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Abstract. Using the dielectric resonator method, we have investigated nonlinearities in
surface impedance Zs = Rs + jXs of YBa2Cu3O7−δ thin films at 10 GHz as a function of
the incident microwave power level and temperature. The use of a rutile dielectric resonator
allows us to measure the precise temperature of the films. We conclusively show that the usually
observed increase of the surface resistance of YBa2Cu3O7−δ thin film as function of microwave
power is due to local heating.

1. Introduction

The surface impedance of High Temperature Superconductor (HTSC) materials presents a strong
dependence on the magnitude of the incident microwave magnetic field, Hrf . A nonlinear
behavior is observed above a certain value of Hrf . Microwave losses are characterized by a
decrease of the quality factor Q and a downward shift of the resonant frequency. The surface
impedance of HTSC has been studied by many groups[1-2], however the physical origin of
the observed nonlinearities is still under debate and the subject of present-day experimental
investigation [3-5]. It has been proposed that a simple way to differentiate among the mechanisms
leading to a nonlinear surface impedance is the examination of the r parameter [6]. This quantity
is defined as the ratio of the surface reactance ∆Xs(Hrf ) and the surface resistance ∆Rs(Hrf ).

In this paper, we present a study of both the temperature and the microwave power-level
dependence of the surface resistance and reactance of YBa2Cu3O7−δ thin films from various
sources.

2. Dielectrics and microwave background

Measurements of the surface impedance Zs = Rs + jXs were performed on a series of
YBa2Cu3O7−δ thin films using the dielectric resonator method [7-8]. We have used a TiO2

resonator with a resonant frequency in the TE011 mode near 10 GHz. Rutile is well-known for
its very low tangent loss (tan δ = 10−5 at 77 K, 10 GHz) and its very high dielectric constant (ǫ
= 105 at 77 K)[9].

For each sample, we measure the resonant frequency fo and the loaded Q-factor of the
fundamental resonance of the resonator. At each microwave input power level, the reflection



coefficient from the resonator, or S11 parameter is measured. The loaded Q-factor of the
resonator is given by :

QL =
f0

∆f
, (1)

where f0 and ∆f are, respectively, the resonant frequency and the -3 dB bandwidth
corresponding to the resonant peak. The unloaded Q-factor is defined by :

Q0 = (1 + β)QL, (2)

with β the coupling constant. All measurements were performed at critical coupling i.e β = 1,
and the unloaded Q-factor Q0 = 2QL. The surface resistance Rs is obtained as:

Rs,Y BCO =
1

B

(

1

Q0

− A tan δT iO2
− CRs,Cu

)

(3)

Here tan δT iO2
is due to the dielectric losses and Rs,Cu to the microwave losses in the copper.A,B

and C are geometrical factors calculated using a numerical simulation (HFSS software).

3. Results

In order to understand the variation of the Q-factor and f0 with increasing microwave power, we
have measured the temperature dependence of the resonator’s properties. Fig 1(a) represents
the temperature dependence of the TiO2 resonator frequency in the limit of small microwave
power Prf , for three different configurations. In the first configuration, the TiO2 resonator is
directly placed on the copper cavity; in the second, the resonator is placed on an MgO substrate;
finally the resonator is placed on the YBa2Cu3O7−δ film, itself deposited on MgO. The absolute
value of f0 depends on the distance between the resonator and the conducting wall of the cavity,
copper or superconducting layer. However, we found exactly the same temperature dependence.
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Figure 1. Plot of the resonant frequency for the TiO2 resonator in three different configuration
(1a) and resonant frequency temperature behavior of TiO2 and MgO resonator (1b)

This shows that the thermal conductivity between the cryocooler cold head and the rutile
resonator is not significantly affected by the intercalation of the 500 µm-thick MgO and the
400 nm-thick superconducting layer. Fig 1(b) represents the temperature dependence of f0

for the rutile resonator and for a MgO resonator, which is near 8 GHz. Clearly, the variation
with temperature of the MgO resonant frequency is much weaker than that of rutile. The
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Figure 2. Rs (a) and f0 (b) dependence of reactive microwave reactive power
.

temperature dependence of frequency f0 is the direct consequence of the increase (resp.decrease)
with temperature of the dielectric constant ǫ(T ) of rutile (resp. MgO).

Fig. 2 shows the dependence on microwave reactive power of Rs and f0 for the investigated
YBa2Cu3O7−δ films at a given temperature of 74 K. The microwave reactive power is defined
by Prf = Pincident,rf × QL. The zero power limit is taken as those values of Prf below which
Rs(Prf ) is essentially Prf -independent. Curves for differents films present the same behavior, i.e
Rs(Prf ) and f0(Prf ) are independent of the microwave field in the zero field limit and become
nonlinear (increase rapidly) above a threshold value of Prf . Contrary to what is expected, the
resonator frequency f0 also increases with increasing microwave losses. We ascertain that the
increase of f0(Prf ) is due to the heating of the rutile resonator by the YBa2Cu3O7−δ film.

In order to demonstrate this effect, we have also measured the temperature dependence of Rs

and f0 in the limit of small Prf (Fig.3). The surface resistance of the YBa2Cu3O7−δ films shows
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Figure 3. Temperature dependence of the Rs (a) and f0 (b) in the regime of small microwave
power
.

the usual monotonous increase with temperature for all samples. Concerning the temperature
dependence of the resonant frequency, we observe an increase with temperature, as discussed
previously. The only observed difference is the nearly constant frequency offset between the three
curves. We can now estimate the temperature of the resonator in the swept-power experiments



using the curves measured as a function of temperature. Fig. 4 shows the temperature calculated
from the variation of the resonant frequency. The temperature obtained from the variation of the
surface resistance gives exactly the same results. This means that no intrinsic Prf dependence
of Rs is measured.
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Figure 4. Estimated temperature increase as function of with reactive microwave power

In Fig 3(a) we superpose Rs as a function of the measured temperature in the low power
regime and Rs measured as a function of the estimated temperature in the swept power
experiments at 74 K and 63 K. A very good agreement is observed showing that any observed
nonlinearity is the consequence of Joule heating.

4. Concluding remarks

The temperature dependence of the resonance frequency is the direct consequence of the increase
with temperature of the dielectric constant ǫ(T ) of rutile. Note that this behavior is opposite
to the decrease with temperature of the dielectric constant of more commonly used sapphire
or MgO resonators. Moreover, the variation with temperature of the MgO resonant frequency
is much weaker than that of rutile. By consequence, it is difficult to separate the evolution
of the intrinsic change of a MgO or sapphire resonator’s frequency from that caused by the
temperature variation of a superposed superconducting film: both weakly decrease as function of
temperature. However, the intrinsic evolution of the rutile resonator’s frequency being opposite
to that expected from the presence of the superconducting film, the measurement of the rutile’s
resonator frequency can unambiguously serve as a local temperature measurement.
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