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émanant des établissements d’enseignement et de
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Abstract

The signature splitting of the γ-vibrational band of several Ru, Pd, Xe, Ba, Os and
Pt isotopes is analyzed in the framework of the interacting boson model (IBM).
The nuclei studied are close to the γ-unstable SO(6) limit of the IBM and have
well-known γ bands. It is shown that in most nuclei the signature splitting is better
reproduced by the inclusion of a three-body interaction between the d bosons. In
none of the nuclei evidence for a stable, triaxial ground-state shape is found.
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1 Introduction

Quadrupole deformations of atomic nuclei can be of two types: β deforma-
tions which preserve axial symmetry and γ deformations which lead to triaxial
shapes. Although the collective model of nuclei introduced these ideas more
than 50 years ago [1], it is still a matter of debate to what extent triaxiality is
present in nuclei and, specifically, whether nuclear ground states exhibit stable
triaxial deformation. On the other hand, γ bands, associated with collective
vibrations that break axial symmetry, are a well-established feature in the
spectroscopy of deformed nuclei.

In this paper we undertake a detailed analysis of γ-band properties, in partic-
ular their signature splitting or even–odd staggering, in order to shed light on
the question of triaxiality. The gist of the argument for doing this is as follows.
Theoretical spectra derived from potentials which are either soft or rigid in
the γ degree of freedom, display γ bands with different signature splitting.
The observed energies of the γ-band members can therefore be used to fix the
degree of softness or rigidity in γ. This idea is worked out here in the context of
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the interacting boson model (IBM) [2] which proposes an algebraic or group-
theoretical description of collective quadrupole excitations in nuclei. The IBM
is particularly well suited for our present purpose for two reasons. First, its
phenomenological application generally leads to accurate calculations of nu-
clear properties at low energy. As will be shown, a very precise description of
the γ-band signature splitting can be obtained with three-body interactions
between the bosons. Second, once the algebraic hamiltonian is fitted to the
data, an intuitive, geometric picture in terms of β and γ deformations can be
obtained in the so-called classical limit. In this way we establish a unbiased
procedure which gauges the importance of triaxiality from the data.

In the present study we focus our attention on nuclei that are usually inter-
preted as soft in γ [or close to the SO(6) limit of the IBM] and we investigate
to what extent the observed signature splitting in the γ band signals the oc-
currence of more rigid triaxiality.

2 The interacting boson model

In this section we give a brief description of the IBM with particular emphasis
on the version of the model which includes higher-order interactions between
the bosons. A full account of the IBM is given in ref. [2].

2.1 The general hamiltonian

The building blocks of the IBM are s and d bosons with angular momenta
ℓ = 0 and ℓ = 2. A nucleus is characterized by a constant total number of
bosons N which equals half the number of valence nucleons (particles or holes,
whichever is smaller). In this paper no distinction is made between neutron
and proton bosons, an approximation which is known as IBM-1.

Since the hamiltonian of the IBM-1 conserves the total number of bosons, it
can be written in terms of the 36 operators b†ℓmbℓ′m′ where b†ℓm (bℓm) creates
(annihilates) a boson with angular momentum ℓ and z projection m. It can
be shown [2] that this set of 36 operators generates the Lie algebra U(6) of
unitary transformations in six dimensions. A hamiltonian that conserves the
total number of bosons is of the generic form

Ĥ = E0 + Ĥ(1) + Ĥ(2) + Ĥ(3) + · · · , (1)

where the index refers to the order of the interaction in the generators of U(6).
The first term E0 is a constant which represents the binding energy of the core.
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The second term is the one-body part

Ĥ(1) = ǫs[s
† × s̃](0) + ǫd

√
5[d† × d̃](0) ≡ ǫsn̂s + ǫdn̂d, (2)

where × refers to coupling in angular momentum (shown as an upperscript
in round brackets), b̃ℓm ≡ (−)ℓ−mbℓ,−m and the coefficients ǫs and ǫd are the
energies of the s and d bosons. The third term in the hamiltonian (1) represents
the two-body interaction

Ĥ(2) =
∑

ℓ1≤ℓ2,ℓ′
1
≤ℓ′

2
,L

ṽL
ℓ1ℓ2ℓ′

1
ℓ′
2

[[b†ℓ1 × b†ℓ2 ]
(L) × [̃bℓ′

2
× b̃ℓ′

1
](L)]

(0)
0 , (3)

where the coefficients ṽ are related to the interaction matrix elements between
normalized two-boson states,

〈ℓ1ℓ2; LM |Ĥ(2)|ℓ′1ℓ′2; LM〉 =

√

(1 + δℓ1ℓ2)(1 + δℓ′
1
ℓ′
2
)

2L + 1
ṽL

ℓ1ℓ2ℓ′
1
ℓ′
2

. (4)

Since the bosons are necessarily symmetrically coupled, allowed two-boson
states are s2 (L = 0), sd (L = 2) and d2 (L = 0, 2, 4). Since for n states with a
given angular momentum one has n(n + 1)/2 interactions, seven independent
two-body interactions v are found: three for L = 0, three for L = 2 and one
for L = 4.

This analysis can be extended to higher-order interactions. One may consider,
for example, the three-body interactions 〈ℓ1ℓ2ℓ3; LM |Ĥ(3)|ℓ′1ℓ′2ℓ′3; LM〉. The
allowed three-boson states are s3 (L = 0), s2d (L = 2), sd2 (L = 0, 2, 4) and
d3 (L = 0, 2, 3, 4, 6), leading to 6 + 6 + 1 + 3 + 1 = 17 independent three-body
interactions for L = 0, 2, 3, 4, 6, respectively. Note that any three-boson state
sid3−i is fully characterized by its angular momentum L; this is no longer the
case for higher boson numbers when additional labels must be introduced.

