
Ghost force reduction and spectral analysis of the 1D

bridging method

Guillaume Anciaux, Olivier Coulaud, Jean Roman, Gilles Zerah

To cite this version:

Guillaume Anciaux, Olivier Coulaud, Jean Roman, Gilles Zerah. Ghost force reduction and
spectral analysis of the 1D bridging method. [Research Report] RR-6582, INRIA. 2008. <inria-
00300603>

HAL Id: inria-00300603

https://hal.inria.fr/inria-00300603

Submitted on 18 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52699998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00300603


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

82
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ghost force reduction and spectral analysis of the 1D
bridging method

Guillaume Anciaux — Olivier Coulaud — Jean Roman — Gilles Zerah

N° 6582

Juillet 2008





Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex

Téléphone : +33 5 40 00 69 00

Ghost force reduction and spectral analysis of the

1D bridging method

Guillaume Anciaux ∗ , Olivier Coulaud† , Jean Roman† , Gilles
Zerah‡

Thème NUM — Systèmes numériques
Équipes-Projets ScAlApplix

Rapport de recherche n° 6582 — Juillet 2008 — 41 pages

Abstract: In this paper we study the Bridging Method recently developed
by T. Belytschko and S. Xiao to couple continuum mechanics with molecular
dynamics. This method uses an overlap zone where both models exist and
where degrees of freedom are coupled. We analyze the method in the 1D case.
Firstly, we show that the spatial weighting of the potential energy leads to
some appreciable numerical artifacts. Then, after presenting a modification of
the time integration scheme that removes such spurious effects, we introduce
the method employed to numerically measure the wave reflection rates. The
limitation of these reflections constitute a major issue in all existing coupling
methods for dynamics simulations. After discussing some first results achieved
from numerical measurements, we present a spectral analysis that attempts
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material. The predictions of this spectral analysis are finally compared to some
parametric studies issued from 1D coupling simulations..

Key-words: multiscale method, atomistic-to-continuum coupling, coupling
method

∗ Ecole Polytechnique Fédérale de Lausanne (EPFL), Faculté ENAC, Laboratoire de Sim-
ulation en Mécanique des Solides, CH-1015 Lausanne, Switzerland.

† INRIA, ScAlApplix project, 351 cours de libération, F-33405 Talence Cedex, France.
‡ CEA-DAM Ile de France, Département de Physique Théorique et Appliquée, Bruyères-

le-Châtel, 91297 Arpajon Cedex.



Réduction des forces fantomes et analyse spectral

de la “bridging method” en 1D

Résumé : Dans ce rapport, nous étudions la méthode multi échelles, “bridg-
ing method”, récemment développée par T. Belytschko and S. Xiao. Cette
dernière couple une échelle continue avec une échelle atomique et utilise pour
cela une zone de recouvrement où les deux modèles existent et où les degrés
de liberté sont couplés. Nous analysons la méthode en dimension 1. Première-
ment, on montre que la pondération spatiale de l’énergie potentielle conduit à
d’importants artefacts numériques. Nous introduisons alors une modification du
schéma d’intégration en temps qui élimine ces artefacts. Puis, nous présentons
la méthode utilisée pour mesurer numériquement les taux de réflexion d’onde
ainsi que des résultats numériques justifiant nos choix. Ensuite, nous détaillons
une analyse spectrale du système multi échelles qui donne un début d’explication
à certains comportements du matériau hybride. Pour terminer, les résultats de
l’analyse spectrale sont comparés à des simulations numériques.

Mots-clés : Méthode multi-échelle, Couplage Atomique-Continu, méthode
de couplage
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1 Introduction

Concurrent multiscale methods are a powerful tool to simulate with a low com-
putational cost the local phenomena that occur at a scale as small as the atomic
one. Such methods are commonly used to study crack propagations, disloca-
tions, nanoindentations, contact problems [1, 19, 13, 15]. In these approaches,
one couples an atomic description, which models the material at the finest scale,
with a macroscopic model like continuum elasticity. The continuum elasticity
equations are discretized by the finite element method with linear approxima-
tion. The macroscopic representation of the material allows considerable reduc-
tion of the number of unknowns to manipulate. Moreover, as it is easier to apply
force fields on macro-models, this type of coupling can provide useful complex
boundary conditions to an atomistic model.

In this work, we focus on improving the quality of the transitions between a
local energy macro-model and a non local micro-model. For the local phenomena
commonly represented at the finest scale, the main difficulty is to prevent the
micro-model waves from being trapped, as the macro-model cannot represent
them. Typically we obtain spurious modes such as wave reflections [9, 10]. The
Quasi Continuum method [14] allows quasi-static progressions to equilibrium
using a spatial zone where the forwarded information from one model to the
other is reduced to a set of points called the interface zone. The concurrent
coupling of length scales developed by Abraham [8] uses a seamless interface
between the coupled models with a truncated energy of the degrees of freedom
at this interface. The main drawback of this method is that we must refine the
mesh to the micro-scale. An overview of these methods can be found in [6, 10].

Recent papers present a new approach for an atomistic to continuum (AtC)
coupling with an overlap region only for the time-independent problem. Paper
[5] presents an analysis of the Arlequin method for a one dimensional model
problem. In [4] the authors propose a novel mathematical framework to build
efficient scheme. But due to their static approach, the main problem of wave
reflections is not studied.

In this paper we focus on the coupling method that was introduced by T.
Belytschko and S. Xiao in [7]. It is based on a "handshake" region where the
continuum and the atomistic models are both valid and are combined by using
a weighting function for the energy. From now, we will refer to the overlapping
region as to the bridging zone. The two models are glued together by constrain-
ing the degrees of freedom (DOFs) in order to have a coherent dynamics. To fix
the notations, we consider the figure 1 with a plane coupling, where ΩA (resp.
ΩC) is the atomic domain (resp. the finite element domain) in d-dimension and
where ΩR = ΩA ∩ ΩC is the bridging zone. This overlap allows us to change
the predominance of each model so that the constraint can take effect gradually
when the overlap is crossed.

The method is based on a global Hamiltonian given by the sum of the two
Hamiltonians referring to the two coupled domains. Moreover, to avoid to count
twice the energy in the bridging zone, we introduce a weighted sum of the
Hamiltonians in this region. The weighting function α is defined at each point
of the bridging zone space. If we consider the (d − 1) dimensional manifold
separating ΩR from ΩA \ ΩR named ΓR, then the weighting value α(x) for a
given point x ∈ ΩR is the normalized distance l(x)/R of that point to ΓR (cf.
Figure 1).

