as long ago as in the first years of quantum mechanics /15/. The exact 

analytical results for scattering on periodical and DW potentials were restricted to 

models represented by sequences of rectangular boxes /16/, chains of coordinate δ (z-

zn) functions /17/ and combinations of rectangular and linear barriers (the “trapezoidal” 

profile) /18/. Smoothly shaped wells and barriers of potential profiles in realistic 

quantum structures were approximated in these simple models by broken lines. Herein 

these approximations result in the appearance of unphysical corners and infinite 

derivatives of the profile, bringing distortions in the obtained electron spectra. 

Moreover, such models have no additional free parameters, permitting to link the 

electron spectra with the shape and symmetry of curvilinear tops and bottoms of 

realistic potential profiles. Another model of DW profile, presented by “crossing 

parabolas” /19/, results in an unphysical sharpening at the crossing point of parabolas, 

corresponding to the important area of tunneling. Attempts to improve these results by 

means of empirical “rounding” of corners had revealed an essential dependence of 

spectra upon the method of rounding.  

 In contrast, we present in this paper an analysis of scattering and trapping of electrons 

in the framework of exactly solvable 1D multi-parameter model of smoothly shaped 

potential U(z). To avoid any uncertainty, connected with tangent of piece-wise parts of 

this potential, our model is characterized by continuity of both the profile U(z) and its 

gradient grad U(z). The building blocks of this model are convex and concave arcs, n-th 

arc Un(z) being defined on the segment 0≤zn≤dn as  
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Here U0 is some normalization constant with the dimension of energy. The number of 

such arcs may be arbitrary; each concave and convex arc has smooth contact points 

with the neighbouring segments at the level U(z)=U0. The potential inside the n-th 

segment, the value U0 being chosen, is presented by formula (1), containing three free 

parameters gn, Mn and Ln; where gn and Mn are dimensionless constants, and the 

characteristic scales Ln have the dimension of length. Positive (negative) values of gn 

relate to the concave (convex) arcs with minima (maxima) of potential 

 

( ) ( )

 
 =
 + 

m

2

0min,max 2
1

1

n
n

n n

M
U U

g M
 .      (2)  

 

In a limiting case M = 0, g = 1 model (1) reduces to U(z) = U0[cos(z/L)]
-2; this limit, 

unlike (1), contains only one free parameter L, and was used in /20/ for the analysis of 

polarization-dependent tunneling of light through gradient dielectric layers. 

 Normalized potentials (1) are presented on Fig. 1a and 1b. The central peak on Fig. 1a, 

located between the points z = 0 and z = d, is surrounded by two concave half - arcs, 

corresponding to the segments – 0.5 d ≤ z ≤0 and d ≤ z ≤ 1.5d. The potential in the 

range z ≤ - 0.5d and z ≥ 1.5d is assumed to be equal to Umin (2). Analogously, the well 

on Fig.1b, located in the segment 0 ≤ z ≤ d, is surrounded by two convex half-arcs, 

corresponding to the segments -0.5d ≤ z ≤ 0 and d ≤ z ≤ 1.5d with the potential in the 

range z ≤ - 0.5d and z ≥ 1.5d equal to Umax. Thus, the potential curves are continuous 



at all the characteristic points z = -0.5d, z = 0, z = d and z = 1.5d. Free parameters g, 

M and L for each arc are determined by the values of Umin,max and distance d between 

the neighbouring points U = U0 : 
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 To provide positive values of (Un)min we will consider the concave arcs with |gn|> 

Mn
2/(1 + Mn

2). The demand of equal tangents of adjacent n-th and (n + 1)-th arcs at 

the contact points U0 = 1 results in condition  
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Combination of several concave and convex arcs, obeying to condition (4), can present 

smooth double-wells as well as periodical profiles, shown, e.g., on Fig.2 - 6.  

 The paper is organized as follows: In Section II we describe the exact analytical 

solution of Schrödinger equation for smoothly shaped wells and barriers of potential (1) 

and the relevant boundary conditions. The multiparameter flexibility of boundary 

conditions is illustrated in Section III on the simplest example - calculation of electron 

transport through gradient barriers of finite width, formed from the arcs (1). An 

important effect of reflectionless tunneling (complete transmission) of electrons through 

a gradient potential barrier is considered in Section IV. We describe in Section V a 

simple standardized algorithm, based on the same approach, for calculation of spectra 

of DW potentials, both symmetric and asymmetric. Some generalizations of these 



results are summarized in Section VI. The symmetry properties of the obtained 

formulae, simplifying the calculations, are presented in the Appendices 1 and 2.  