The number of possible interactions at each order n is summarized in ta-
ble 1 for up to n = 3. Some of these interactions exclusively contribute to the
binding energy and do not influence the excitation spectrum of a nucleus. To
determine the number of such interactions, one notes that the hamiltonian
N̂Ĥ(n−1) for constant boson number (i.e., a single nucleus) essentially reduces
to the (n−1)-body hamiltonian Ĥ(n−1). Consequently, of the Nn independent
interactions of order n contained in Ĥ(n), Nn−1 terms of the type N̂Ĥ(n−1)

must be discarded if one wishes to retain only those that influence the excita-
tion energies. For example, given that there is one term of order zero (i.e., a
constant), one of the two first-order terms (i.e., the combination N̂) does not
influence the excitation spectrum. Likewise, there are two first-order terms
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Table 1
Enumeration of n-body interactions in IBM-1 for n ≤ 3.

Order Number of interactions

total type Ia type IIb

n = 0 1 1 0

n = 1 2 1 1

n = 2 7 2 5

n = 3 17 7 10

aInteraction energy is constant for all states with the same N .

bInteraction energy varies from state to state.

(i.e., n̂s and n̂d) and hence two of the seven two-body interactions do not in-
fluence the excitation spectrum. This argument leads to the numbers quoted
in table 1.

We conclude that, in the nucleus-by-nucleus fits that will be performed in this
work, there is a single one-boson energy of relevance, as well as five two-body
and ten three-body interactions. This number of independent terms is too
high for practical applications and simplifications must be sought on the basis
of physical, empirical or formal arguments. Some of them are based on the
classical limit of the IBM-1 to which we now turn.

2.2 The classical limit

The coherent-state formalism [3,4,5] represents a bridge between algebraic and
geometric nuclear models. The central outcome of the formalism is that for
any IBM-1 hamiltonian a corresponding potential V (β, γ) can be constructed
where β and γ parametrize the intrinsic quadrupole deformation of the nu-
cleus [6]. This procedure is known as the classical limit of the IBM-1.

The coherent states used for obtaining the classical limit of the IBM-1 are of
the form

|N ; αµ〉 ∝
(

s† +
∑

µ

αµd†
µ

)N

|o〉, (5)

where |o〉 is the boson vacuum and αµ are five complex variables. These have
the interpretation of (quadrupole) shape variables and their associated conju-
gate momenta. If one limits oneself to static problems, the αµ can be taken
as real; they specify a shape and are analogous to the shape variables of the
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droplet model of the nucleus [6]. The αµ can be related to three Euler angles
which define the orientation of an intrinsic frame of reference, and two intrin-
sic shape variables, β and γ, that parametrize quadrupole vibrations of the
nuclear surface around an equilibrium shape. In terms of the latter variables,
the coherent state (5) is rewritten as

|N ; βγ〉 ∝


s† + β



cos γd†
0 +

√

1

2
sin γ(d†

−2 + d†
+2)









N

|o〉. (6)

The expectation value of the hamiltonian (1) in this state can be determined
by elementary methods [7] and yields a function of β and γ which is identified
with a potential V (β, γ), familiar from the geometric model. In this way the
following classical limit of the hamiltonian (1) is found:

V (β, γ) = E0 +
∑

n≥1

N(N − 1) · · · (N − n + 1)

(1 + β2)n

∑

kl

a
(n)
kl β2k+3l cosl 3γ, (7)

where the non-zero coefficients a
(n)
kl of order n = 1, 2 and 3 are given by

a
(1)
00 = ǫs, a

(1)
10 = ǫd,

a
(2)
00 =

1

2
v0

ssss, a
(2)
10 =

√

1

5
v0

ssdd + v2
sdsd, a

(2)
01 = − 2√

7
v2

sddd,

a
(2)
20 =

1

10
v0

dddd +
1

7
v2

dddd +
9

35
v4

dddd,

a
(3)
00 =

1

6
v0

ssssss, a
(3)
10 =

√

1

15
v0

ssssdd +
1

2
v2

ssdssd,

a
(3)
01 = −1

3

√

2

35
v0

sssddd −
√

2

7
v2

ssdsdd,

a
(3)
20 =

1

10
v0

sddsdd +

√

1

7
v2

ssdddd +
1

7
v2

sddsdd +
9

35
v4

sddsdd,

a
(3)
11 = −1

5

√

2

21
v0

sddddd −
√

2

7
v2

sddddd −
18

35

√

2

11
v4

sddddd,

a
(3)
30 =

1

14
v2

dddddd +
1

30
v3

dddddd +
3

154
v4

dddddd +
7

165
v6

dddddd,

a
(3)
02 =

1

105
v0

dddddd −
1

30
v3

dddddd +
3

110
v4

dddddd −
4

1155
v6

dddddd, (8)

in terms of the single boson energies ǫs and ǫd, and the matrix elements be-
tween normalized two- and three-body states,
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vL
ℓ1ℓ2ℓ′

1
ℓ′
2

= 〈ℓ1ℓ2; LM |Ĥ(2)|ℓ′1ℓ′2; LM〉,
vL

ℓ1ℓ2ℓ3ℓ′
1
ℓ′
2
ℓ′
3

= 〈ℓ1ℓ2ℓ3; LM |Ĥ(3)|ℓ′1ℓ′2ℓ′3; LM〉. (9)

The expressions (7) and (8) will be useful for making a choice between the
many possible three-body interactions.

