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Coulomb blockade for an oscillating tunnel junction
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We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accu-
mulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator.
The junction is voltage biased and connected in series with an impedance Z(ω). We discuss how the
picture of Coulomb blockade is modified by the presence of the oscillator. Quantum fluctuations of
the mechanical oscillator modify the I-V characteristics particularly in the strong Coulomb blockade
limit. We show that the oscillator can be taken into account by a simple modification of the effective
impedance of the circuit. We discuss in some details the case of a single inductance Z(ω) = iLω and
of a constant resistance Z(ω) = R. With little modifications the theory applies also to incoherent
transport in Josephson junctions in the tunneling limit.

PACS numbers: 73.23.-b, 85.85.+j, 74.50.+r

I. INTRODUCTION

The improved ability to build electronic devices on
the nanometer scale opens the perspective to exploit and
study the coupling between electronic transport and me-
chanical degrees of freedom.1,2 The elementary system
typically considered in nano-electromechanics is the har-
monic oscillator coupled in some way to the electronic
degrees of freedom. A widely studied device is the single-
electron transistor which consists in a small metallic is-
land connected to the leads through two tunnel barriers.
The oscillating part of the device can be either a nearby
gate electrode, or the island itself. The motion of the
device modifies mainly two quantities: the capacitances
and the (bare) tunneling rates. According to which de-
pendence dominates, several effects have been predicted
or observed. When only the capacitance is modified by
the oscillation, it has been shown in the weak coupling
limit that the variance of the oscillator position satis-
fies the equipartition theorem with the voltage bias re-
placing the temperature.3 Under specific conditions, the
system may also undergo dynamical instabilities.4,5,6 In
the strong coupling limit, a new kind of current block-
ade (Frank-Condon blockade) has been predicted.7,8,9,10

This effect also persists in the classical limit.11,12,13 When
the oscillation modifies the distance between the metal-
lic leads, it has been shown that a dynamical instability
can occur.14,15,16,17,18,19,20 This instability (called shuttle
instability) is characterized by a synchronization of the
electronic transport with the mechanical oscillations, as
is clearly seen from the full counting statistics of charge
transport.21,22 Observation of shuttling is difficult, since
the distance between the metallic leads must be com-
parable with the tunneling length in order to produce

a measurable current.23,24,25,26 Very recently indications
of shuttling have been found by the authors of Ref. 27
probably in an intermediate regime between tunneling
and field emission. The wide interest for the single elec-
tron transistor comes from its high sensitivity to a small
variation of the gate voltage. Thus, it can be used, for in-
stance, as a sensitive displacement detector28 and it has
been shown to reach the quantum back action limit.29

An even simpler device is the single tunnel junc-
tion where the distance between the two metals con-
stitutes the mechanical degree of freedom. The effect
of the position dependence of the tunneling resistance
has been already considered in the literature,30,31,32 both
for the current and the noise of the device. In this
case, the force acting on the oscillator originates from
the electron-momentum transfer. Recently, the position
fluctuation has been detected by measuring the current
fluctuations.33 This experiment probed the back action of
the current crossing the tunnel junction on the oscillator.
Apparently, the position dependence of the tunneling ma-
trix elements is not sufficient to explain the intensity of
the back action. To our knowledge, the effect of the force
coming from the variation of the capacitance C as a func-
tion of the distance between the leads has not been con-
sidered in this context so far. A particularly interesting
case is when the device is voltage biased in series with
an impedance Z(ω) leading, under certain conditions, to
the Coulomb blockade physics.34 Then, similarly to what
happens for the single electron transistor, one can expect
that a small position dependence of the capacitance can
affect the current-voltage characteristics of the device.

In this paper, we consider the effect of the mechani-
cal oscillator on the I-V curve. We will work within the
assumptions of the standard Coulomb blockade theory.34
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Specifically, we assume that the tunneling resistance is
sufficiently large so that the oscillator and the electro-
magnetic environment have time to relax to equilibrium
between two tunneling events. This is the opposite limit
with respect to the one considered in Refs. 31,32 for the
tunneling dependent Hamiltonian. There, the tunneling
is so frequent that the system may reach a stationary
off-equilibrium state. Restricting to the linear coupling
of the oscillator with the electromagnetic modes, we will
discuss the effect of the quantum fluctuations of the me-
chanical oscillator on the current.