 

II - Eigenfunctions of smoothly shaped multiparameter potentials.  

  

 To solve the Schrödinger equation  
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for the potential U (1) let us introduce the new function f and new variable η  
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The variable η  as well as parameters M, m+ and m- have to be taken in fact for each n-

th interval as ηn ,Mn, (m+)n and (m-)n; however, for the sake of the simplicity of 

notation we omit the index n hereafter. We note the useful property of quantities m±: 

m+m-=1. The factor W(z) in (1) can be expressed in terms the new variable η  :  
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By introducing the normalized variable x  
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and substituting (6) and (8) into the Schrödinger Eq. (5), we obtain the master 

equation, governing the function f:  
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The coefficients of Eq. (10) are expressed in terms of the parameters of potential  
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where a is the quantum spatial scale  
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Let us point out, that the value of parameter g in (11) for well (barrier) range is positive 

(negative). Thus, the equations for both well and barrier range are presented in similar 

forms. This similarity simplifies the forthcoming analysis. To find the solutions of Eq. 

(10) we introduce a new function F and a new variable u :  
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Owing to transform (13) Eq. (10) is reduced to a standard form of hypergeometric 

differential equation /21/  
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The hypergeometric equation (14) is known to have two linearly-independent solutions. 

Since the parameters γβα ,,  are linked by the correlation Re( ( ) γβα 21 =++ , these 

solutions are given by hypergeometric functions F1 and F2:  

 

F1 = F( u,,, γβα ) ; F2 = F( u−1,,, γβα ).     (16)  

 

Moreover, since Re( γβα −+ ) = -q < 0, the hypergeometric series F1 and F2  

are absolutely converging within the circle |u| = 1 /21/. Finally, by combining the 

expressions (6), (13) and (16), we will obtain the general solution of Schrödinger Eq. 

(4) for each well and bottom of periodical potential in the form  
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Here A is the normalization constant, the values Q have to be defined from the 

conditions of continuity of logarithmic derivatives 
dz

dψ

Ψ

1
at the points of tangent of the 

different parts of the potential.  

 To use the continuity conditions for the wave function one has to determine the values 

of variables x (9), u (13) and 1-u at the points of contact U(z) = U0; thus for  

profiles shown on Fig.1a and Fig.1b:  
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These values will be used below for both scattering and eigenvalues problems. 

  



 

III - Transport of electrons through convex gradient barrier.  

 

 To present the algorithm for calculation of scattering of electrons on the gradient 

structure one can at first examine the simplest case – reflection of electrons on a single 

barrier, shown on Fig. 1a. Let us consider an electron with energy E > Umin (2), 

incidenting from z = - ∞  at the point z = - 0.5d. It is convenient to use the continuity 

conditions in the consecutive order, starting from the right edge of the structure and 

moving to the left. The electron wave function in the range of constant potential z ≥ 

1.5d reads as  
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Here parameter a is defined in (12), ε  is the normalized energy (11). The logarithmic 

derivative of function Ψ (19) in the point z=1.5d is equal to ik. By denoting the 

functions F corresponding to the well as F-, one can find the logarithmic derivative of 

function Ψ  (19) at this point, related to the value of variable v = v0 = ½:  
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By equating the left and right logarithmic derivatives of wave function at the point z = 

1.5d, one can find the parameter Q2:  



( )
( )

−−
−

−

+
= − =

−

0

2

0

'2
;

2 '

F vikl Y
Q Y

ikL Y F v
.        (21) 

  

Moving to the left, we will one can evaluate the logarithmic derivatives of wave 

functions at the point z = d:  
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All the quantities Pn are collected in Appendix 1 in order to demonstrate the symmetry 

of their structure. By using the value Q2 from (21), one can calculate the quantity D3 

(22); then, using the equality of derivatives (22) and (23), one can determine the value 

Q1:  
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 We repeat the same procedure with derivatives of wave function near by the point z = 

0. By expressing the right and left derivatives at this point in terms of the D1 and D0 

respectively, we will determine D1 and D0 by analogy with formulae (22) – (23):  
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Calculation of D1 by means of Q1 yields the value Q0:  
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 While calculating the value Q0 we used the model W(z) (1) and solution (17) in the 

range z ≤0, replacing in the relevant formulae M → -|M|; where the coordinate η  (6) 

becomes negative, and the normalized variable x (9) reads as x = ( )+++ mlM1
L

η 2 n .  