2.3 A specific two-body hamiltonian

From a great number of standard IBM-1 studies [2] one has a good idea of a
workable hamiltonian with up to two-body interactions which is of the form

Ĥ(1+2) = ǫd n̂d + κ Q̂ · Q̂ + κ′L̂ · L̂ + λd n̂2
d, (10)

where Q̂ is the quadrupole operator with components

Q̂µ = [d† × s̃ + s† × d̃](2)µ + χ[d† × d̃](2)µ , (11)

and L̂ is the angular momentum operator, L̂µ =
√

10 [d† × d̃](1)µ . The Q̂2 and

L̂2 terms in (10) constitute the hamiltonian of the so-called consistent-Q for-
malism (CQF) [8]. Its eigenfunctions are fully determined by χ which for
χ = ±

√
7/2 gives rise to the deformed or SU(3) limit and for χ = 0 to the

γ-unstable or SO(6) limit. In an extended consistent-Q formalism (ECQF) [9]
a further term n̂d is added with which the third, vibrational or U(5) limit of
the IBM-1 can be obtained. The ECQF hamiltonian thus allows one to reach
all three limits of the model with four parameters. In some nuclei an addi-
tional term λd n̂2

d further improves the description of the excitation spectrum.
The effect of this term with λd < 0 is an increase of the moment of inertia
with increasing angular momentum (or d-boson seniority τ). This so-called
‘τ -compression’ has been used for the first time in ref. [10].

For the calculation of electric quadrupole properties an E2 transition operator
is needed. In the IBM-1 it is defined as T̂µ(E2) = ebQ̂µ where eb is an effective
charge for the bosons. In CQF the quadrupole operator in the E2 operator
and in the hamiltonian are the same [8], that is, they contain the same χ.

2.4 A specific three-body hamiltonian

Many nuclear properties can be correctly described by the relatively simple
hamiltonian (10) but some cannot. A notable example is the even–odd stag-
gering in the γ band of nuclei that are close to the SO(6) limit. A characteristic
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feature of the γ-unstable limit of the IBM-1 is a bunching of γ-band states [11]
according to 2+, (3+, 4+), (5+, 6+),. . . , that is, 3+ and 4+ are close in energy,
etc. This even–odd staggering is observed in certain SO(6) nuclei but not in
all and in some it is, in fact, replaced by the opposite bunching (2+, 3+),
(4+, 5+),. . . , which is typical of a rigid triaxial rotor [12]. From these qualita-
tive observations it is clear that the even–odd γ-band staggering is governed
by the γ degree of freedom (i.e., triaxiality) as it changes character in the
transition from a γ-soft vibrator to a rigid triaxial rotor.

A proper description of triaxiality in the IBM-1 must necessarily involve
higher-order interactions as can be shown from the expressions given in sect. 2.2.
The minimum of the potential V (β, γ) in (7) (which can be thought of as the
equilibrium shape of the nucleus) of an IBM-1 hamiltonian with up to two-
body interactions is either spherical (β = 0), prolate deformed (β > 0, γ = 0◦)
or oblate deformed (β > 0, γ = 60◦). The lowest term in (7) with a triax-

ial extremum is quadratic in cos 3γ (l = 2) and this requires a non-zero a
(3)
02

coefficient. From the explicit expressions given in eqs. (8) it is seen that the
lowest-order interactions possibly leading to a triaxial minimum in V (β, γ) are
thus necessarily of the form

Ĥ
(3)
d =

∑

L

ṽL
dddddd[[d

† × d†](λ) × d†](L) · [[d̃ × d̃](λ
′) × d̃](L), (12)

where the allowed angular momenta are L = 0, 2, 3, 4, 6. For several L more
than one combination of intermediate angular momenta λ and λ′ is possible;
these do not give rise to independent terms but differ by a scale factor. To
avoid the confusion caused by this scale factor, we rewrite the hamiltonian (12)
as

Ĥ
(3)
d =

∑

L

vL
ddddddB̂

†
L · B̃L, B̂†

LM = NλL[[d† × d†](λ) × d†]
(L)
M . (13)

For simplicity’s sake the coefficients vL
dddddd shall be denoted as vL in the fol-

lowing. The normalization coefficient NλL is defined such that BLM |d3; LM〉
yields the vacuum state |o〉, where |d3; LM〉 is a normalized, symmetric state
of three bosons coupled to total angular momentum L and z projection M .
The normalization coefficients NλL are given in table 2 for the different com-
binations of λ and L. Results are independent of λ provided the appropriate
coefficient NλL is used.

While there are good arguments for choosing any of the three-body terms
B̂†

L · B̃L, it is more difficult to distinguish a priori between these five different

interactions. From the expression for a
(3)
02 given in eqs. (8) it is seen that the

cubic term B̂†
L · B̃L with L = 3 is proportional to sin2 3γ. It is therefore the

interaction which is most effective to create a triaxial minimum in the potential
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Table 2
Normalization coefficients NλL for three-d-boson states.

L 0 2 3 4 6

λ = 0 —
√

5
14 — — —

λ = 2
√

1
6

√

7
8

√

7
30

√

7
22 —

λ = 4 —
√

35
72 −

√

7
12

√

7
20

√

1
6

V (β, γ) and for this reason it has been studied in most detail. The effect of
B̂†

3 ·B̃3 on even–odd staggering in the γ band was demonstrated with numerical
calculations [13]. Applications of the L = 3 three-body term were proposed in
ref. [14] for SO(6)-like Xe and Ba isotopes in the mass region around A = 130,
as well as for 196Pt.