The paper is organized as follows. In Sect. II we de-
scribe the model and its range of validity. We show that
within a linear approximation the mechanical oscillator
can be accounted by an effective impedance. In Sect. III
we consider two specific cases of Z(ω) and discuss the
resulting conductance at zero temperature. In Sect. IV
we consider the case of an oscillating Josephson junction
by extending the results of previous sections to the su-
perconducting case. Section V gives our conclusions.

II. MODEL

We consider the electronic transport through a circuit
composed of a tunnel junction in series with an arbitrary
impedance Z(ω) and biased with an ideal voltage source
V . We assume that one of the two metallic leads forming
the tunnel junction is free to oscillate and can thus mod-
ify its distance with respect the other one. The single
degree of freedom describing the oscillation is given by
x, the oscillator position. Its effective mass and spring
constant are m and k, respectively. The tunneling sur-
face is very small. Thus, it is important to account for
the effective capacitor forming at the tunnel barrier. Its
capacitance C(x) depends on the position of the oscilla-
tor. The tunneling resistance RT (x) may also depend on
x. In the following we will neglect this dependence by
showing that its effect is negligible with respect to that
of C(x) in the regime of rare tunneling events that we
are considering. The device is depicted schematically in
Fig. 1.

A. Time scales

As anticipated in the Introduction we will work within
the same hypothesis that are commonly used to de-
scribe Coulomb blockade. Specifically, we assume that
the relaxation times for the electromagnetic environment,
1/γRC = RC, and for the oscillator, 1/γ, are shorter
than the average time between two tunneling events,
τT ∼ eRT /V . Here, R ∼ Re[Z] is the typical resistance
associated with the impedance Z and γ is the damp-
ing coefficient of the mechanical oscillator with frequency
ωm =

√

k/m. If 1/γRC , 1/γ ≪ τT , the system has time
to come back to the equilibrium state after an electron
has crossed the tunnel barrier. This allows us to calculate

Z

V

m

k

C(x), RT (x) x
I

L1 L2 L3 Li

C1 C2 C3 Ci

∼=

FIG. 1: Schematic representation of the system. A tunnel-
ing contact is formed between an oscillating electrode (here
depicted as a STM tip) and a fixed surface. The oscillator
is modelled by a spring constant k and an effective mass m.
The junction between the tip and the plate is characterized
by an effective capacitance C(x) and resistance RT (x), where
x denotes the position of the tip. The circuit is closed by an
impedance Z and a voltage source V .

the average current on the equilibrium quantum state of
the environment. It gives the following limitations on
the voltage: eV ≪ EC(RT /R) and eV ≪ e2γRT , where
EC = e2/2C is the Coulomb energy. Since we are inter-
ested in the range of voltages around EC/e we assume
that RT ≫ R and RT ≫ 1/Cγ. The first condition
is the standard tunneling condition, the second involves
the mechanical damping. One should remember that the
damping of the oscillator also depends on the impedance
of the circuit. Thus, even if the oscillator is not damped
by a mechanical source, its quality factor would not be
infinite. In the limit of large RT the above conditions
can thus always be satisfied.

Let us now discuss the effect of the position dependence
of the tunneling resistance. To evaluate the importance
of this effect for the dynamics of the junction we consider
the effective friction coefficient generated by the position
dependence of RT :31

γT ≃ RQ

RT

(

xo

λT

)2

ωm (1)

where RQ = 2π~/e2 is the quantum of resistance, x2
o =

~/2mωm is the (square of the) zero point motion am-
plitude of the oscillator and λT is the tunneling length
defined by λ−1

T = (dRT /dx)/RT . The explicit expression
of the friction coefficient induced by the electromagnetic
dissipation is given below for a specific case [cf. Eq. (28)].
Independently on its explicit form, what matters is that
it does not depend on the tunneling resistance since the
damping is due to the environment and the capacitive
coupling. Thus the ratio γT /γ can always be made small
by choosing a large enough tunneling resistance. Then
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we may safely neglect the position dependence of the tun-
neling matrix elements. We will come back to this point
at the end of Section III.