 Now one can obtain the complex reflection coefficient R by using the continuity 

condition at the left boundary z = -d/2. The wave function at the range of constant 

potential z ≤ -d/2 reads as ( )[ ]dzikB 5011 .exp +=Ψ . By calculating the derivative of 

wave function Ψ (17) at the point z = -d/2 + 0 ( v = v0 = ½) by analogy with (20), one 

obtains  
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where the dimensionless parameter −Υ  was defined in (21).  

 Thus, the calculation of reflection coefficient R for some energy E can be performed 

according to the following standardized procedure:  

1. To evaluate Q2 from (21).  

2. To determine D3 by substituting Q2 into (22).  

3. To calculate Q1 (24) by using D3.  

4. To determine D1 by substituting Q1 into (25). 



5. To calculate Q0 (26) by using D1.  

6. Finally, to evaluate R by substituting Q0 into (27).  

This procedure can be presented symbolically by chain  

 

Q2 →  D3 →Q1 →D1 →Q0 →R .       (28) 

 

 Reflectance of more complicated structures can be examined in a similar fashion. 

Namely, to find the reflectance of two similar barriers one can start again from the right 

edge, located now at the point z = 3.5d, we have to start from Q4, given by Eq. (21) 

due to replacement of Q2 by Q4. Then, using the continuity conditions at z = 3d, one 

obtains D7 while the values D7 – D4 are given in Appendix 1 and the value Q3 is given by 

condition D7 =- D6 :  

 

( )
( )

+ −

+ +

+
= −

+

11 5

3

12 7

P D F v
Q

P D F v
.         (29)  

 

The substitution of Q3 to D5 and using the continuity condition D5 = - D4 at the point z 

= 2d yields the value Q2:  
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Using this value of Q2 in the chain (28), one can calculate the reflection coefficient R for 

the structure, containing two peaks; the algorithm of calculation of R in this case can be 

represented by the following sequence of operations by generalizing the chain (28):  

 



Q4 →D7 →  Q3 →D5 →  Q2 →  D3 →  Q1 →  D1 →  Q0 →  R .   (31)  

 

Transmittance of potential barriers |T|2 can be found as  

 

|T|2 = 1 - |R|2 .          (32)  

 

The forthcoming generalization of this approach for a structure containing an arbitrary 

amount of alternating peaks and wells can be performed analogously.  

 Transmittance for electrons with energy E propagating through a single gradient 

barrier(Fig. 1a) is shown in Fig. 7 (curve 1). The effect of the barrier form-factor (Fig. 

1a) is demonstrated by means of the transmittance of rectangular barrier with the same 

width d0 = 2d and with the same potential minima and maxima Umin and Umax – see 

curve 2 in Fig. 7. In the case E ≤ Umax, w = E/Umax ≤1 the transmittance of the 

rectangular barrier can be written as  
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To use (33) in a case (E>U0, w >1) one has to replace q in Eq. (33) by i bw /1−  and  

 

 sh(qd0) by i sin( ./)1 0 bdw− Let us note that, due to difference between U0 and Umax ,  

 
the characteristic scale b (33) is distinct from scale a (11), b = ap  
 

= 0

max

U
p

U
.           (34)  



 

To compare the transmittance of both barriers for the same energies, one has to keep 

in mind that the normalized energy for gradient barrier ε  (11) is related to the 

normalized energy for a rectangular barrier w as ε −= 2wp .  

 Let us stress out the following peculiarities of the graphs |T(w)|2, determining the 

electron transport processes:  

 1. Transmittance of rectangular barrier is connected with discontinuities of potential 

U(z) and its gradient at the boundary points z = - 0.5 d and z = 1.5 d, meanwhile in the 

case of the gradient barrier profile U(z) is continuous as well as its gradient; however, 

the transmittance of gradient barrier is influenced by the discontinuities of curvature of 

U(z) at these boundary points.  