INRIA
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Bridging Zone
Atomic Zone

l(X)

R

Continuum Mechanics Zone

Ω
A Ω

R

Γ
R

Ω
C

Figure 1: Plane coupling zone. Atomic domain is on the left side while contin-
uum mechanics domain is on the right side. The bridging zone is used to define
the weighting function α(X) = l(X)/R.
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6 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

Then, the global discretized multiscale Hamiltonian is

Hms = ẼA + ẼC ,

where ẼA is the atomic contribution to the Hamiltonian while ẼC is the con-
tinuum contribution. More precisely, we have

ẼA =
∑

qi∈ΩA\ΩR

Ei(qΩA ) +
∑

qi∈ΩR

(1 − α(Xi))Ei(qΩR),

ẼC =
∑

e∈ΩC\ΩR

Ee(uΩC ) +
∑

e∈ΩR

∫

e

α(X)δEe(uΩR)dX,

where Ei is the energy fraction for atom i, Xi its initial position, Ee the energy
fraction for element e and δEe its potential energy density that can be computed
by using the Cauchy-Born rule [18]. Here the notation q represents the vector of
atomic positions and the notation u represents the nodal displacements vector.
The notations qΩA , qΩR , uΩC and uΩR refer to spatial zones: they are used
to indicate that a subset of the DOFs is considered with a geometrical point of
view. Moreover, we consider indexes in upper case and in lower case to refer to
finite element quantities and atomic quantities respectively.

To couple the two models, we constrain each atom into ΩR to have the
position of a virtual associated atom which is deduced from finite element in-
terpolation. The formalism introduced by S. Xiao in [7] uses a constrained
molecular dynamics algorithm to implement this. The coupling is brought by
means of the following Lagrange constraint formulation: if there are L atoms in
ΩR, then we introduce the L following constraints g = {gi}L

i=1

gi = U(Xi) − di =
∑

J

ϕJ (Xi)uJ − di = 0 (1)

where di is the displacement of atom i, U(Xi) is the macroscopic displacement
evaluated by interpolation at atom i and uJ is the nodal displacement at node
J .

We define the Lagrangian HL = Hms+
∑L

i=1 λigi and we denote Λ = (λi)1,...,L

the vector of Lagrange multipliers. The governing equations are naturally mod-
ified by those multipliers as presented in [7], and provide a constrained relation
between acceleration üI (resp. d̈i) for continuum DOFs (resp. atomic DOFs)
with forces fR

I (resp. fR
i ) as follows






M̂I üI = −fR
I +

L∑

k=1

λk
∂gk

∂uI
,

m̂id̈i = fR
i +

L∑

k=1

λk
∂gk

∂di
,

where M̂I = α(XI)MI and m̂i = (1 − α(Xi))mi, considering that MI is the
lumped mass on node I and mi is the mass of atom i.

In the case of a two-body potential, the forces are given by

fR
I =

∑

e∈EI

∫

e

α(X)δEe(ue)

fR
i =

∑

qk∈Bi
cut

[

1 − α(Xi) + α(Xk)

2

]
∂W (qi,qk)

∂qi
(2)

INRIA
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with EI the set of elements containing node I, ue the displacement vector of
nodes owned by element e and Bi

cut the interval centered on atom i and of length
2 ·Rcut, and Rcut the radius of the spherical cutoff used to evaluate the potential
and the forces.

The time integration of the motion equations is done by the SHAKE algo-
rithm [17] in which the velocities are corrected to satisfy the constraint rather
than the position as in the classical algorithm. The authors claim in [7] that
if the two models are consistently coupled in the initial state - which means
equivalent displacement and velocity fields - and if only the velocities are coher-
ently constrained, then the constraint on displacements will be verified during
the whole simulation.

The computation of the multipliers is done by solving the linear system

HΛ = g⋆

where H is the L × L matrix and g⋆ is the vector of dimension L defined by

Hik = ∆t

(
∑

J

ϕJ (XI)M̂J
−1 ∂gk

∂uJ
− m̂−1

I

∂gk

∂di

)

,

g⋆
i =

∑

J

ϕJ (XI)u̇
⋆
J − ḋ⋆

i ,

where u⋆, d⋆ are the displacement obtained after one time step by the integration
scheme when the constraints are not applied.

For more details on this method we invite to read [7] which refers to the
article presenting the original method. For example, it was suggested that a
condensation process, applied to the constraint system, speeds up the calcula-
tions. The proposed condensation was a diagonal one such that

H̃ij =







L∑

p=1

Hip si i = j,

0 otherwise.

However several points that were not developed by the authors of the method
can be highlighted:

• the weighting of the potential energy induces an intrusive weight on each
atomic interaction. This leads to two drawbacks. The first one is the
creation of spurious forces also called ghost forces [10]. The second one
is that from the implementation point of view, it induces a necessary
correction of all potentials. Indeed, the spatial weighting of the potential
energy leads to a modification of each pair interactions. Then in order
to implement the algorithm that computes the sum of forces, we have to
propagate modifications to each pair potentials.

• the filtering introduced by this coupling method is not perfect and mainly
depends on domain parameters like finite element sizes, time step ∆t, etc...

• the condensation of the constraint matrix strongly modifies the behavior
of the coupling method and especially the treatment of wave reflections.

RR n° 6582



8 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

The goal of this paper is to do a one-dimensional analysis of the original
method and to propose some improvements in order to overcome several of the
previous drawbacks. The paper is organized as follows. In the first part, we
introduce the ghost forces in the original model that are the consequences of
the spatial energy weighting and of the non locality of the atomic forces. We
introduce a possible approximation which will be acceptable for large enough
overlapping sizes. To fully justify this approach and introduce some prelimi-
nary results concerning wave reflections, we present numerical results from the
parametric study of key values of the coupling. The second part describes the
approach chosen to find the governing equations solved in the coupled region.
An harmonic formulation will be exhibited and then studied in the last part ; the
admitted modes of the coupling, the cutoff frequency and other considerations
will be discussed before concluding this article with open perspectives.

2 Ghost force analysis

2.1 Ghost force reduction

We consider the equilibrium configuration of an argon atom chain as presented
in figure 2. We can write each atomic equilibrium position as a multiple of
the interatomic distance r0 given by Xi = ir0. In this configuration, the force

R0

B A

1 − α
α

Figure 2: The coupling zone at the atomic equilibrium.

applied to atom i according to equation (2) is

fR
i =

∑

|(k−i)r0|<Rcut

[

1 − α(ir0) + α(kr0)

2

]
∂W (| i − k | r0)

∂(ir0)
.

We introduce the following notation to describe atomic interactions

fi,j =
∂W (| i − j | r0)

∂(ir0)
.

Then, if we consider that the weighting function α is Cr+1(]0, R]) and by using
its Taylor expansion at the order r, we have

α(kr0) = α(ir0) +

r∑

j=1

α(j)(ir0)

j!
[(k − i)r0]

j
+ R(ir0),

INRIA
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where R(ir0) is the remainder of the Taylor expansion at point ir0.
By substituting this expression into the force definition, we can separate a

local term and a non local one such that

fR
i =(1 − α(ir0))fi

− 1

2

∑

|(k−i)r0|<Rcut





d∑

j=1

α(j)(ir0)

j!
rj
0(k − i)j + R(ir0)



 fi,k

︸ ︷︷ ︸

Ri

.

So, we obtain
fR

i = (1 − α(ir0))fi − Ri

where fi =
∑

k fi,k is the force applied to atom i without considering the energy
weighting.