B. Derivation of the general expression for the

current

The Hamiltonian describing the system is the follow-
ing:

H = Hj + Hosc + HEM . (2)

where Hj =
∑

k ξkc†kck +
∑

q ξqc
†
qcq + HT with HT =

A + A† and A =
∑

k,q tkqe
iφ(t)c†kcq. Here, k and q label

the femionic eigenstates in the fixed and oscillating elec-
trode, respectively, ck is a destruction operator in state
k, with energy ξk, and tkq the tunneling matrix element.
The phase φ(t) is obtained by integrating the voltage dif-

ference at the junction: φ(t) =
∫ t

−∞
(eVJ(t′)/~)dt′. For

a constant voltage biased junction φ(t) = eV t/~. How-
ever, due to the impedance in series with the junction,
the voltage fluctuates and, in general, VJ is different from
V . The Coulomb blockade physics stems from the behav-
ior of the phase φ and, specifically, from its correlation
function. The current through the junction can be ob-
tained by perturbation theory in HT . The operator for
the current from the mobile electrode to the fixed one
reads I = −ie(A − A†)/~. Linear response theory gives:

I =
e

~2

∑

kq

|tkq|2
∫ +∞

−∞

dte−i(ξk−ξq)t/~ ×

[〈

e−iφ(t)eiφ(0)
〉

fk(1 − fq) −
〈

eiφ(0)e−iφ(t)
〉

fq(1 − fk)
]

(3)

where fk,q = 1/(eβξk,q +1) are the Fermi distributions in
the leads, and β is the inverse temperature. In order to
include the quantum fluctuation of the electromagnetic
fields, the phases in this expression must be regarded as
operators whose dynamics is determined by the rest of
the Hamiltonian (2). We will restrict to the quadratic
part of the Hamiltonian. Within this approximation, the
fields φ satisfy Wick theorem and expression (3) can be
simplified by making use of the exact relation:

〈

eiφ̃(t)e−iφ̃(0)
〉

= eJ(t)−J(0) (4)

where φ̃ = φ(t) − eV t/~ and J(t) =
〈

φ̃(t)φ̃(0)
〉

.

The current can then be expressed in terms of the
Fourier transform of eJ(t)−J(0):

P (E) =

∫ +∞

−∞

dt

2π~
eJ(t)−J(0)+iEt/~ . (5)

The function P (E) gives the probability that the envi-
ronment absorbs a quantity of energy equal to E during

the tunneling process. Finally the current in terms of
P (E) reads:34

I =
1

eRT

∫ +∞

−∞

EdEP (eV − E)
(1 − e−βeV )

1 − e−βE
, (6)

where RT is the tunneling resistance in the absence of
the environment [i.e. when P (E) = δ(E)].

In order to find the behavior of the device we need to
determine the function P (E) in the presence of the os-
cillator. Since we will restrict to the quadratic part of
the Hamiltonian, we can obtain the quantum phase cor-
relation function J(t) from the classical response func-
tion of the phase to a current source at the junction.
Specifically we add to the total Hamiltonian (2) the term

−Iext(t)φ̃int(t)~/e, where φ̃int(t) is the phase in the inter-
acting picture. The linear response to the external field
Iext gives

〈

φ̃(t)
〉

= −
∫ +∞

−∞

dt′χ(t − t′)Iext(t
′)

~

e
(7)

with χ(t) = i
~

〈

[φ̃int(0), φ̃int(t)]
〉

θ(t). Using the

fluctuation-dissipation theorem one can show that

J(ω) = −2~
Im[χ(ω)]

1 − eβω
. (8)

Since the Hamiltonian is quadratic, χ(ω) can be calcu-
lated from the classical response function (see for instance
Ref. 35). The problem is now reduced to the determina-
tion of the classical retarded response function. This can
be readily obtained by solving the classical equations of
motion by Laplace transform.

We determine now the equations of motion for the
phase, the position of the oscillator, and the degrees of
freedom of the environment. To describe the dissipation
we introduce a bath of harmonic oscillators coupled to the
mechanical oscillator and a bath of electromagnetic oscil-
lators coupled to the current through the tunnel junction.
The coupling of the mechanical and electrical part comes
from the charge energy Q2/2C(x) of the capacitor. The
equations of motion read:

mẍ = −kx −
∑

p

kp(x − xp) +
1

2
C′(x)φ̇2

(

~

e

)2

(9)

C(x)φ̈ = −C′(x)ẋφ̇ +
∑

n

1

Ln
(φe − φn − φ) + Iext(t)

e

~

(10)

mpẍp = kp(x − xp) (11)

Cnφ̈n =
1

Ln
(φe − φn − φ) . (12)