 2. The transmittances depicted in Fig. 7 reveal the minima for energies exceeding the 

maxima of barriers(w = 1). These minima correspond to the maxima of the over-barrier 

reflection coefficients |R|2 = 1 - |T|2. This over-barrier reflection which is associated 

with the resonant correlations between the de-Broglie wavelength and the effective 

thickness of the barrier corresponding to gradient barrier is much stronger than that of 

corresponding to the box-like barrier. Specifically, the first maximum of the reflection 

coefficient for gradient barrier(curve1) is |R1|
2
1= 0.282, while for box-like barrier |R1|

2
2 

= 0.136. The second maximum of the reflectance for gradient barrier slightly differs 

from the first one: |R2|
2
1 = 0.24, while the same coefficient for box-like barrier is 

extremely small: |R2|
2
2 = 0.019. The energy of electron corresponding to resonant 

over-barrier reflection from box-like barrier found from (33) is inversely proportional to 

barrier width d0. By using this correlation qualitatively for gradient barrier, whose 

effective width in the case at hand is several times smaller than d0, one can expect 

large values of energies corresponding to the maxima of over-barrier reflection from 



gradient barrier – see Fig. 7: w1 = 3.5, w2 = 5.95. Thus, the gradient barrier can 

possess the filtering properties for transport of electrons with some over-barrier 

energies.  

 3. The value of |T|2 for gradient profile (Fig. 7, curve 1) can be used for analysis of  

transmittance of other profiles, obtained from those discussed ones by means of special 

transform. Inspection of formulae (11) shows that the master equation (10), governing 

the wave function, and its solutions remain unchanged, when parameters M and g are 

fixed, while the electron energy E, potential U0 and scale L can vary in such a way that 

the ratios ε = E/U0 and L/a also remain unchanged. Here the parameters Qn and Dn 

(28) are invariant and thus the values of reflection coefficient R as well as |T|2 are 

invariant too. Therefore, by characterizing the coupled variations of quantities E, U0 and 

L by parameter h one can see that the single gradient barriers U1 and U2 with 

normalization potentials (U2)0 and (U1)0, linked by relations  

 

M1 = M2 ; g1 = g2 ; L2 = L1h
-1 ; (U2)0 = (U1)0h

2      (35)  

 

provide equal transmittances for electrons with energies 1ε  and 2

12

−= hεε , while the 

widths of these profiles are also correlated: d2 = d1h
-1. Such potential profiles, 

corresponding to different values of h and providing equal transmittance for electrons 

with such energies 1ε  and 2ε  are depicted in Fig. 8a.  

It is worth to compare the relations (35), obtained for potential (1), with the relation 

between the energy levels E of box-like potential and its width d: the product Ed2 is 

known to remain constant for a given quantum number. Here the width d can be 

changed independently of the potential maximum, conserving the box-like potential 

shape. Unlike the latter, relations (35) present the coupled transform of scale L and 



potential parameter U0, resulting in profound reshaping of potential profile shown in 

Fig. 8a 

 

IV - Reflectionless tunneling of electrons through a concave potential barrier.  

 

 Tunneling of electrons with energy E through a box-like potential barrier with height 

Umax > E, described by Eq. (33), is characterized by a transmittance which is always 

smaller than unity; therefore the reflection coefficient is non-zero. However, this 

situation can be profoundly different for electrons tunneling through a concave potential 

barrier with minimum Umin. Namely, for some energies smaller than Umin a peculiar 

regime of reflectionless tunneling (|R|2 = 0 ) proves to be possible. This regime arise 

from the interference of forward and backward electronic de Broglie waves inside the 

barrier. 

 To visualize the underlying physics of this effect let us consider the simplest geometry 

of gradient barrier, formed by several adjacent concave arcs with equal parameters M, 

g, L and U0 = Umax at the top of the base labeled by Up (Fig. 9). Rigorously speaking, it 

is necessary to smooth out the discontinuities of gradient U at the points U = Umax by 

assuming existence a small intermediate layer formed by convex arc with parameters 

M1<<1, L1 << L and g1 = g, where the condition (4) reads as M1/M = L1/L. Since both 

the width of this intermediate layer (3) d1 = 2L1M1<<d and its relative height (U1)max 

/U0 – 1 = M1
2/g <<1 are small, and, moreover, the tunneling particle energy ε is 

smaller than the barrier minimum (U0 >Umin>ε ), one can neglect the influence of this 

layer on tunneling, considering the reflection of particle on the discontinuities of grad U 

at the boundaries z = 0, d, 2d .  



 To avoid a tedious algebra, connected with Eq. (10), we consider a special case =Λ 0. 