At the equilibrium configuration without any coupling the force fi applied to
each atom has vanished. Thus, we will now focus on the non local term Ri. To
evaluate the force, we consider the cutoff radius Rcut = µ r0 ; only atoms such
that |Xi − Xk| ≤ Rcut are involved in the sum. Then the remainder expression
is

Ri = − 1

2

i+µ
∑

k=i−µ
k 6=i





d∑

j=1

α(j)(i r0)

j!
rj
0(k − i)j



 fi,k

+ R(ir0)fi,k. (3)

Consider now the linear weighting function α(x) = x/R. For any atom i such
that Xi ∈ ]µ r0, R − µr0[ we have

Ri = − r0

2R

i+µ
∑

k=i−µ
k 6=i

(k − i)fi,k. (4)

Because the weighting function has a non continuous derivative around the edge
of the bridging zone, we have to consider two cases. First, let us consider an
atom A located at the center of the coupling zone (at a distance from the edges
of the coupling zone higher than the cutoff radius) and an atom B outside of
the bridging zone. If i is located like the point A on figure 2 then the slope of
α is constant and is equal to 1/R. The expression becomes

Ri = − r0

2R

i−1∑

k=i−µ
k 6=i

(k − i)fi,k.

But, as we are in an initial state of the atoms i (argon crystal at zero temperature
and pressure), this enables us to say that the internal stress is zero in this initial
state and by using the symmetry of crystalline conformation in our study case,
we obtain

∀i
∑

j 6=i

rijfi,j = 0.

RR n° 6582



10 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

Using our notations and the given cutoff radius, this leads to

∀i,

i+µ
∑

j=i−µ
j 6=i

r0(j − i)fi,j = 0.

Then one can deduce that the resulting force fR
i vanishes and that the equilib-

rium situation will be respected.
Here, the crucial assumption is that i is the index of an atom located in the
center of the bridging zone. Such an atom is not subject to the influence of the
change of slope of the weighting function.
Consider now the case of an atom close to the discontinuity of α′. We can con-
sider for example the point B as presented on figure 2. With a linear weighting,
the function has a discontinuity of its derivative. It is thus necessary to rewrite
the expression of (4) by separating the right and the left derivatives of α at the
point 0. Assuming that i is the index of the atom B, the modified force that
acts on it can be written as the sum of two contributions:

fR
i =

0∑

k=i−µ

fi,k +

i+µ
∑

k=1

[

1 − α(i r0) + α(k r0)

2

]

fi,k

=

i+µ
∑

k=i−µ

fi,k −
i+µ
∑

k=1

[
α(i r0) + α(k r0)

2

]

fi,k.

The first part of the sum is simplified thanks to the fact that the α function is
equal to 0 on the interval ]−∞, (i+1)r0]. For the second term, we use a Taylor
development of the weighting function centered on the point 0

α(kr0) = α(0)
︸︷︷︸

=0

+
r0(k − i − 1)

R
.

So we have

fR
i =

i+µ
∑

k=i−µ

fi,k −
i+µ
∑

k=1

[
r0 (k − i − 1)

2R

]

fi,k.

We finally obtain a simplified expression with the distinction of the uncoupled
forces from the non local term:

fR
i = fi −

r0

2R

i+µ
∑

k=1

(k − i − 1)fi,k

︸ ︷︷ ︸

Ri

.

When i ≥ 1 − µ the atom B undergoes a non null ghost force. Moreover this
force cannot be compensated by the Lagrange constraints since this particular
atom is not inside of the bridging zone. This effect influences all the atoms at a
distance from the edge of the bridging zone lower than the selected cutoff radius.
Thus, it induces a modified equilibrium as the figure 3 presents for the case of
an atomic zone coupled with two continuum mechanics zones. This effect is
directly related to the nonlocal behavior of the atomic interactions concurrently
with the use of a local energy weighting.

INRIA
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Figure 3: This figure presents the equilibrium situation obtained with a
Lennard-Jones potential with a cutoff radius of 2r0. It is clear that the bridg-
ing zone size is too small as residual forces are induced near the edges of the
coupling zone.

To improve the method, we modify the integration scheme in order to com-
pute a suitable dynamics of the DOFs. Indeed, we did a main approximation
which consisted in neglecting the remaining force Ri. We thus have a new ex-
pression for the governing equations of the coupled system







M̂I üI = −α(XI)fI +

L∑

k=1

λk
∂gk

∂uI

m̂id̈i = α(Xi)fi +

L∑

k=1

λk
∂gk

∂di
,

(5)

where g is the constraint vector defined by (1). This choice is induced by
the remarks stated in this section, but also by practical reasons. Indeed in
molecular dynamics codes, there is no easy way to compute the weighting force
contribution between two atoms which is needed in the expression (2). An
other point of view for this approximation comes from the following alternative
expression of system (5)







MI üI = −fI +
1

α(XI)

L∑

k=1

λk
∂gk

∂uI

mid̈i = fi +
1

α(Xi)

L∑

k=1

λk
∂gk

∂di
.

RR n° 6582



12 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

This is a classical Newton governing equation and the masses are unchanged
as well as the forces. The weighting impacts on the Lagrange constraints, i.e.
on the coupling. What must be understood here is that only the DOFs correc-
tions will be modified by taking into account the weighting function α and not
anymore the force computation.

An additional justification to use this approximation is the following expres-
sion of the upper bound of the remainder which quantifies the error that we
commit on the force computations:

| Ri | =| r0

2R

µ−1
∑

k=1

kfi,k |≤ µ(µ − 1)r0

4R
max

k
| fi,k |

≤ Rcut

R

(µ − 1)

4
max

k
| fi,k | .

In the finite element case the error made on the force calculation is

RI =
∑

e∈EI

(∫

e

α(X)δEe(ue) − αI

∫

e

δEe(ue)

)

.

And with the same type of approximation that considers the weighting function

as linear, we have α(X) − αI =
X − XI

R
and we can write

| RI |= |
∑

e∈EI

∫

e

α(X) − αI

R
δEe(ue) |

≤ h

R
|
∑

e∈EI

∫

e

δEe(ue) |≤
h

R
| fI |,

where h is the characteristic finite element size. This shows that for reasonable
size of the bridging zone size R with respect to the cutoff radius and the finite
element size, the residual force is small enough and thus our approximation will
be valid.

2.2 Numerical approach

The main problem of the bridging method is the induced distortion of the waves
propagating into the simulated material. The assumption which considers that
all waves propagate similarly through the coupling zone is obviously naive.
First, due to the well known dispersion equation [11, 12], we must consider
that harmonic waves propagate at different speeds depending on the frequency.
Secondly, the material behavior due to energy weighting and the Lagrange con-
straints, is more complex and can scatter waves. These phenomena will lead to
wave reflections.

In order to quantify the effects of this coupling method, we first simulate the
propagation of pseudo harmonic waves with a given frequency. We will then be
able to produce wave propagation tests with respect to the frequency and other
model parameters. Our analysis uses the kinetic energy measured and more pre-
cisely the amount of kinetic energy that is retained in the molecular dynamics
zone by the coupling. To analyze our results, we compare the multiscale ap-
proach with full molecular dynamics simulations. The detailed procedure used

INRIA
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to build the harmonics, the measurement of wave reflection rates and the results
achieved are presented in the following.
In order to carry out frequency tests, we defined disturbances which will be
used as initial conditions and which have a controlled Fourier spectrum. The
following displacement wave is considered

uk(X, t) = sin(kX − ωk t) e−
(kX−ωkt)2

L2 . (6)

where k is the characteristic wavenumber and ωk is the angular velocity associ-
ated with k through the dispersion equation. It can be shown (see [3]) that this
function is solution of a wave equation and that its spectrum is

Fk(ξ) =

√
πL

2ik

[

e
−(k−ξ)2L2

4k2 − e
−(k+ξ)2L2

4k2

]

.