Here xp and φn are the degrees of freedom of the envi-
ronment, φe(t) = eV t/~ is due to the constant external
voltage source and we choose the zero of x as the equi-
librium position of the oscillator when V = 0. We also
define C′(x) = dC/dx.
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For Iext = 0, this system of equations has a stationary
solution given by x = xeq = C′(xeq)V

2/2k, φ̇ = eV/~,
xp = xeq and φn = 0. This solution is unique for
a given gauge. We thus expand the equations around
this solution and consider the quadratic fluctuations of
the fields only: x(t) = xeq + x̃(t), xp(t) = xeq + x̃p(t),

and φ(t) = eV t/~ + φ̃(t). Let us introduce the Laplace
transform for the fluctuating fields. For example, for x

it reads: x̃(s) =
∫ +∞

0
dte−stx̃(t), with Re[s] > 0 and

x̃(t) =
∫ +i∞+a

−i∞+a (ds/2πi)estx̃(s) with a > 0. The sys-
tem of differential equations then becomes an algebraic
system of equations. We are interested in the response
function. Thus, we can neglect transient terms. Keeping
only linear terms in the fluctuating fields, and solving
first for the degrees of freedom of the environment one
finds:

[

s2 + γ(s)s + ω2
m

]

x̃ =
C′V ~

em
sφ̃ (13)

[Cs + Y (s)] sφ̃ = −C′sx̃
eV

~
+ Iext(t)

e

~
, (14)

where we have introduced the memory function of the
oscillator and the impedance of the circuit:

γ(s) =
1

m

∑

p

kp
s

s2 + ω2
p

, Z(s/i)−1 =
∑

n

1

Ln

s

s2 + ω2
n

.

The two coupled equations (13) and (14) describe the re-

sponse of the phase φ̃ to the external current Iext flowing
through the tunnel junction. Solving for φ̃ and letting
s → iω + 0+ we obtain the expression for χ(ω). Using
Eq. (8), the expression for J(ω) reads:

J(ω) =
4π

ω

Re[Zt(ω)]

RQ

1

1 − eβω
(15)

with

Zt(ω) =

[

iωC + Z(ω)−1 +
C′2V 2iω/m

ω2
m + γ(iω)iω − ω2

]−1

.

(16)
The usual result of the Coulomb blockade can be ob-
tained by setting C′ = 0 in this expression. Then, only
the electromagnetic environment would contribute to the
response function. The presence of the oscillator simply
modifies the response of the system; for γ constant, it
would be equivalent to a RLC circuit in parallel with the
tunnel junction.

The current voltage characteristics can now be ob-
tained by combining Eqs. (5), (6), (15), and (16). In the
following section we consider two representative cases for
the circuit impedance and discuss the expected conduc-
tances.

III. RESULTS IN SPECIFIC CASES

We consider now two simple cases for the impedance
of the circuit: Z = iωL and Z = R. In the first case

(Sect. III A), the electromagnetic environment is an LC-
oscillator. Thus, the system reduces to two coupled os-
cillators: one mechanical and the other electromagnetic.
This example is interesting for his simplicity. It clearly
shows how the mechanical and electric part becomes cou-
pled and how this coupling appears in the current voltage
characteristics. By contrast, its experimental realization
is non-trivial, since it is in general not easy to get rid
of parasitic capacitances and resistances. An inductance
and a capacitance are present in the environment for the
oscillating tunneling junction in the experiment of Ref.
33. The environment forms in this way a radio frequency
resonator that is used to improve the band-width of the
detection scheme. However, one should note that ex-
periment of Ref. 33 is not in the regime of parameters
considered in the present paper.

In the second case (Sect. III B), the environment pro-
vides the dissipation and the conditions for the standard
Coulomb blockade with the suppression of the current at
low voltages. This case is more relevant from the experi-
mental point of view, since high impedance environment
can be more easily devised. For electronic transport with-
out mechanical motion an accurate experimental study of
the effect of a purely resistive environment has been car-
ried out recently by tuning the environment resistance
for a given tunnel junction.36

A. Inductive case Z(ω) = iLω

We consider the case of undamped harmonic oscilla-
tor. Strictly speaking, the hypothesis of thermal equilib-
rium for the oscillator and for the electromagnetic modes
is not valid. We will assume that an infinitesimal dis-
sipation is present and that the tunneling resistance is
sufficiently large to let the time for the system to relax
between two tunneling events. The electromagnetic part
of the circuit is characterized by the oscillator frequency
ωLC = 1/

√
LC. The pure electromagnetic case is dis-

cussed in the review paper Ref. 34. Due to the coupling
with the mechanical mode two resonant frequencies ap-
pear, as can be seen by finding the poles of Zt(ω) [cfr.
Eq. (16)]:

ω2
± =

[

ω2
m + ω2

LC + ω2
I ±

√

(ω2
LC + ω2

m + ω2
I)

2 − 4ω2
LCω2

m

]

2
.