In this case solution of Eq. (10) is expressed in terms of the elementary functions 

exp( qx± ). The wave function Ψ (17) inside the barrier can be written by means of 

variable x (9) and parameter q (10):  
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Representing the electron incidenting from the left on the boundary z = 0 by means of 

traveling wave 
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one can at first examine the reflection coefficient R for tunneling through one barrier 

between the points z=0 and z = d. The values of variable x and the functions in (36) at 

these points are  
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212 M
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+
 = - l  ; x|z = d = - x0 .   (38)  

 

The continuity condition for logarithmic derivative 
dz

dΨ

Ψ

1
 at z = 0 yields the equation, 

governing the reflection coefficient R  
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The unknown quantity Q in (39) is defined from the continuity condition at z = d: 

 

Q = 
( ) ( )
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Substitution of Q (40) into Eq. (39) yields the expression for the complex reflection 

coefficient R:  
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Formula (41) is the main result of this Chapter. By using the value x0 (38) one can 

rewrite the term th(2qx0) in the form  

 

th(2qx0) = 
( )
( ) q

q

m

m
2

2

1

1

+

+

+

−
 .        (42)  

 

 It is remarkable, that coefficient R for the concave barrier (Fig. 9), unlike the reflection 

coefficient for box-like barrier, can reach the zero value R = 0. The condition of this 

nullification (reflectionless tunneling) follows from (41): 
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By proceeding in a similar manner, we one obtains the condition of reflectionless 

tunneling through the system of n contiguous concave barriers following from (43) due 

to replacement 

(m+)
2q →  (m+)

2qn.  

 An example of such barrier, shown on Fig. 9, can be constructed, e.g., by means of 

concave arc with parameters M = 2.02 and g = 1.35, L = 0.325 nm, U0 = 1eV. Thus, 

for the potential minimum Umin/U0 = 0.4 and base heightδ =0.3 the reflectionless 

tunneling appears for electrons with energy ε = 0.35. Here the condition Λ = 0, 

simplifying the master equation (10) is satisfied, and the energy ε  is located between 

the minimum and the base. 

 This unusual quantum phenomenon of total transparency ( |R|2 = 0, |T|2 = 1) of 

gradient potential barrier for electrons with energy E, tunneling through the forbidden 

zone of this barrier E < Umin, illustrates a key role of gradient and curvature of potential 

profile U(z) on reflectance/transmittance spectra of barrier. This phenomenon does not 

occur for the transparency |T|2 of box-like potential (33), when the equation |T|2 = 1 

has no solutions. Treating the total transparency as a reflectionless tunneling of de 

Broglie waves, one can emphasize the analogy of this quantum effect with the classical 

wave effect - reflectionless tunneling of electromagnetic waves through gradient 

photonic barriers /22/. Both effects represent new phenomena associated with the 

effective transmission of particles and waves through non-transparent media. 



 

V - Spectra of double – well potentials.  

  

 Spectra of electron energy nε  in the continuously shaped double-well (DW) potential 

are important for study of condensed matter systems /23/ and quantum information 

processing /24/. A particular interest is stimulated by the perspectives of controlled 

manipulation of ultracold neutral atoms by means of their spin-dependent motion in DW 

potential, formed by optical lattices /25, 26/. Such spectra can be found by means of 

the formalism developed above. For simplicity let us examine firstly an auxiliary problem 

– the spectrum of single-well potential, formed by one concave arc, surrounded by two 

convex half–arcs (1); with the profile placed in the segment –d/2≤ z ≤ 1.5d (Fig. 1b ). 

Starting again from the right side of this structure one can present the wave function of 

confined electron in the range z ≥ 1.5d in the form  

 

 ( )[ ]dzB 5.1exp −−=Ψ χ  ; ( ) εχ −
+

+=
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2

1
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M
,     (44)  

where 
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+
ε  .       (45) 

 

By comparing this problem with the problem of electron scattering at a single peak (1), 

one can see that the wells and peaks in these problems are interchanged; however, the 

general solution (19) can be used in this geometry as well. Therefore, replacing the 



factors Q, describing the interference of forward and backward waves in (19), by 

factors Φ , one obtains from continuity conditions at the point z =1.5d:  
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Then, considering the continuity conditions at z = d (G3 = - G2, the quantities G are 

defined in the Appendix 2) and z = 0 (G1 = - G0) one obtains the parameters 1Φ  and 

0Φ :  
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On the other hand, the parameter 0Φ can be found independently from the continuity 

conditions at z = - 0.5d. By representing the wave function at z ≤ - 0.5d in the form 

( )[ ]dz 5.0exp +=Ψ χ , one obtains  
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2
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−

+
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+

+  .          (48)  

 

The values of energy nε , providing the equality of expressions (47) and (48) for 0Φ , 

yield the eigenvalues of electron energy nε .  