Figure 4 illustrates the displacement u1(X, 0) and its spectrum for different

(a)

L=1
L=3
L=6

 1

 0.8

 0.6

 0.4

 0.2

 0

−0.2

−0.4

−0.6

−0.8

−1
−15 −10 −5  0  5  10  15

(b)

L=3
L=1

L=6
 12

 10

 8

 6

 4

 2

 0
 0  0.5  1  1.5  2  2.5  3

Figure 4: Figure (a) presents the form of the impulses we want to use as initial
condition for our frequency test case and figure (b) its associated spectrum.

values of the parameter L which controls precisely the size of the Fourier spec-
trum. Choosing a too large value of L increases the spatial zone necessary to
represent the wave train. The parameter L controls the bandwidth around the
desired frequency and the displacement of the spectrum peak. For example, for
L = 1, one obtains a peak centered at 1.5k while for L = 3, the shift is lower
than 10−4. We choose L = 3 for all our tests.
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14 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

2.2.1 Wave propagation for an atomistic domain

Let us consider the monoatomic chain composed of 1128 argon atoms as shown
in figure 5 with periodic boundary conditions and the Lennard Jones potential
[2] with the following parameters: r0 = 1.2316 Å; σ = 1.1 Å; ǫ = 1.657 10−21

Joules; m = 39.95 10−3 Kg/mol; Rcut = 2.2r0 . The length of the domain
is large enough to ensure that the initial wave centered in the domain will not
interact with the image waves due to periodic boundary conditions before 20000
time steps.

276 r0

1128 r0

Figure 5: Atomic chain domain. We measure kinetic energy in the central area
constituted by 276 atoms.

At time t = 0, we input the initial displacement given by (6). Two waves are
then created, each one with an opposite direction and each with half the initial
magnitude. This can be observed on figure 6. The kinetic energy transported
can be deduced from the magnitude of the initial perturbation.

Lagrangian coordinate in adimentional units

D
is

pl
ac

em
en

t i
n 

A

 0

 0 162 r0 324 r0  486 r0−162 r0−324 r0−486 r0

 1e−3

 5e−4

−5e−4

−1e−3

Figure 6: The wave creation process. The initial displacement, given by equation
(6) with k = 20r0, is plotted in blue while the displacement after 5000 time steps
(104 femtoseconds) is plotted in red. At this time, two displacement waves are
observed.

In order to quantify the wave reflections, the kinetic energy that remains
confined into a given spatial zone must be measured. However, due to the
dispersion in discrete materials, high frequency waves (close to the Brillouin
zone) are very unstable and induce stationary waves. As a consequence, the
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measured values of the kinetic energy will also contain the contribution of such
stationary waves.

 6e−26

 5e−26

 4e−26

 3e−26
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Time steps (∆t = 2 femtoseconds)

Figure 7: The kinetic energy in the region constituted by the 276 atoms in the
center of the domain (see fig. 5) with respect to simulation time steps. The
green curve is measured when initial harmonic is parametrized with k = 2r0

while the red one is for k = 20r0.

Figure 7 shows the kinetic energy of the atoms contained in the interval
[−138r0, 138r0]. These atoms will be denoted as the “test” zone. We present
the resulting kinetic energy for two distinct injected frequencies: the first one
is for k = 2r0, and the second one is for k = 20r0. It can clearly be observed
that there is almost no remaining kinetic energy in the test zone when using a
low frequency wave (k = 20r0), while for k = 2r0 we measured residual amount
of 10−26 Joules in the test zone. This is due to the dispersion of waves in the
atomic chain which creates stationary waves. In other words, the initial wave
scatters much more in the case of high frequencies which naturally creates some
remaining kinetic energy in the center of domain.
In order to have a good idea of the energy levels involved in the process, we
consider the energy created by the initial displacement that is imposed. This
energy can be computed as the kinetic energy of two harmonic train waves. The
kinetic energy of a set of atoms is

Ec =
1

2

∑

i

miv
2
i , (7)

where mi is the mass and vi the velocity of atom i. We consider the displacement

u(Xi, t) = ui = A sin(kXi − ωkt)e−
(kXi−ωkt)2

L2 ,
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72 r0 72 r0

420 r0

−210 r0

−138 r0 138 r0
210 r0

424 r0

−562 r0

424 r0

562 r0

Figure 8: The molecular dynamics domain is in the center. It is coupled with
two models of mechanics of the continuous mediums which are used as boundary
condition.

as an initial condition. The velocities induced by an harmonic wave of half
magnitude are

v(Xi, t) =
Aωk

2
e−

(kXi−ωkt)2

L2

[

− cos(kXi − ωkt) +
2

L2
sin(kXi − ωkt)(kXi − ωkt)

]

.

If we consider the velocities of such a wave at initial time (t = 0) then we have

vi =
Aωk

2
e−

(kXi)
2

L2

[

− cos(kXi) +
2

L2
sin(kXi)(kXi)

]

.

And finally we can evaluate by (7) the kinetic energy transported by this wave.
We compare the values obtained with the kinetic energy measured in a full

molecular dynamics simulation1. Once the transfer from potential energy to
kinetic energy has taken place, the kinetic energy remains constant until some
effect (boundary conditions for instance) induces an inverse transfer from ki-
netic energy to potential energy. It must be reminded that the total energy is
constant. In our simulation, the “predicted” values and the kinetic energy mea-
sured after 20000 time steps are matched up to 99%. But for high frequencies
(k = 2r0), the instability of the wave (due to the dispersion equation) and the
transfers between potential and kinetic energy lead to a real divergence between
predicted and measured values. Thus in practice we use only the measured
values even for k = 2r0.

2.2.2 Measurement of the reflection rate

Our reference test case for a coupled simulation, initially presented in reference
[7], considers a bridging size of 72r0, a “test” zone of [−138r0, 138r0], and a
molecular dynamics domain [−210r0, 210r0]. The continuum mechanics domain
is constituted by two separated meshes for the spaces [−562r0,−138r0] and
[138r0, 562r0]. The finite element size h is constant and equal to 8r0. Both
meshes contain 53 elements. The coupled model is depicted on figure 8.

By performing a simulation with an induced displacement wave, we can
measure the kinetic energies at different stages of the simulation. On figure 9
we present the kinetic energy in the case of an important wave reflection. The
scenario of the simulation has 5 stages:

1only with an atomistic description i.e. without any multiscale coupling
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Transfer from potential energy to kinetic energy

Initial kinetic energy

Interaction of the
reflected waves

reflected kinetic
energy
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Figure 9: Measurement of the kinetic energy in the test zone with respect to
time steps.

1. the initial displacement induces the creation of two waves with opposite
directions with a transfer from potential energy to kinetic energy until
both quantities, as well as the waves, are stable;

2. the waves propagate in the atomic domain;

3. the waves move into the coupling zone. This leads to a decrease of the
level of the kinetic energy;

4. two reflected waves are created with a given amount of kinetic energy
before stabilization;

5. both reflected waves interact in the center of the molecular dynamics do-
main creating fluctuations of the kinetic energy. These fluctuations take
place around a mean value.