(17)
Here we introduced the “coupling frequency” ω2

I =
C′2V 2/Cm. The real part of Zt reduces to a sum of
four delta functions

Re[Zt(ω)]

RQ
=

∑

σ=±

ρσωσ

2
[δ(ω − ωσ) + δ(ω + ωσ)] (18)

with ρ± = (EC/~ω±)|ω2
± − ω2

m|/|ω2
± − ω2

∓|.
It is convenient to express the coupling of mechanical

and electronic degrees of freedom in terms of a parameter
that depends only on the device and does not depend on
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the voltage bias. The reason is that it is easy to vary
experimentally the voltage for a given device. A phys-
ically relevant parameter is the variation of the elastic
energy Ee when the oscillator is displaced by a distance
∆x = EC(C′/C)/k in response to the Coulomb force
generated by a single electron on the capacitor. With
this definition we have

Ee = E2
C(C′/C)2/2k and ω2

I = ω2
mEe(eV )2/E3

C .
(19)

For a junction made of a STM tip on top of a suspended
carbon nanotube, an electromechanical coupling with the
radial breathing mode of the tube was reported37,38. In
this context, ωm and Ec were of the same order of mag-
nitude (around 10meV ). Thus, we estimate the cou-
pling parameter Ee/Ec ∼ (x0/Lc)

2, where x0 is the zero-
point motion of the mode (a fraction of Angström) and
Lc = C/C′ (a fraction of nm). In the following, we as-
sume a (rather optimistic) ratio of Ee/Ec . 0.1

For small value of Ee/EC and ωm 6= ωLC the new
frequencies ω′

m and ω′
LC are only weakly modified by the

interaction with respect to their bare values:

ω′2
m/ω2

m = 1 + ω2
I/(ω2

m − ω2
LC) (20)

ω′2
LC/ω2

LC = 1 − ω2
I/(ω2

m − ω2
LC) (21)

(note that ω′
m = ω+ if ωm > ωLC and ω′

m = ω− if
ωm < ωLC) and the weights of the poles simplify:

ρm ≈ EC

~ωm

ω2
Iω2

m

(ω2
LC − ω2

m)2
≪ ρLC ≈ EC

~ωLC
. (22)

The inequality holds if the bare frequencies ωm and ωLC

are of the same order of magnitude. On the other hand,
when ωm = ωLC ≫ ωI , we find ω± = ωm ± ωI/2 and
ρ+ = ρ− = ρLC/2.

¿From Eq. (15), one can obtain J(t) − J(0) =
∑

σ ρσjσ(t) with:34

jσ(t) = coth
β~ωσ

2
(cos(ωσt) − 1) − i sin(ωσt) . (23)

We consider now the zero temperature limit. In this case,
the function P (E) obtained from Eq. (5) has a simple
expression in terms of an infinite series:

P (E) =

∞
∑

n,n′=0

pn(ρm)pn′(ρLC)δ(E − n~ω′
m − n′

~ω′
LC)

(24)
where pn(ρ) = e−ρρn/n!.

The differential conductance G = dI/dV can be ob-
tained from the current (6). Neglecting the weak V -
dependence of ρσ and ωσ in the derivative we obtain:

RT G(V ) =
∑

~nω′

m+~n′ω′

LC
<eV

pn(ρm)pn′(ρLC) . (25)

It leads to a double series of steps spaced by ~ωm and
~ωLC . If ρm = 0, one recovers the usual sequence of steps

0 1 2 3 4
eV/EC

0

0.5

1

R
T
G

(V
)

No coupling
h̄ωm = 0.5EC , Ee = 0.1EC

FIG. 2: Differential conductance of the device as a function
of the bias voltage for the case Z = iωL. The bare oscillating
frequencies are ~ωm = 0.5EC and ~ωLC = EC . The elec-
tromechanical coupling is Ee = 0 (full line) and Ee = 0.1EC