Besides these physical and empirical arguments, there are also attractive for-
mal aspects of the B̂†

3 ·B̃3 interaction among the d bosons. A first one concerns
its effect in the SU(3) limit of the IBM-1. In this limit states are character-
ized by the U(6) label [N ], the SU(3) labels (λ, µ), the angular momentum or
SO(3) label L and its z projection M , and by an SU(3) ⊃ SO(3) multiplicity
label κ [15]. Likewise, any interaction can be written in terms of products of
tensor operators T̂ †

[N ](λ,µ)κLM [which creates an N -boson state with the quan-
tum numbers (λ, µ)κLM ] and their hermitian conjugates. Since a three-boson
state with L = 3 is unique, it follows that its SU(3) labels are fixed, namely,
(λ, µ) = (2, 2) and κ = 2, and that the following proportionality must hold:

B†
L=3,M ∝ T̂ †

[3](2,2)κ=2,L=3,M . (14)

This property can be used to show that

B̃L=3,M |[N ](2N, 0)L′M ′〉 = 0,

B̃L=3,M |[N ](2N − 4, 2)κ′ = 0, L′M ′〉 = 0, (15)

that is, the B̂†
3 · B̃3 interaction acting on the ground-state band (2N, 0) or

on the β-vibrational band (2N − 4, 2)κ = 0 gives zero. The former property
results from the fact that the SU(3) Kronecker product (2N, 0) × (2, 2) does
not yield an SU(3) representation that is contained in the U(6) representation
[N − 3].

The situation can be summarized by stating that the SU(3) hamiltonian aug-
mented with a B̂†

3 · B̃3 interaction is an example of a partial dynamical sym-
metry [16]: while the eigenstates of this extended hamiltonian are not solvable
in general, some of them are, in particular the members of the ground-state
and β bands. In first approximation the effect of B̂†

3 · B̃3 is to shift the entire γ
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Fig. 1. Levels of the ground-state and γ bands up to angular momentum Jπ = 10+

in the exact SO(6) limit (labelled ‘IBM1’) and in the SO(6) limit plus the three-body

interaction B̂
†
3 ·B̃3 (labelled ‘IBM1c’). The IBM-1 hamiltonian (10) is used for χ = 0

with κ = −50 keV, κ′ = 5 keV and ǫd = λd = 0; the strength of the three-body
term is v3 = −50 keV. The number of bosons is N = 10.

band in energy without changing its moment of inertia or the structure of its
states. We also note that this nicely complements the (two-body) interaction
derived previously [17] which leaves the ground-state and γ bands solvable but
modifies the structure of the β band.

Let us now turn to the effect of the B̂†
3 ·B̃3 interaction in the SO(6) limit of the

IBM-1. Its influence on the energy spectrum is illustrated in fig. 1. It is seen
that the ground-state band levels are only slightly affected by the cubic inter-
action while the effect on the γ-band energies is important. In particular, the
even–odd staggering in the γ band, characteristic of γ-soft or SO(6) behaviour,
is greatly diminished. A sensitive way of testing the signature splitting of the
γ band is through S(J) given by [18]

S(J) =
E(J) − E(J − 1)

E(J) − E(J − 2)
· J(J + 1) − (J − 1)(J − 2)

J(J + 1) − J(J − 1)
− 1, (16)

which vanishes if there is no even–odd staggering. This quantity is shown in
fig. 2 for the schematic SO(6) case. The figure confirms that the three-body
interaction B̂†

3 · B̃3 (with v3 < 0) has the property of reducing the γ-band
staggering but it also reveals that this reduction is more important for the
high-J levels. This is a characteristic feature that can be experimentally tested.
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Fig. 2. The signature splitting of the γ band in the exact SO(6) limit (labelled

‘IBM1’) and in the SO(6) limit plus the three-body interaction B̂
†
3 · B̃3 (labelled

‘IBM1c’). The parameters of the hamiltonian are given in the caption of fig. 1.
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Fig. 3. Potential energy surfaces V (β, γ) in the SO(6) limit. The plot on the
left-hand side shows the classical limit of the IBM-1 hamiltonian in the SO(6) limit

while on the right-hand side the effect of B̂
†
3 · B̃3 is included. The parameters of the

hamiltonian are given in the caption of fig. 1.

Figure 3 illustrates the effect of the cubic interaction B̂†
3 · B̃3 on the potential

V (β, γ) derived in the classical limit. While the potential in the SO(6) limit
is completely γ independent, a shallow triaxial minimum develops for v3 < 0.
We note, however, that this triaxial minimum exists precariously for χ = 0
and quickly disappears when χ acquires non-zero values.

Most of the results presented below are obtained with the d-boson cubic in-
teraction with L = 3 which in general reproduces best the γ-band properties.
We have nevertheless systematically investigated the terms with L 6= 3, and
will occasionally refer to those results in the following.
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3 Numerical procedure

To test effectiveness of the various cubic interactions in reproducing the data
in near-SO(6) nuclei, we have devised the following fitting procedure. The
nuclei considered should have enough known states in the ground-state and γ
bands—preferably up to angular momentum Jπ = 10+—for the procedure to
be meaningful. The first step is to determine the parameters in the standard
IBM-1 hamiltonian (10). For an initial choice of χ, the parameters κ and κ′

are first determined while keeping ǫd and λd zero. With (κ, κ′) thus found as
starting values, a new fit is performed setting ǫd free as well, leading to the
best values (κ, κ′, ǫd). Finally, this process is repeated by letting also λd free,
leading to a final set (κ, κ′, ǫd, λd) for a given χ. In some nuclei, especially if not
enough data are available, the last step can prove numerically unstable and
no unique set (κ, κ′, ǫd, λd) is found. In that case we leave λd equal to zero.
The parameter χ cannot be reliably determined from energies but is fixed
from E2 transition rates which are calculated in CQF. If not enough E2 data
are available, we take χ from a neighbouring isotope. The entire procedure is
repeated for different χ, retaining the value that gives the best agreement with
the E2 data. In a last step the importance of the B̂†