 Let us point out, that the expression (46) for 2Φ  is transformed to expression (21) for 

Q2 due to replacements −+ Υ→Υ , →χ -ik. Further, by making the replacements  

 



m
qq →±  ; S →± S

m
; Pm →Km; F ( ) →±± v  F ( )±v

m
; B ( ) →±± v B ( )±v

m
; 1,2,31,2,3 Q→Φ  (49)  

 

one can find the eigenvalues of electron energy nε  in the potential under considered, 

following the scheme of analysis (31) and by using parameters Kn and Gn from 

Appendix 2. Thus, e.g., taking into account the recursive formula (A.3), we transform 

the quantities P5, P6 to K5, K6, which are needed for calculation of parameter G3, 

analogous to D3 (24). The quantities 1Φ  and 0Φ  can be found by using the transforms 

of Q1 (24) and Q0 (26).  

This scheme of computation of nε  can be presented symbolically in the form, similar to 

(28): 

 

01132 Φ→→Φ→→Φ GG  .        (50)  

 

In the case of the single-well potential shown on Fig. 1b we obtain the following 

eigenvalues : ε1 = 1.528 and ε2 = 1.595. For all such numerical applications, one needs 

to specify the value of U0. Here, as well as for all the numerical calculations hereunder, 

U0 was set equal to 1 eV. 

By proceeding in a similar fashion one can find the eigenvalues of double-well potential, 

generalizing the scheme (31): 

 

4Φ →G7 →Φ→ 3  G5 → →Φ 2 G3 → →Φ1 G1 0Φ→  .    (51)  

 

The quantity 0Φ  is given by Eq. (40); on the other hand, this quantity can be calculated 

by means of sequence (53), where Φ 4 is equal to Φ 2 (46), while the values Φ 3 and 



Φ 2, determined for the double-well potential from the continuity conditions at z = 3d 

(G7 = - G6) and z = 2d (G5 = - G4), are:  

 

Φ 3 = 
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vFGK
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711  ; Φ 2 = 
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vFGK
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By comparing the quantities 0Φ , obtained due to calculations (49) for different values 

of energy ε  from the interval (45), and the quantity 0Φ (ε ), given by (48), one obtains 

the values nε , providing the equality of both quantities. These values form the discrete 

spectrum of electron energies nε  for double -well potential.  

 To illustrate the flexibility of this approach, let us find the spectra of several DW 

potential profiles, distinguished by their geometry. All such profiles, shown on Fig. 2 – 

6, are characterized by smooth transition to the surrounding constant potential Uc. 

Namely, the profiles depicted on Fig. 2 have equal depths of both wells, while the 

central maximum Umax may be equal to Uc (Fig. 2,a) or (Fig. 2,b) either larger or smaller 

than Uc. Finally, Fig. 3 presents the asymmetrical potential with Umax = Uc, with the 

depth of wells are unequal. Using the approach described above one obtains for these 

DW profiles the following eigenvalues of normalized electron energyε  = E/U0:  

 

404.11 =ε , 418.12 =ε  (Fig. 2,a) ; 108.11 =ε , 412.12 =ε  (Fig. 2,b); 

989.01 =ε , 285.12 =ε  (Fig. 2,b); 456.11 =ε ; 522.12 =ε  (Fig. 3).  

 

Thus including of a second well results in a lowering of the eigenvalues with respect to 

the surrounding level U = 1.6.  



 It is remarkable that, using formulae (35), one can transform the continuous well 

profile U1 into another well profile U2, which differs from U1 by depth (U2)min = (U1)min 

h2, level of surrounding potential (Uc)2 = (Uc)1h
2 and width d2 = d1h

-1. The values M, g 

and ratio L/a are assumed to remain constant, by analogy with Fig. 8a. Some examples 

of such transformed wells are shown in Fig. 8b. Here the energy eigenvalues for wells 

U2 and U1 are linked by the correlation ( ) ( ) 2

12
hnn εε = . Thus, the energies for 

transformed potential ( )
2nε  can be found from ( )

1nε  without evaluating (46) – (52).  