Now, let us define the following reflection rate:

Rr =
KC − KMD

Kinit

where KMD is the full molecular dynamics kinetic energy measured in the test
zone, KC is the multiscale kinetic energy measured in the test zone, and Kinit

is the kinetic energy in the test zone after the creation of the initial waves (stage
2).
In the following, we present the results obtained using different values of various
parameters. The potential used is Lennard-Jones with parameters: r0 = 1.2316
Å; σ = 1.1 Å; ǫ = 1.657 10−21 Joules; m = 39.95 10−3 Kg/mol and with
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18 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

Rcut = 2.2r0. All the tests presented involve a variation of the injected fre-
quency via the wavelength parameter λ, according to the formula k = 2πλ. We
consider the range λ ∈ [2r0, 60r0]. Furthermore, we will also present the results
obtained by using our scheme which avoids ghost forces and simplifies the com-
putation of the forces. As well as these points, we will discuss various aspects
of the method influenced by parameters such as the size of the bridging zone.

Reflection rate with respect to the condensation of the constraint

matrix As mentioned in [7], it is suggested to condense the constraint matrix
in order to speed up the computations. The effect of such a manipulation is
critical and should not be neglected. Figure 10 presents the reflection rates
obtained for the coupled model. The curves labelled “Arlequin” and “New”

100%

80%

60%

40%

20%

0%

Arlequin
Arlequin Condensed
New
New condensed

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
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Figure 10: Reflection rates in percent of the initial wave energy with respect to
harmonic wave length. These were measured on coupled numerical simulations
for the Arlequin method and our formulation. Full and condensed constraint
matrix cases are also presented.

refer to the reflection rates measured for the initial formulation and for the
approximation we introduced (see eq. 5). Results issued from the use of the full
and lumped versions of the constraint matrix are also presented.

Note the considerable enhancement achieved by the condensation of the con-
straint matrix in the high frequencies domain. We remind that the finite element
model cannot represent the high frequencies due to the reduced number of de-
grees of freedom. As a consequence, strongly constraining the atoms to follow
the mesh behavior naturally leads to reflection effects. However, this argument
is not completely convincing from a mathematical point of view. But the spec-
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tral analysis of the next section will justify more precisely this idea and will lead
to a better understanding of the coupling.

Reflection rate with respect to the bridging size The size of the bridging
zone controls the magnitude of wave reflections. More precisely, increasing the
coupling length decreases the reflection rates. We made vary the bridging size
to obtain the results presented on figures 11 and 12, considering here that the
constraint system has been condensed. Figure 11 presents the reflection rates
obtained, first with the initial method with intrusive forces. It can be seen
that there is an upper bound of the wave reflection (43%) for the wave length
22r0. As expected, the rates are decreasing while the bridging size increase, but
bridging sizes 32r0, 64r0 and 72r0 give similar results.

Figure 12 presents the same test set but with non intrusive force calculation.
This time, the upper bound reaches 50%. With regard to the previous results,
the rates are decreasing when the bridging size increases, even for low bridging
sizes. For coupling lengths higher than 104r0, the non intrusive method gives
better results than the original one. This justifies the use of the approximation
leading to governing equation (5).

Due to the approximation made on the force calculation (see 2), we see
spurious wave reflections for small coupling sizes. But we have clearly shown
that such an approximation is valid in terms of wave reflections once the bridging
size has reached a certain level.

35%

30%

25%

20%

15%

10%

5%

0%
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

288 r0
144 r0
104 r0
72 r0
64 r0
32 r0

40%

45%

Figure 11: Reflection rates, for the bridging method, in percent of the initial
wave energy with respect to the injected harmonic wave length. The different
curves present the reflection rates for different overlap sizes.
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40%
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35%

30%

25%

20%

15%

10%

5%

0%
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
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32 r0

Figure 12: Reflection rates, for the bridging method with our approximation
- see equation (5) - in percent of the initial wave energy with respect to the
injected harmonic wave length. The different curves present the reflection rates
for different overlap sizes.

3 Coupled governing equations

The coupling zone is a hybrid zone where the waves are propagated and dispersed
in a specific way. The purpose of this section is to find the governing equations
that are solved by our coupling approach in order to understand the effects of
the coupling on wave propagation. We will then be able to explain how the
wave reflections occur in the bridging zone.

In order to reach this goal, we will use a reversed approach compared to what
is usually done. To find the equations governing the behavior of the coupling
region, we will start from the integration scheme. Then the force linearization
will allow us to study the coupling system as an harmonic oscillator.
Equations (5) are integrated by the SHAKE scheme [17], which can be written
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in the following matrix form






ḋn+1/2 = ḋn +
∆t

2
m−1 · fn

u̇n+1/2 = u̇n +
∆t

2
M−1 · Fn

dn+1 = dn + ∆t ḋn+1/2

un+1 = un + ∆t u̇n+1/2

evaluation of fn+1 and Fn+1

ḋn+1 = ḋn+1/2 +
∆t

2
m−1 · fn+1 +

∆t

2
(θ · m)−1 · λ

u̇n+1 = u̇n+1/2 +
∆t

2
M−1 · Fn+1 − ∆t

2
(β · M)−1 · At · λ

with λ such that g(ḋn+1, u̇n+1) = 0,

(8)

where m and M are the diagonal mass matrices, g the constraint function
defined in (1), A the interpolation matrix on the atomic sites and θ, β the
matrices expressing the weighting functions for each model. These matrices are
given by

AiJ = ϕJ (Xi), βIJ = δIJ α(XI) and θij = δij (1 − α(Xi)).

To guarantee the validity of the previous equations, we have the following strong
assumption

Hypothesis: The diagonal matrices θ and β are regular.

∀I = 1, N βII 6= 0 ∀i = 1, n θii 6= 0

Remark: this assumption is not valid on the boundary of the finite element
domain. In fact, the weighting functions should be defined so that neither atom
nor finite element node has a zero weight. In [7], the weights associated to the
first element in the coupling are arbitrarily selected as non zero, and recom-
mended to be fixed at 10−3. Such a choice is non-trivial and has an impact on
the behavior of the wave reflections. This will be discussed in section 4.5.

3.1 Constrained velocity update

To study the computed trajectories, we consider the solution obtained by the
discrete scheme (8) with a given time step ∆t. We denote these trajectories
by u∆t(t) and d∆t(t) for a given time t. We also suppose that these solutions
converge to u(t) and d(t) when ∆t tends towards 0. To clarify the following
calculations, from now on we denote the forces by f(d∆t(t)) and F (u∆t(t))
to make explicit the dependence on displacements. To evaluate the velocity
increment, we rewrite system (8) with an explicit time dependency







ḋ(t + ∆t) = ḋ(t) + ∆tm−1f̂∆t +
∆t

2
m−1θ−1 · λ

u̇(t + ∆t) = u̇(t) + ∆tM−1F̂∆t −
∆t

2
M−1β−1 · At · λ,

(9)

with

f̂∆t(t) =
f(d∆t(t)) + f(d∆t(t + ∆t))

2

RR n° 6582



22 G. Anciaux, O. Coulaud, J. Roman & G. Zerah

and

F̂∆t(t) =
F (u∆t(t) + F (u∆t(t + ∆t))

2
,

and λ chosen such that the constraint

g(u̇∆t(t + ∆t), ḋ∆t(t + ∆t)) = 0

is satisfied. This can be written as

A u̇∆t(t + ∆t) − ḋ∆t(t + ∆t) = 0.