(dashed line) (in this case, signatures of mechanical coupling
are not visible for ~ωm below 0.5EC ).

with a suppression of the conductance at low voltage and
RT G = 1 for eV ≫ EC . The interesting situation is
when ρLC is of the order of 1. In this case steps are
clearly visible for eV ∼ EC (cf Fig. 2). If ρm 6= 0
and ωm < ωLC the mechanical oscillator manifests itself
as a series of additional steps of width ~ω′

m particularly
visible at the beginning of each step of the LC circuit.
In practice the picture is slightly more complex due to
the dependence on V of the four parameters ρσ and ωσ.
The renormalization of the frequency and the change of
ρ introduces a shift of the steps and a weak smooth V -
dependence of the conductance plateaux, as shown in
Fig. 2. The presence of the mechanical oscillator thus
gives a similar result to what has been predicted for a
single electron transistor7 with Frank-Condon steps and
a reduction of the current at low voltage. This result is
found here in a much simpler structure: a single tunnel
junction coupled in series with an external inductance.

B. Ohmic case Z(ω) = R

Let us now consider the pure Ohmic case for the exter-
nal impedance Z(ω) = R. The first step is again to find
the poles of Zt(ω). For γ(ω) constant, three poles are
present: one is pure imaginary, iγ′

RC , and the two other
ones are complex, ω± = ±ω′

m + iγ′/2. In the relevant
limit of small coupling ωI ≪ ωm, γRC and low mechani-
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cal damping γ ≪ ωm, γRC we get:

γ′
RC = γRC − ω2

IγRC

γ2
RC + ω2

m

+ . . . , (26)

ω′
m = ωm +

1

2

ωmω2
I

γ2
RC + ω2

m

− γ2

8ωm
+ . . . , (27)

γ′ = γ +
γRCω2

I

γ2
RC + ω2

m

+ . . . . (28)

The mechanical oscillator acquires a damping even if
γ = 0. This intrinsic damping is proportional to the cou-
pling. ¿From here, we drop the bare mechanical damping
since it does not induce new effects compared to those
already introduced by the presence of R. An important
parameter for this device is the dimensionless conduc-
tance of the tunnel junction g = RQ/R. For g ≫ 1 the
Coulomb blockade is no more observable, since the charge
can vary continuously. In the absence of the oscillator the
appearance of the Coulomb blockade is signaled by the
change of the low-energy behavior of P (E), that goes like
E2/g−1.34 Thus for g < 2 the current is suppressed at low
voltage V < EC/e. If we consider the interesting case of
~ωm ∼ EC , then the condition g ≪ 1 implies also that
γRC ≪ ωm. In this limit the real part of Zt is simply the
sum of three Lorentzian functions:

Re[Zt(ω)]

RQ
=

EC

~
[ǫL(ω, 2γ′

RC)

+
γ′

γRC
[L(ω − ω′

m, γ′) + L(ω + ω′
m, γ′)]

]

(29)

with ǫ = γ′
RC/γRC , and L(ω, γ) = (γ/2)/(ω2 + γ2/4)/π.

Since the coupling is weak, the damping of the me-
chanical mode is also very small and the Lorentzian
function can be approximated by a Dirac delta-function
[L(ω, γ → 0) = δ(ω)]. At zero temperature this gives for
the phase correlation function:

J(t) − J(0) =
EC

π~γRC
jo(γ

′
RC t) + ρm[e−iω′

mt − 1] (30)

where ρm = 2EC

~ωm

γ′

γRC
and jo(τ) = 2

∫ ∞

0
eixτ−1
x(x2+1)dx is the

correlation function of the circuit in the absence of the
mechanical oscillator. P (E) thus reads:

P (E) =

∞
∑

n=0

pn(ρm)

ǫ
Po[(E − n~ω′

m)/ǫ] (31)

where

Po(E) =
1

2π~

∫ +∞

−∞

dteiEt/~+(EC/π~γRC)jo(tγRC) (32)

is the function P (E) in the absence of the oscillator. For
the case at hand of small g the function Po(E) is peaked

at E ≈ EC with a width ∼ (EC/π)
√

2g| log g| that van-
ishes for g → 0. Thus, the resulting P (E) is a sequence
of peaks shifted by ~ωm. Figure 3 shows the dependence

FIG. 3: P (E) is displayed for different values of V . We take
g = 0.015, ~ωm = 0.1EC and Ee = 0.1EC .

of P (E) on E and V as obtained by numerical integra-

tion. For eV/EC ≪
√

EC/Ee (Eqs. (21) and (29)) the
mechanical coupling is negligible and one recovers the
usual picture of Coulomb blockade, with a single peak
at E ≈ EC . For larger values of eV/EC new peaks ap-
pear and their positions slowly drift as a function of V
towards higher energies. The first peak instead drifts to-
wards smaller energies, due to the ǫ factor in (31). Since
γ′

RC reduces for larger values of V , the width of the peaks
also reduces.