L · B̃L terms is tested in a
similar way by allowing the variation of all five parameters (κ, κ′, ǫd, λd, vL)—or
four if λd = 0—while keeping χ constant. Since we are particularly interested
in the influence of vL on the even–odd staggering, in this final step we adjust
this parameter while assigning a larger weight to the members of the γ band.
The accuracy of the fits can be tested by plotting the signature splitting S(J)
which will be done systematically.

4 Results and discussion

In this section we present the results for 16 different nuclei ranging from
neutron-rich Ru and Pd isotopes, via Xe and Ba nuclei with mass number
A ∼ 130 to neutron-deficient Os and Pt isotopes. All nuclei are close to the
SO(6) limit of the IBM-1 and have γ bands that are known at least up to
Jπ = 7+. Since the IBM-1 is a low-spin model, states up to Jπ = 10+ but
not higher are included in the fits. All data have been retrieved from the
Brookhaven National Nuclear Data Center [19] unless indicated otherwise.

4.1 Ruthenium and palladium isotopes

In the context of the interacting boson model, the Ru and Pd isotopes are de-
scribed as transitional between vibrational [or U(5)] and γ soft [or SO(6)] [20].
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Table 3
Parameters and rms deviation for Ru and Pd isotopes in units of keV.

Nucleus ǫd κ κ′ λd v3 χ∗ σ

108Ru 1078 −57.6 12.1 −144.9 — −0.10 23

852 −66.8 8.3 −130.7 −13.1 −0.10 45

732 −74.6 14.0 −157.8 30.5∗∗ −0.10 19

110Ru 1053 −46.1 15.5 −123.7 — −0.10 39

873 −56.9 9.9 −108.5 −28.1 −0.10 20

112Ru 837 −45.3 15.2 −116.8 — −0.10 55

424 −57.8 7.7 −73.7 −46.8 −0.10 38

114Pd 321 1.0 12.2 — — −0.10 91

486 −19.6 5.7 — −94.6 −0.10 61

116Pd 367 −3.5 12.4 — — −0.10 85

451 −19.1 8.3 — −84.3 −0.10 56

∗Dimensionless. ∗∗Value of the coefficient v2.

In this interpretation the neutron-rich members of these isotopic chains are
close to the SO(6) limit of the IBM-1 and thus they fall into the class of nuclei
we wish to study in this work.

Recently, gamma-ray spectroscopy of the fission fragments produced by a 252Cf
source has significantly improved our knowledge of the structure of the iso-
topes 108−112Ru [21]. The new data that became available on these nuclei was
considered in ref. [22] where particular attention was paid to the staggering
pattern in the γ band and the triaxial degree of freedom. The advantage of the
method as described in sect. 3 is that a consistent one- and two-body IBM-1
hamiltonian is taken to which a three-body term is added without changing
the value of χ. In this way any improvement of the description of the γ-band
staggering can be unambiguously attributed to the three-body term. Also, a
least-squares fit is performed to the parameters in the hamiltonian according
to the procedure outlined in sect. 3. In spite of these differences the results
obtained here are globally in agreement with those of Stefanescu et al. [22].
The main conclusion is that, while the staggering pattern of the γ band is
much improved with the B̂†

3 · B̃3 interaction in 110Ru and 112Ru, this is not
the case for 108Ru. This is evident from the parameters shown in table 3.
The root-mean-square (rms) deviation σ actually increases for 108Ru when
the three-body interaction is added to the hamiltonian as a consequence of
the fit procedure which gives more weight to the γ-band members when also
v3 is fitted. The increase in σ illustrates that the γ-band energies in 108Ru

12
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Fig. 4. Observed and calculated signature splitting of the γ bands in 108−112Ru.
The data are indicated by crosses and the results of the IBM-1 without and with
the three-body interaction B̂

†
3 · B̃3 by squares and dots, respectively.

cannot be reproduced by adding B̂†
3 · B̃3 without destroying the agreement for

the ground-state band.

As one goes to the heavier Ru isotopes, one notices a distinct evolution of the
even–odd staggering pattern (see fig. 4). Whereas the staggering pattern is
essentially consistent with the IBM-1 calculation without cubic interactions
in 108Ru, this is no longer the case in the two heavier isotopes. In 110Ru there
is very little staggering at all, S(J) ≈ 0, and in 112Ru the staggering pattern in
the data is in fact the reverse of what is obtained without cubic interactions,
especially at higher angular momenta. The B̂†

3 · B̃3 interaction shifts levels
with even (odd) angular momentum upwards (downwards) in energy and it
does so increasingly with increasing spin. This is exactly what can be observed
from the data in 110Ru and 112Ru and this provides a strong phenomenological
argument for the use of the B̂†

3 · B̃3 interaction.

From the plot of the signature splitting we can also ‘understand’ why the
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Fig. 5. Same caption as fig. 4 for the nucleus 108Ru and the three-body interaction
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Fig. 6. Same caption as fig. 4 for the nuclei 114,116Pd.