Using the expression of u̇∆t and ḋ∆t one obtains

A

(

u̇∆t(t) + ∆tM−1F̂∆t(t) −
∆

2
tM−1β−1Atλ

)

− ḋ∆t(t)

−∆t

2
m−1f̂∆t −

∆t

2
m−1θ−1 · λ = 0.

Then the Lagrange multipliers satisfy the system

∆t

2
(AM−1β−1 · At + m−1θ−1) · λ =

A
(

u̇∆t(t) + ∆tM−1F̂∆t

)

− ḋ∆t(t) − ∆tm−1f̂∆t.

Let us now consider the constraint matrix H defined by

H = AM−1β−1 · At + m−1θ−1,

the Lagrange multipliers are the solutions of the following linear system

H · λ =
2

∆t
ġ∆t(t) + AM−1F̂∆t − m−1f̂∆t

where ġ∆t(t) = A u̇∆t(t) − ḋ∆t(t).

Lemma 3.1 If we assume that there are no null weight associated to any cou-
pled degree of freedom, then H is regular.

Proof:

The constraint matrix has the following expression:

H = AM−1β−1 · At + m−1θ−1.

Let D1 and D2 be the diagonal matrices

D1 = M−1β−1 and D2 = m−1θ−1.

Then we can write
H = AD1A

t + D2.

As the weights used are non zero by hypothesis, we have:

∃ǫ1 > 0 and ∃ǫ2 > 0 such that ∀i (D1)i ≥ ǫ1 and (D2)i ≥ ǫ2.
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Then, using the properties of the scalar product in Rn, we obtain for an arbitrary
chosen vector u:

< (AD1A
t + D2)u, u >=< AD1A

tu, u > + < D2u, u >

which leads to the following lower bound:

< (AD1A
t + D2)u, u > ≥ ǫ1 || Atu ||2 +ǫ2 || u ||2≥ 0.

If H were not regular, then a vector u 6= 0, such that < Hu, u >= 0 would
exist. Then:

ǫ1 || Atu ||2 +ǫ2 || u ||2= 0 ⇒ u = 0

which is a contradiction. So H is regular.
Now that H is proved as regular, the Lagrange multipliers are given by

λ = H−1F∆t(t) +
2

∆t
H−1ġ∆t(t) (10)

where F∆t(t) = AM−1F̂∆t(t) − m−1f̂∆t(t).
In order to prevent any confusion, we remind here that F∆t(t) depends on the
forces, hence on the position trajectories (u∆t and d∆t), while ġ∆t(t) depends
on the velocity trajectories (u̇∆t and ḋ∆t).

As we already mentioned in the introduction, the original method [7] rec-
ommends the use of a modified version of the constraints matrix in order to
speed up calculations of the Lagrange multipliers. In particular, they consider
the positive definite matrix H̃

H̃ij =







L∑

p=1

Hip if i = j,

0 otherwise.

But this simple operation has critical consequences as we will show in the follow-
ing study. Indeed, when we condense the constraint matrix H on its diagonal,
we introduce implicitly an additional force which will be beneficial (c.f. section
2.2.2) to the wave reflection problem.

For sake of generality we use in the following calculations a generic matrix H̃
to compute the Lagrange multipliers. Let us consider again equation (10). As
matrix H is approximated by H̃ , the constraints are not guaranteed anymore
to be verified at each time step. This will introduce additional forces onto the
DOFs of the system. The expression of the Lagrange multipliers are now

λ = H̃−1F∆t(t) +
2

∆t
H̃−1ġ∆t(t).

In order to find the system verified by (u(t), d(t)), we write the velocity variation
as follows:







m
ḋ∆t(t + ∆t) − ḋ∆t(t)

∆t
= f̂∆t(t) + θ−1H̃−1F∆t(t)

+θ−1H̃−1 ġ∆t(t)

∆t

M
u̇(t + ∆t) − u̇(t)

∆t
= F̂∆t(t) − β−1AtH̃−1F∆t(t)

−β−1AtH̃−1 ġ∆t(t)

∆t
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3.1.1 Discrete constraint values

According to the previous expression of the trajectories, we compute the value
of the constraints in order to know the behavior imposed to the DOFs.

Lemma 3.2 ∀(t, ∆t) ∈ R
2
+ and ∀n ∈ N

∗

ġ∆t(t + n∆t)) =
∆t

2

n∑

i=1

QiF∆t(t + ∆t(n − i)) + Qnġ∆t(t).

Proof of the lemma. We consider the expression of the velocity constraint:

g(u̇∆t(t + ∆t), ḋ∆t(t + ∆t)) =Au̇∆t(t + ∆t) − ḋ∆t(t + ∆t)

=Au̇∆t(t) − ḋ∆t(t) + ∆tF∆t(t)

− ∆t

2

[
AM−1β−1At + m−1θ−1

]
λ

=ġ∆t(t) +
∆t

2
F∆t(t) −

∆t

2
Hλ.

By using the expression of the Lagrange multipliers (10), we have

g∆t(t + ∆t) =g∆t(t) + ∆tF∆t(u∆t(t), d∆t(t))

− ∆t

2
HH̃−1F∆t(t) +

2

∆t
H̃−1g∆t(t).

Finally, we obtain

g(u̇∆t(t + ∆t), ḋ∆t(t + ∆t)) = (11)

Qg(u̇∆t(t), ḋ∆t(t)) +
∆t

2
QF∆t(u̇∆t(t), ḋ∆t(t))

where the matrix Q is defined by

Q =
(

I − HH̃−1
)

. (12)

We proceed by recurrence to prove the required result. Expression (11) gives
the result for n = 1 while the relation for n = 0 is trivial.

Let us suppose as true the relation for the order n. We have

ġ∆t(t + n∆t) =
∆t

2

n∑

i=1

QiF∆t(t + ∆t(n − i)) + Qnġ∆t(t).

We can compute the formula for n + 1:

G = ġ∆t(t + (n + 1)∆t) = ġ∆t((t + n∆t) + ∆t),
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and by using (11) for n = 1, we obtain

G = Qġ∆t(t + n∆t) +
∆t

2
QF∆t(t + n∆t)

= Q

[

∆t

2

n∑

i=1

QiF∆t(t + ∆t(n − i)) + Qnġ∆t(t)

]

+
∆t

2
QF∆t(t + n∆t)

=
∆t

2

n∑

i=1

Qi+1F∆t(t + ∆t(n − i)) +
∆t

2
QF∆t(t + n∆t) + Qn+1ġ∆t(t)

=
∆t

2

n+1∑

i=2

QiF∆t(t + ∆t(n + 1 − i)) +
∆t

2
QF∆t(t + n∆t) + Qn+1ġ∆t(t)

Finally, we have

G =
∆t

2

n+1∑

i=1

QiF∆t(t + ∆t(n + 1 − i)) + Qn+1ġ∆t(t).