In Fig. 4 we show the same function, but for a higher
mechanical frequency ~ωm/EC = 0.5. It shows the ap-
pearance of the peaks and their shrinking.

An important case is g → 0, for which Po(E) =
δ(E−EC). This is clearly the most favorable case to ob-
serve the quantum fluctuations of the oscillator directly
in the I-V characteristics. Indeed, even in the weak elec-
tromechanical coupling the sharpness of the peaks gives
rise to steps in G(V ), like in the case of a purely electro-
magnetic resonator. The conductance has thus the form
(again neglecting the small voltage dependence of ρm and
~ωm in performing the derivative):

RT G(V ) =
∑

~nω′

m<eV −ǫEC

pn(ρm) (33)

the result is plotted in the insert of Fig. 5 for Ee/EC =
0.1 and g = 10−4.

For the general case the conductance can be obtained
numerically by integrating P (E). It is shown for three
different values of the ratio Ee/EC in Fig. 5. The pres-
ence of the mechanical coupling introduces oscillations
of the conductance on the scale eV ∼ ~ωm that are pre-
cursors of the step behavior in the extreme g = 0 case.
The small increase of the conductance at low voltage is
the consequence of the renormalisation of EC due to the
electromechanical coupling (the ǫ factor).

A last comment is in order for the resistive case. Even
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FIG. 4: P (E) is obtained numerically for different values of
V for g = 0.015, ~ωm = 0.5EC and Ee = 0.1EC .

0 1 2 3 4
eV/EC

0

0.5

1

R
T
G

(V
)

No coupling
h̄ωm = 0.1EC , Ee = 0.1EC

h̄ωm = 0.5EC , Ee = 0.1EC

0 1 2 3 4
eV/EC

0

0.5

1

R
T
G

(V
) No coupling

h̄ωm = 0.2EC , Ee = 0.1EC

g = 10−4

g = 0.015

FIG. 5: Main plot: G(V ) for the same parameters as in
Fig. (3) (dashed line) and Fig. (4) (dot-dashed line) and for
vanishing coupling (full line). Inset: G(V ) for g = 10−4 from
the analytical expression (33) for ~ωm = 0.1EC , Ee = 0 (full
line) and Ee = 0.1EC (dashed line). The conductance is much
more sensitive to the electromechanical coupling in presence
of a high impedance environment.

if this system is described by a very similar electric cir-
cuit to that used for a single electron transistor without
gate, some differences should not be overlooked. In the
single electron transistor the two resistance are tunnel
junctions, while here one is a tunnel junction and one
a ohmic resistor. A tunnel junction is substantially dif-
ferent from a ohmic resistor, since in the first case the
charge can be transferred only by a sudden tunneling
event, while in the second the charge slowly leaks through
the resistor. The charge quantization is thus not enforced
by the Ohmic resistor, and this has consequences also on
the time dependence of the force acting on the mobile
part. For these reasons our results complement those

obtained by others authors for suspended single electron
transistors.3,4,5,7,8,9,11,12,13

C. Range of validity

Let us return to the comparison of position dependence
of the tunneling and capacitive terms. Using the explicit
expression (28) for γ′, we find that the condition to ne-
glect the effect of the tunneling force (case γRC ≪ ωm)
is:

1 ≫ γT

γ′
=

(

xo

λT

)2
ωmRQE3

C

γRCRT Eee2V 2
. (34)

This gives the explicit condition on the voltage in order to
neglect the position dependent part of the Hamiltonian.
Formally, it is clear that it can be always fulfilled for RT

sufficiently large.
A second possible source of deviation from the behav-

ior we found comes from the cubic term of of the inter-

action energy. We neglected the term ( ˙̃φ)2 with respect

to eV ˙̃φ/~. This is justified when 〈( ˙̃φ)2〉1/2 ≪ eV/~. We
thus obtain the condition of validity of the quadratic the-
ory at zero temperature:

eV

EC
≫

√

g| ln g| . (35)