B̂†
3 · B̃3 interaction fails in 108Ru: the deviations in staggering between the

data and the IBM-1 calculation without cubic interactions actually decrease
rather than increase with angular momentum. This feature is incompatible
with the L = 3 term in the hamiltonian (12) but is exactly what is obtained
with the L = 2 term as shown in fig. 5.

The results for the γ-band staggering in the 114,116Pd isotopes are shown in
fig. 6. In these nuclei one cannot reliably determine the coefficient λd of n̂2

d

which is therefore kept zero. The inclusion of the three-body interaction B̂†
3 ·B̃3

does improve the fit substantially (see the rms deviations in table 3) but even
with this term the observed staggering pattern cannot be reproduced.

It is important to check that the cubic hamiltonian thus obtained gives reason-
able results as regards electric quadrupole transitions. This will be illustrated
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for some of the isotopes discussed in the subsequent subsections. For the Ru
isotopes it has been shown to be the case in ref. [22] while the relevant E2
data are not known for 114,116Pd.

Once the parameters of the hamiltonian have been fitted to the energy spec-
trum and E2 transition rates, its classical limit yields a potential energy sur-
face V (β, γ) as obtained from the expression (7). In this way it can be verified
to what extent triaxial features are introduced by the cubic interactions. Fig-
ure 7 provides an illustration by showing the potential energy surfaces V (β, γ)
for the Ru isotopes obtained in the classical limit of the IBM-1 hamiltonian
without and with the B̂†

3 · B̃3 interaction. The surfaces on the left-hand side
are obtained from the two-body hamiltonian and have a prolate minimum
(γ = 0o) for β ≈ 1.2. (The quadrupole deformation parameter β is larger in
the IBM than in the geometric Bohr–Mottelson model for reasons discussed
in ref. [23].) The hamiltonian which includes the B̂†

3 · B̃3 interaction yields the
surfaces on the right-hand side. One notices that in the heavier Ru isotopes
the deformed minimum extends further towards triaxial shapes and becomes
very flat in 112Ru with β ≈ 1 up to γ ≈ 15o. In 112Ru noticeable changes of the
potential V (β, γ) are found as a result of the inclusion of cubic interactions
which perhaps is not surprising since parameter variations are rather impor-
tant between IBM-1 and IBM-1c in this nucleus (see table 3). However, even
in this example with a large v3 parameter no triaxial minimum is obtained. A
similar analysis of 114,116Pd yields potentials with a spherical minimum which
become flatter if the B̂†

3 · B̃3 interaction is added to the hamiltonian.

4.2 Xenon and barium isotopes

Casten and von Brentano [24] pointed out the occurrence of SO(6)-like nuclei
in the region with mass number A ∼ 130. In particular, the isotopes 124−130Xe
and 128−134Ba were found to display properties that are consistent with the
SO(6) limit. In a subsequent study [14] it was shown that the theoretical
description of these nuclei is greatly improved via the inclusion of the three-
body interaction B̂†

3 · B̃3. Since these early studies more members of the γ
band have been established experimentally in several Xe and Ba isotopes and
it appears therefore worthwhile to reconsider this region as regards triaxiality
features and γ-band staggering.

The fitting procedure as explained in sect. 3 leads to the parameters and rms
deviations shown in table 4. One notes that in all Xe and Ba isotopes the in-
clusion of the B̂†

3 · B̃3 interaction leads to a smaller rms deviation. Parameter
fluctuations can be large, however. This is particularly the case in the Xe iso-
topes, with parameters in 126Xe very different from those in the neighbouring
isotopes. A possible reason is the fact that the parameters in the hamiltonian
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Fig. 7. Potential energy surfaces V (β, γ) for the Ru isotopes. The plots on the
left-hand side show the classical limit of the IBM-1 hamiltonian with only two-body
interactions while on the right-hand side the effect of B̂

†
3 · B̃3 is included.
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Table 4
Parameters and rms deviation for Xe and Ba isotopes in units of keV.

Nucleus ǫd κ κ′ λd v3 χ∗ σ

124Xe 922 −65.8 11.3 −145.8 — −0.10 44

841 −59.1 8.0 −111.5 −33.4 −0.10 24

126Xe 788 −49.2 12.3 −111.7 — −0.10 82

406 −7.4 6.8 22.7 −105.1 −0.10 18

128Xe 795 −54.0 11.2 −130.0 — −0.10 42

788 −69.9 8.3 −141.5 −55.5 −0.10 14

128Ba 808 −55.8 7.2 −107.7 — −0.10 77

888 −62.1 11.4 −144.2 36.4 −0.10 50

130Ba 730 −48.3 11.0 −98.6 — −0.20 26

828 −51.2 14.4 −130.6 31.1 −0.20 20

132Ba 700 −23.2 12.6 −70.4 — −0.20 86

759 −26.5 14.8 −94.5 41.5 −0.20 76

∗Dimensionless.

are strongly correlated and hence very sensitive to slight changes in the fitted
data. The results for the γ-band staggering are shown in figs. 8 and 9. In the
Xe isotopes one observes an evolution of the γ-band signature splitting with
neutron number similar to the one in the Ru isotopes. The observed even–odd
staggering is smaller than the one calculated without cubic interaction, and
this difference increases with angular momentum J to the extent that in the
heavier Xe isotopes it is reversed at J = 10. Note that the γ-band levels are
known only up to Jπ = 9+

γ in 126Xe and up to Jπ = 7+
γ in 128Xe. It would be

of interest to confirm experimentally the predicted signature splitting for the
higher-spin states.