So, if we assume that the constraint is verified at the initial state then for
all t = n∆t we have

ġ∆t(t) =
∆t

2

n∑

i=1

QiF∆t(t − i∆t).

By putting this expression in equation (11), we obtain the following system






m
ḋ∆t(t + ∆t) − ḋ∆t(t)

∆t
= f̂∆t(t) + θ−1H̃−1F∆t(t)

+
1

2
θ−1H̃−1

n∑

i=1

QiF∆t(t − i∆t)

M
u̇∆t(t + ∆t) − u̇∆t(t)

∆t
= F̂∆t(t) − β−1AtH̃−1F∆t(t)

−1

2
β−1AtH̃−1

n∑

i=1

QiF∆t(t − i∆t).

(13)

3.2 Governing equations

We have constructed the discrete equations verified by the solution in the cou-
pling region. In particular, we have an explicit formula for the velocity update
performed at each time step.

By classical analysis, the governing equations can be found from the velocity
update by taking the limit as ∆t goes to zero, which will provide the acceleration
and hence the force. In our coupled study, the existence of the limit has to be
proved and this is not trivial mainly because of the term g(t)∆t−1. The purpose
of this section is to proof the existence as well as to explicitly compute the value
of this limit.

First, we introduce the following lemma:

Lemma 3.3 Under the hypotheses:
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H1

{
u∆t(t) → u(t)
d∆t(t) → d(t)

when ∆t tends towards 0

H2 The potentials used to compute the forces are C1(R+)

then the function F∆t(t) converges to

F̃(u(t), d(t)) = AM−1F (u(t)) − m−1f(d(t))

when ∆t tends towards 0.

The proof of this lemma is a simple use of the continuity of functions F and f
and of the convergence of the trajectories.

We have to know the behavior of the constraints in order to verify that the
integration scheme in the condensed case is coherent and converges. For this
purpose we can use the following proposition:

Proposition 3.1 Under the hypotheses

H1 ρ(I − HH̃−1) < 1

H2 The potentials used to compute the forces are C1(R+) and F and f are
continuous functions

H3

{
u∆t(t) → u(t)
d∆t(t) → d(t)

when ∆t tends to 0

H4 The functions u(.) and d(.) are C1(R+)

H5 For all ∆t we assume g(u̇∆t(0), ḋ∆t(0)) = 0

Then we have

H(t) = lim
∆t→0

g(u̇∆t(t), ḋ∆t(t))

∆t

= Q(I − Q)−1F̃(u(t), d(t))

where Q = (I − HH̃−1).

Proof. According to (H5) and lemma (3.2), the constraint is satisfied at the
initial state which gives for all given t with t = n∆t

ġ∆t(t) =
∆t

2

n∑

i=1

QiF∆t(t − i∆t). (14)

A first remark on this result is that the constraint depends on the evaluation of
weighting differences between the continuum forces and the atomic forces that
are evaluated in the computation of F∆t at each time step. The second remark
is that the sequence (Qi)i∈N is a geometrical one. Thus it converges only if
|| Q ||< 1. Then, we conclude that the influence of a previous force gap at a
given time step to the present time decreases like the geometrical sequence of
multiplier Q.
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We use now the fact that the function F(u(.), d(.)) is continuously differ-
entiable on the segment of time [0, t] (H4) and by using lemma 3.3, one can
deduce that there exists an upper bound Γ of the quantity || F(u(t), d(t)) ||.
By using (H4), Γ can be chosen such that it bounds also to the quantities
|| F∆t(u∆t(t), d∆t(t)) || on the interval [0, t]. Now let us consider the following
sequence

un =

n∑

i=1

QiF∆t(t − i∆t) ∀n ∈ N
⋆.

Then, thanks to lemma 3.2 we have

un =
2

∆t
ġ∆t(n∆t) =

2

∆t
ġ∆t(t).

In other words, each iteration of the sequence is the value of twice the constraint
function at time t divided by the time step t/n, considering that it is the result
of n integration steps of size ∆t = t/n.

We evaluate the difference

Dn = un −
[
Q(I − Q)−1

]
F̃(u(t), d(t))

to show that it tends towards 0 when n tends towards ∞ and t fixed. We first
transform this expression thanks to (H1) by using the classical geometric series:

∞∑

i=1

Qi = Q(I − Q)−1.

Thus we have the following expression for Dn

Dn =

n∑

i=1

Qi(F∆t(t − i∆t) − F̃(u(t), d(t)) −
∞∑

i=n+1

QiF̃(u(t), d(t)).

We will decompose Dn in three terms and will find upper bounds for each
one of them with respect to an arbitrary positive number ǫ. To obtain this
decomposition, we will define the index mǫ by using the assumption (H1) such
that:

∀ǫ > 0, ∃mǫ ∈ N / ∀i ≥ mǫ || Q ||i< ǫ

3Γ
(1− || Q ||). (15)

We will see later why we made this particular choice as upper bound. From
now, mǫ will remain fixed. Then, we have the following decomposition for all
m ≥ mǫ

Dn =

m∑

i=1

Qi(F∆t(t − i∆t) − F̃(u(t), d(t))

︸ ︷︷ ︸

An

+

n∑

i=m+1

QiF∆t(t − i∆t)

︸ ︷︷ ︸

Bn

−
∞∑

i=m+1

QiF̃(u(t), d(t))

︸ ︷︷ ︸

Cn

.
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Our purpose is to bound the norm of Dn by ǫ. Thus convergence would be
proved. Let us consider the first term An. We write:

F∆t(t − i∆t) − F̃(u(t), d(t)) =

AM−1

[
1

2
F (u∆t(t − i∆t)) +

1

2
F (u∆t(t − (i − 1)∆t)) − F (u(t))

]

− m−1

[
1

2
f(d∆t(t − i∆t)) +

1

2
f(d∆t(t − (i − 1)∆t)) − f(d(t))

]

.

As the forces F and f are continuous (H2) and thanks to the convergence of
the trajectories (H3), one can apply lemma 3.3 to obtain

F∆t(t − i∆t) − F̃(u(t), d(t)) −→ 0 when n → ∞.

Thus it exists a function η which converges towards 0 when n tends towards
infinity such that

|| An ||≤ η(n)

m∑

i=1

|| Qi ||≤ η(n)
(1− || Q ||m+1)

1− || Q || .

We then have found an upper bound for An that is a function converging towards
0 when n tends to infinity. In other words,

∃N ∈ N such that ∀n > N > mǫ , || An ||≤ ǫ

3
.

Concerning the second term Bn, we use the following upper bound:

|| Bn ||≤
n∑

i=m+1

|| Q ||i|| F∆t(t − i∆t) ||≤ Γ

∞∑

i=m+1

|| Q ||i≤ Γ
|| Q ||m+1

1− || Q || .

Moreover the choice of mǫ, the relation (15) and the above upper bound imply

|| Bn ||≤ ǫ

3
.

Finally, we treat in a similar way the last term Cn. We have

|| Cn ||≤
∞∑

i=m+1

|| Qi |||| F̃(u(t), d(t)) ||≤ Γ
|| Q ||m+1

1− || Q || ≤ ǫ

3
.

Finally, we obtain

∀ǫ > 0 , ∃mǫ , such that ∀n > mǫ we have || Dn ||≤ ǫ.