IV. JOSEPHSON JUNCTION

Observing a Josephson supercurrent through a STM
tunnel junction has been shown to be feasible.39 Par-
ticularly appealing is the possibility of studying an os-
cillating Josephson junction. The effect of the position
dependence of the electronic tunneling amplitude on the
dynamics of the Josephson junction has been considered
recently.40 However the effect of the position dependence
of the capacitance (Coulomb interaction) has not been
explored so far. The theory of Coulomb blockade for
normal metallic electrodes presented above can be gen-
eralized with little change to the superconducting case.
The main difference is that the phase difference is now a
truly observable quantity and it is conjugated with the
number of Cooper pairs that cross the junction.

The Josephson junction is characterized by a critical
current Ic that defines the energy scale EJ = ~Ic/2e.
For EJ/EC ≪ 1 a tunneling approach can be used to
obtain the dissipative current of the device. We remind
the main steps of the procedure.34 The current opera-
tor is IS = Ic sin(2φ) while the Josephson part of the
Hamiltonian reads HJ = EJ cos(2φ) (we keep the same
definition of the phase, the factor two intervenes in the
usual Josephson relation).

Calculating the current in the linear response limit we
get

IS = Ic
EJ

4~

∫ +∞

−∞

dt′
〈[

e2iφ(t), e−2iφ(t′)
]〉

e
2ieV t

~ . (36)
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V C/e

0

0.2

0.4

0.6

0.8
h̄
I
(V

)/
π
E

2 J
e
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h̄ωm = 0.1EC , Ee = 0.1EC

h̄ωm = 0.5EC , Ee = 0.1EC

FIG. 6: I(V ) is plotted for g = 0.065. We distinguish the case
Ee = 0 (full line), Ee = 0.1EC with ~ωm = 0.1EC (dashed
line) and Ee = 0.1EC with ~ωm = 0.5EC (dot-dashed line).
As long as ~ωm remains smaller than the width of the peak,
the coupling manifests itself in a broadening of the Coulomb
peak. For ~ωm/EC = 0.5, contributions of the mechanical
oscillator clearly appear.

One can thus express the current again in terms of the
Fourier transform of the phase correlator:

I(V ) =
πE2

Je

~
[Ps(2eV ) − Ps(−2eV )] (37)

where the definition of Ps(E) differs from the definition
of P (E) simply by a factor of 4 in front of J(t):

Ps(E) =

∫ +∞

−∞

dte4J(t)−4J(0)+iEt/~ . (38)

The function J(t) depends on the mechanical response
function as shown in Section II. The results of Sects. II
and III can thus be applied to the superconducting case
to obtain Ps(E) and hence I(V ). In the Figure 6 we
show the expected current-voltage characteristics for an
oscillating Josephson junction in the pure resistive case of
Sect. III. The superconducting device is much more sen-
sitive to the presence of the mechanical oscillator, since
the voltage dependence is directly related to Ps(E), and

not to its integral. One can then observe directly the
Coulomb blockade peaks in the I-V characteristics.

V. CONCLUSION

In this work, we considered the current-voltage charac-
teristics of an oscillating tunnel junction. At low tunnel
coupling and moderately low voltage bias, we found that
the coupling between the electronic and mechanic degrees
of freedom mainly originates from the position depen-
dence of the junction capacitance. That is, the electrons
crossing the tunnel junction couple to an electromagnetic
environment formed by the rest of the circuit which is it-
self coupled to the mechanical oscillator. In our study,
we included both the electromagnetic and mechanical en-
vironments in the Coulomb blockade theory. We found
that the mechanical properties of the junction result in an
additional mechanism for the current suppression that is
similar to the Frank-Condon blockade predicted in an os-
cillating single-electron transistor. As in the conventional
Coulomb blockade, similar, though more pronounced, ef-
fects would also appear in a voltage-biased oscillating
Josephson junction.

At larger tunneling rates, two new ingredients should
be added to our study. First, the electromagnetic and
mechanical degrees of freedom would not have time to
relax to equilibrium between two tunneling events. Sec-
ond, the position dependence of the tunneling matrix el-
ement may not give anymore negligible effects compared
to those arising from the position dependence of the ca-
pacitance. Considering both, it may be interesting to
investigate whether a shuttling instability takes place in
a single oscillating tunnel junction.
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