The γ bands in the Ba isotopes are peculiar in the sense that their observed
even–odd staggering is larger than the one calculated without cubic interac-
tion. Again, this deviation increases with angular momentum J and can be
corrected with the B̂†

3 · B̃3 interaction but this time with a positive coefficient
v3 (see table 4). In fact, for J ≥ 8 the signature splitting |S(J)| is larger than
1 in 128Ba and 132Ba which corresponds to a 7+

γ above 8+
γ and a 9+

γ above
10+

γ . This peculiar behaviour can be modelled to some extent with a cubic
interaction.

The positive value of the fitted coefficient v3 has the expected effect on the
potential V (β, γ) derived in the classical limit, as is illustrated in fig. 10 for
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Fig. 8. Same caption as fig. 4 for the nuclei 124−128Xe.

the nucleus 128Ba. Whereas a negative v3 leads to a softer potential in the γ
direction (as in 112Ru), a positive value for this interaction yields a more rigid,
axially symmetric shape with a slightly larger deformation β.

In the initial two-body hamiltonian the E2 transition rates depend strongly on
the value of χ in the quadrupole operator. It is expected that this is still the
case when cubic terms are added to the hamiltonian as long as these do not
substantially alter its eigenstates. In several of the Xe and Ba isotopes many
B(E2) values between the low-lying states are known and these allow a test of
the wave function in the cubic calculation. The results are shown in tables 5
and 6. Generally a good agreement between experimental and calculated
B(E2) values is obtained. One notable discrepancy is the 2+

2 → 0+
1 transition in

132Ba with a calculated B(E2) value which is an order of magnitude too small.
This value is equally small in the IBM-1 calculation without cubic interaction
and is due to an accidental cancellation of terms with the hamiltonian (10).

18



2 4 6 8 10

angular momentum J

-1

-0.5

0

0.5

1

S
H
J
L

Ba132

-1

-0.5

0

0.5

1

S
H
J
L

Ba130

-1

-0.5

0

0.5

1

S
H
J
L

Ba

Expt

IBM1

IBM1c

128

Fig. 9. Same caption as fig. 4 for the nuclei 128−132Ba.
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Fig. 10. Same caption as fig. 7 for the nucleus 128Ba.
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Table 5
Experimental and calculated B(E2) values in units of 102 e2fm4 in 124−128Xe.

124Xe 126Xe 128Xe

Jπ
i → Jπ

f Expt IBM-1c Expt IBM-1c Expt IBM-1c

2+
1 → 0+

1 30(2) 30 15(5) 15 15(1) 18

4+
1 → 2+

1 40(5) 42 — 24 23(2) 24

6+
1 → 4+

1 48(18) 45 — 29 30(3) 24

8+
1 → 6+

1 19(8) 43 — 30 37(4) 20

2+
2 → 0+

1 0.48(11) 0.65 — 0.00 0.25(2) 0.20

2+
2 → 2+

1 21(4) 33 — 24 18(2) 21

3+
1 → 2+

1 0.32(12) 0.80 — 0.00 — 0.21

3+
1 → 2+

2 2.9(11) 34 — 22 — 18

4+
2 → 2+

2 26(9) 22 — 15 — 12

Table 6
Experimental and calculated B(E2) values in units of 102 e2fm4 in 128−132Ba.

128Ba 130Ba 132Ba

Jπ
i → Jπ

f Expt IBM-1c Expt IBM-1c Expt IBM-1c

2+
1 → 0+

1 28(3) 29 22(1) 22 17(2) 26

4+
1 → 2+

1 41(2) 39 31(1) 31 — 40

6+
1 → 4+

1 39(3) 40 37(2) 31 — 44

8+
1 → 6+

1 37(5) 37 35(1) 28 — 39

2+
2 → 0+

1 1.3(2) 1.2 — 1.1 1.5(2) 0.17

2+
2 → 2+

1 — 24 — 17 57(6) 37

4+
2 → 2+

1 0.34(2) 0.25 — 0.47 — 0.27

4+
2 → 2+

2 24(2) 24 — 17 — 23

6+
2 → 4+

1 0.30(4) 0.40 — 0.23 — 0.39

6+
2 → 4+

2 38(5) 28 — 21 — 27

4.3 Osmium and platinum isotopes

Cizewski et al. [25] proposed 196Pt as a first example of the SO(6) dynamical
symmetry of the IBM-1. Subsequently, it became clear that the entire region
of Pt and Os isotopes can be described as transitional between the SO(6)

20



Table 7
Parameters and rms deviation for Os and Pt isotopes in units of keV.

Nucleus ǫd κ κ′ λd v3 χ∗ σ

180Os 946 −29.1 4.1 −62.5 — −0.30 19

634 −41.2 −5.1 −12.0 −58.7 −0.30 10

182Os 1013 −32.7 5.7 −81.3 — −0.30 8

813 −37.8 2.8 −62.3 −14.9 −0.30 9

184Os 844 −40.6 6.8 −89.7 — −0.30 2

973 −35.6 9.3 −99.2 10.0 −0.30 1

186Os 871 −34.8 10.9 −95.7 — −0.30 5

752 −40.4 7.8 −84.5 −16.1 −0.30 1

186Pt 747 −33.7 3.7 −65.9 — −0.20 36

449 −15.2 −3.9 15.5 −60.5 −0.20 24

∗Dimensionless.

and SU(3) limits [26]. In this subsection we present a detailed analysis of
Os and Pt isotopes of which enough γ-band levels are firmly established for
the staggering analysis to be meaningful. In both 186Os and 186Pt the γ-band
levels are known up Jπ = 10+ such that its staggering properties can be fitted
reliably in these nuclei. Less information is available in 180Os and 182Os (up to
7+

γ ), and even less in 184Os (up to 6+
γ ). The latter nucleus, although relatively

poorly known, is included in the analysis since it is intermediate between two
better known isotopes.