To emphasize the spectral peculiarities of curvilinear wells let us compare their energy  
 
levels to that, obtained for the box-like wells with the same values of height Umax – Umin  
 
and width d0 (Fig.1b). By expressing the wave function of trapped electron in the form:  
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0 ≤ z ≤ d0 ; ( ) ( )[ ]iqzQiqzC −+=Ψ expexp ; q = 
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 z ≥ d0 ; ( )[ ]0exp dz −−=Ψ χ  ;  

 

 
and by using the continuity conditions at the boundaries z = 0 and z = d, one obtains  
 
the equation, governing the eigenvalues q:  
 

 

( )
22

2

χ

χ

−
=

q

q
qdtg  . (54)  

 

 
Here a is the quantum scale (12), C is the normalization constant and distance d is 

given by Eq.(3). Taking the parameters for box-like potential from Fig.1b, one can find 

the single root of Eq. (54), that appears in the range Umax>ε >Umin: ε 0 = 0.881. Unlike 

the curvilinear potential (Fig. 1b, continuous line), characterized by eigenvalues 



1ε  = 1.528 and 2ε  = 1.595, the box-like potential discussed reveals only one level 0ε , 

located much lower than both 1ε  and 2ε . Thus, using of box-like model for analysis of 

continuously-shaped potentials may result in substantial errors in calculation of energy 

eigenvalues of trapped electrons. Note that a square well with the same total width as 

the continuously-shaped potential (d0=2d) would exhibit two eigenstates with energies 

1ε  = 0.601 and 2ε  = 1.156, so that the increase of the eigenvalues finds is more likely 

due to the shape of the potential than to its apparent width.  

 

6. Conclusion.  

 In conclusion, we have presented the flexible multiparameter exactly solvable models 

of continuously shaped 1D quantum mechanical potential barriers and wells U(z), 

possessing the continuity of both U(z) and grad U(z). By computing the barrier 

transmittance |T|2 and energy eigenvalues nε for DW potentials, related to different 

combinations of parameters, we show that both electron transport through these 

barriers as well as energy spectra of electrons, trapped into SW or DW potentials 

strongly depend on the gradient and curvature of potential profiles. The standardized 

successive algorithms for finding |T|2 and nε are presented and one–to–one 

correspondence of these algorithms to each other is shown. Transforms of profiles U(z), 

providing the values of |T|2 and nε  for transformed potentials from the relevant values 

for initial potentials without additional calculations, are examined. The effect of 

reflectionless tunneling through gradient potential barriers, providing the total 

transmission of electrons with energy, smaller than the minimum of barrier, is shown. 

The analogy between tunneling of de-Broglie waves through concave potential barrier 



and tunneling of electromagnetic waves through gradient photonic barrier is 

emphasized.  

 For simplicity, the analysis was illustrated above on the example of the simplest 

geometry of profiles U(z) – single barrier and DW potentials. However, by applying the 

method in consecutive order the continuity conditions (4), one can consider the flexible 

models of potential structures, containing an arbitrary amount of barriers and wells. An 

example of such structure with narrow wells and broad barriers is depicted on Fig. 9. 

Interchange of parameters M1 ↔  M2, L1 ↔L2, g1 ↔g2 yields the structure with narrow 

peaks and wide barriers. The models of structures (1), containing, unlike these profiles 

with continuous gradients U(z), the chain of adjacent barriers with discontinuities of 

gradients of U(z) on the barrier’s boundaries, prove to be useful for some fields in the 

cross-disciplinary physics, e.g., for electromagnetics of transmission lines with 

continuously distributed parameters /27/.  

 In the framework the multi-parameter model, one can find the total amount of free 

parameters of the model discussed, while keeping in mind, that the peak of single 

barrier U>U0, shown on Fig.1a, is characterized by 4 free parameters: U0, M, g and L. 

Each of the concave half–arcs, surrounding this peak, the value U0 being fixed, is 

characterized by three parameters: M, g and L. Taking into account the continuity 

conditions, imposed at the points z = 0 and z = d, one can assign to this profile 8 free 

parameters. The flexible models of more complicated structures, containing more 

concave and convex arcs and, thus, more free parameters, can be considered in the 

same manner.  
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Appendix 1.  

 

 These formulae are needed for calculation of electron transport through the  

multi-parameter barriers. 

 

P-1 = S+F-(v-) + B-(v-) ; P-2 = S+F-(v+) - B-(v+) ;  

 

P1 = S-F+(v+) –B+(v+) ; P2 = S-F+(v-) + B+(v-) ;  

 

P3 = S-F+(v-) + B+(v-) ; P4 = S-F+(v+) –B+(v+) ;     (A.1) 

 

P5 = S+F-(v+) – B-(v+) ; P6 = S+F-(v-) + B-(v-) ;  

 

P7 = S+F-(v-) + B-(v-) ; P8 = S+F-(v+) – B-(v+) ;  
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P-1 = P6 ; P-2 = P5 ; P1 = P4 ; P2 = P3 ;       (A.3) 

Pm = Pm + 8 ; ( m≥ 1) ; 
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Appendix 2.  