The parameters resulting from the fits are shown in table 7. Since the Os
isotopes are further removed from SO(6) and closer to SU(3), the value of |χ| is
larger than in the other nuclei considered so far. The more deformed character
of the Os isotopes also leads to a parameter systematics which is smoother than
in previous examples. It should be noted, however, that in 184Os the sign of v3

comes out positive while in the other isotopes it is negative. This conceivably
might be due to the fact that not enough levels are known in the γ band of this
nucleus. The main outcome of the fits to 184Os and 186Os is that the B̂†

3 · B̃3

interaction is small. The results for the γ-band staggering in 180−186Os and in
186Pt are shown in figs. 11 and 12, respectively. Given the low rms deviations
obtained in the fit, it comes as no surprise that in all nuclei the observed
signature splitting of the γ band is accurately reproduced. It is also seen that
the inclusion of the B̂†

3 · B̃3 interaction leads to a systematic improvement in
the description of the γ band. A noteworthy example is 186Os. The standard
two-body IBM-1 hamiltonian already gives an excellent description with an
rms deviation of only σ = 5 keV. Nevertheless, there is a small but consistent

21



2 4 6 8 10

angular momentum J

-0.2

-0.1

0

0.1

0.2

S
H
J
L

Os186

-0.2

-0.1

0

0.1

0.2

S
H
J
L

Os184

-0.2

-0.1

0

0.1

0.2

S
H
J
L

Os182

-0.2

-0.1

0

0.1

0.2

S
H
J
L

Os

Expt

IBM1

IBM1c

180

Fig. 11. Same caption as fig. 4 for the nuclei 180−186Os.
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Fig. 12. Same caption as fig. 4 for the nucleus 186Pt.
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Table 8
Experimental and calculated B(E2) values in units of 102 e2fm4 in 180−186Os.

180Os 182Os 184Os 186Os

Jπ
i → Jπ

f Expt IBM-1c IBM-1c IBM-1c Expt IBM-1c

2+
1 → 0+

1 76(19) 74 77 61 58(2) 69

4+
1 → 2+

1 122(16) 107 110 86 85(4) 97

6+
1 → 4+

1 101(25) 119 120 90 116(3) 104

8+
1 → 6+

1 40(8) 125 124 88 110(6) 103

2+
2 → 0+

1 — 4.3 3.9 2.4 6.4(3) 3.1

2+
2 → 2+

1 — 17 11 4.6 14.8(5) 8.6

2+
2 → 4+

1 — 1.3 0.72 0.32 0.8(3) 0.60

4+
2 → 2+

1 — 0.37 0.80 1.0 2.0(2) 0.70

4+
2 → 4+

1 — 17 11 4.2 15.6(13) 8.3

4+
2 → 2+

2 — 41 42 33.0 45(4) 34

6+
2 → 4+

1 — 0.00 0.26 0.79 0.80(7) 0.24

6+
2 → 4+

2 — 77 79 60 75(7) 62

deviation in the staggering pattern of the γ band which is remedied with the
cubic term. The nucleus 186Os is also well studied as regards its E2 decay
properties and, as can be seen from table 8, all its known B(E2) values are
rather well reproduced by the calculation. In two of the four isotopes, namely
182Os and 184Os, only one or two B(E2) values are known experimentally, and
for these nuclei only theoretical predictions are quoted in the table.

As a final outcome of this study we show in fig. 13 the potential energy sur-
faces for the different Os isotopes which are obtained in the classical limit of
the IBM-1 hamiltonian with cubic interactions. It shows the evolution with in-
creasing mass number A towards a potential with a more deformed minimum
and which is more rigid in γ.

5 Conclusions

Two main conclusions can be drawn from this work. First, very accurate
nucleus-by-nucleus fits can be achieved with the simplified IBM-1 hamilto-
nian (10) to which a single three-body interaction of the type (12) is added.
In almost all γ-soft nuclei studied the inclusion of the B̂†

3 ·B̃3 interaction yields
a consistently better description of the signature splitting of the γ band. This
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Fig. 13. Potential energy surfaces V (β, γ) for the nuclei 180−186Os. All plots show
the classical limit of the IBM-1 hamiltonian with the cubic interaction included.

improved description of the γ-band energies is obtained while maintaining
good agreement for the E2-decay properties. Nevertheless, no systematics of
three-body parameters could be established. While we have currently a good
working hamiltonian which includes up to two-body interactions and which
describes nuclei throughout the nuclear chart, little is known of the overall
trends for three-body interactions.

A second conclusion concerns the geometry underlying the algebraic hamil-
tonians, as was illustrated with several examples. One surprising outcome of
our approach is that an unbiased fit of energy levels in some nuclei (114,116Pd,
126Xe, 132Ba and 186Pt) leads to an IBM-1 hamiltonian of which the classical
limit yields a potential with a spherical minimum whereas these nuclei usually
are considered γ soft and weakly deformed. The additional three-body inter-
action v3B̂

†
3 · B̃3, introduced to improve the description of the γ band, makes

the potential energy surface V (β, γ) softer in γ for v3 < 0 and more rigid for
v3 > 0. The sign of this coefficient follows from the staggering pattern of the
γ band. Finally, in none of the nuclei studied we found evidence for a triaxial
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minimum.
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