 

 Parameters Km and Gm for the eigenvalues problem read as:  

 

K -1 = S-F+(v-) + B+(v-) ; K -2 = S-F+(v+) – B+(v+) ;  

 

K1 = S+F-(v+) - B-(v+) ; K2 = S+F-(v-) + B-(v-) ;  

 

K3 = S+F-(v-) + B-(v-) ; K4 = S+F-(v+) – B-(v+) ;     (A.5) 

  

K5 = S-F+(v+) – B+(v+) ; K6 = S-F+(v-) + B+(v-) ;  

 

K7 = S-F+(v-) + B+(v-) ; K8 = S-F+(v+) – B+(v+) ;  

 

Km = Km+8 (m ≥ 1 ).  
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G6 = 
( ) ( )+−−− Φ+

Φ+

vFvF

KK

3

12311 ; G7 = 
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Where the factors Km can be obtained from the factors Pm ( see Appendix 1) through 

the replacements: 

 

S+ ( )±v ⇔  S- ( )±v ; F+ ( )±v ⇔  F- ( )±v ; B+ ( )±v ⇔  B- ( )±v .    (A.7) 
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 Figure captions.  

 

Figure 1 (color online): Multi-parameter gradient profiles of normalized potential U = 

U(y)/U0, vs. normalized coordinate y = z/d. T he values of parameters in both graphs 

are M= 2.02, |g| = 1.35, L = 0.225 nm,.  Fig. 1a – single barrier, Fig. 1b – single well; 

The dash-dotted lines represent the positions of the eigenstates calculated for these 

potentials in the text (for U0= 1eV). The dashed line indicate the box-like potential with 

width y=1 and height equal to Umax – Umin for curvilinear profile U(z). The dotted line 

shows the single energy state supported by this square well. 

 

Figure 2 (color online): Different types of symmetric potentials (a) Double Well (DW) 

potential (M1= M2 = 2.02, |g1|=|g2|=1.35, L1=L2=0.225 nm ). (b) (1) DW potential with 

up-shifted maximum (M1 = 2.02, |g1| = 1.35, L1 = 0.225 nm; M2 = 2.843, |g2| = 0.971, 

L2 = 0.44 nm ) and (2) DW potential with down-shifted maximum ( M1 = 2.02, |g1| = 

1.35, L1 = 0.225 nm; M2 = 4.739, |g2| = 2.036, L2 = 0.35 nm ). The dashed and dash-

dotted lines represent the levels associated with the of the eigenstates ε1 and  ε2, 

respectively, evaluated for the potentials displayed. 

 

Figure 3 (color online): Asymmetric DW potential (M1 = 2.02, |g1| = 1.35, L1 = 0.225 

nm ; M2 = 6.16, |g2| = 2.859, L2 = 0.324 nm ).  

 

Figure 4 (color online): Periodic multi-well potentials possessing (a) alternating convex 

(M1 = 4.05, g1 = -1.624, L1 = 0.375 nm) and concave (M2 =2.02, g2 = 1.35, L2 = 

0.225nm) and  (b)  alternating convex (M1 =2.02, g1 = -1.35, L1 = 0.225nm) and 

concave (M2 = 4.05, g2 = 1.624, L2 = 0.375 nm) arcs. 



 

Figure 5 (color online): Shape-dependent transmittance |T|2 of single gradient barrier, 

shown on Fig. 1a (curve 1), and rectangular barrier (curve 2) with the same total width 

2d and the same values of Umax and Umin for electrons with energy E plotted vs. 

normalized electron energy w = E/Umax . According to the parameters of gradient 

barrier (Fig.1a) Umax = 1.6 U0, p
2 = 1/1.6. Thus, variable w corresponds to normalized 

electron energy ε , defined in (11), as w = ε /1.6. 

 

Figure 6 (color online): Potential profiles 3a and 3b, obtained from profiles 1a and 1b, 

due to the transform (35), M = 2.02, |g| = 1.35. Profiles 1, 2 and 3 for single gradient 

barriers (Fig. 3a) and single wells (Fig. 3b) correspond to the values h = 1.225 ; 1 ; 0.8 

respectively.  

  

Figure 7 (color online): Normalized profile of potential barrier U= U(y)/U0, y = z/d, 

providing the reflectionless tunneling of electron through the barrier with energy ε  in 

the range between Up and potential minimum Umin.  
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