That ends the proof of proposition 3.1.
We found that the continuous expression of the additional force added in

the governing equations is

H(t) =Q(I − Q)−1F̃(u(t), d(t)) =
[

H̃H−1 − I
]

F̃(u(t), d(t)).

As we can see, if we don’t use the lumped constraint approximation there is no
additional force in the system.
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With the assumption of linearized forces and considering KC the stiffness
matrix for continuum mechanics and KA the stiffness matrix for molecular dy-
namics, the expression of F̃(u(t), d(t)) becomes

F̃(u(t), d(t)) = AM−1KCu(t) − m−1KAd(t).

Then H(t) can be rewritten as

H(t) = (H̃H−1 − I)
[
AM−1KCu(t) − m−1KAd(t)

]
.

Now, we introduce these additional forces into the equations of the constrained
velocity update (13) and we obtain the limit behavior when ∆t tends toward
zero







m d̈(t) = (I − θ−1H−1m−1)KAd(t) + θ−1H−1AM−1KCu(t)

+θ−1H−1(H̃H−1 − I)
[
AM−1KCu(t) − m−1KAd(t)

]

M ü(t) = (I − β−1AtH−1AM−1)KCu(t) + β−1AtH−1m−1KAd(t)

−β−1AtH−1(H̃H−1 − I)
[
AM−1KCu(t) − m−1KAd(t)

]
.

After reduction we have






m d̈(t) = (I − θ−1H−1H̃H−1m−1)KAd(t) + θ−1H−1H̃H−1AM−1KCu(t)

M ü(t) = (I − β−1AtH−1H̃H−1AM−1)KCu(t)+

β−1AtH−1H̃H−1m−1KAd(t)
(16)

Remark: when H̃ is equal to H then the term (H̃H−1 − I) vanishes, and this
shows the consistency of the expression (16).

Let us now introduce the notations

C11 = (I − θ−1H−1H̃H−1m−1)KA, C12 = θ−1H−1H̃H−1AM−1KC ,

C21 = β−1AtH−1H̃H−1m−1KA, C22 = (I − β−1AtH−1H̃H−1AM−1)KC ,

to obtain the system
(

m 0
0 M

)(

d̈
ü

)

=

(
C11 C12

C21 C22

)(
d
u

)

. (17)

This is a typical PDE easily linked to an oscillator system. Thus we can study
the modes of such an oscillator.

We have shown that a force is added to the DOFs of the system proportion-
ally to the value of the constraint. When we condense the constraint matrix
the constraints are not exactly satisfied, and we thus introduce an error which
behaves as a diffusion force. On the other hand, the expression of the constraint
depends on all the time steps of the simulation, called hereafter the history of
the simulation. We have found a behavior at the limit when the time step tends
towards 0. Nowadays, we cannot use a too small time step in our numerical
simulations. The matrix Q will quantify if our analysis will be valid or not.
However, in order to analyze the modes, it is necessary to consider the behavior
at the limit. In practice, if the norm of Q is too close to 1, then the terms of
the series (14) converge slowly, giving an huge importance to the history, while
the limit behavior neglects it.

To conclude this section, our theoretical approach brings a very fine com-
prehension of the phenomena involved in the coupling. However, we use a con-
tinuous behavior in time for our system. In the following, we will exploit this
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theoretical analysis on various cases. We will then highlight the configurations
of the coupling which are source of wave reflections. We will also study how the
condensation of the constraint matrix plays an important part in the quality of
such a coupling method.

4 Spectral results

Before discussing the numerical results, we present first the process that was
used to analyze the spectral characteristics of our coupling method.

As the governing equations for the coupling system are given by (17), we
will naturally be interested by the eigenvalues of the following matrix S

S =

(
m 0
0 M

)−1(
C11 C12

C21 C22

)

.

We will then determine the modes admitted by the coupled material with eigen-
value computations. As the eigenvalues can be complex, we separate the inter-
pretation of the real and imaginary part of the modes. Indeed, the eigenvalues
are written in polar coordinates such as ω2

k = ρeiθ. The modes generate nor-
malized solutions of the form Vωeiωt and we distinguish atomic part V A

ω from
finite element part V C

ω for each eigenvector. Then, the only valid modes are the
ones for which the imaginary part is negative: we have ω =

√
ρeθ/2+cπ = a + ib

where c is selected such that b < 0. By separating the atomic part from the
finite element part of the eigenvectors, the normalized solutions is

(
V A

ω

V C
ω

)

e−iatebt

and the imaginary part b refers to the dissipative factor of a given complex mode.

In the following, we consider the case of a coupling zone of size 104 r0

including 104 atoms, and a finite element zone containing 13 finite elements and
14 nodes each of them with a size h = 8r0. Then the matrix S is squared and
of size 104 + 14 = 118.

4.1 Spectrum modes of the coupling model

We compute the spectrum associated to the coupling model and we compare it
with the ones associated with the full finite element model and the full atomic
chain. The results are presented in figure 13. In the case of the studied mesh, the
cutoff frequency for the finite element model is 2.75 1012. It is straightforward
that the cutoff frequency, and more generally the spectrum, is related to the
finite element size. We discuss this point in section 4.4. The cutoff frequency
of the atomic model is 2.23 1013 and it is naturally related to the Brillouin
zone, then having a wavelength of r0. These two frequencies are important
as they limit the vibrations of both models when they are not coupled. The
band of frequencies between these two values delimit the frequencies that should
be absorbed because the full finite element model cannot propagate such high
frequency waves. Indeed, this is mostly because the mesh used does not have a
sufficient number of nodes to represent those waves, as it can be seen from the
dispersion equations of both models (see [3]).
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(a)

(b)

(c)

(d)

Unaffordable for FE
Frequency band Frequency band 

higher than the brillouin zone

 1e+14 1e+13 1e+12 1e+11

 1e+11  1e+12  1e+13  1e+14

 1e+14 1e+13 1e+12 1e+11

 1e+14 1e+13 1e+12 1e+11

Figure 13: Spectrum of a monoatomic chain constituted of 104 atoms (a), of a
1D homogeneous grid with finite element size of h = 8r0 (b), and of the coupling
model in its complete (c) and its condensed form (d).

Now, if we consider the spectrum of the coupling method when the constraint
matrix is not condensed, it can be observed that the cutoff frequency has been
slightly moved forward to the value 4.08 1012. The consequence of such a mod-
ification is that mesh nodes are allowed to vibrate at higher frequencies than
when they are not coupled. But in the same way, this cutoff frequency is also
respected for the atomic DOFs, preventing atoms to vibrate at high frequencies.
In other words, waves coming to the coupling zone at frequencies higher than
4.08 1012 will not be allowed to propagate into the coupling zone, inducing a
wave reflection by wave scattering ([16]).

In comparison, the condensation of the constraint matrix strongly modifies
the spectrum of the coupling by moving up to 4.45 1014 radian per seconds.
Clearly, this gives a justification concerning the positive effect of the constraint
condensation for the wave reflection problem as both atoms and finite elements
are theoretically allowed to vibrate until the Brillouin zone.

The theoretically admitted frequencies above the Brillouin zone are not valid.
In that manner, it seems interesting to consider the dissipation coefficient of each
mode, the dissipation power, and the properties of the associated eigenvectors,
and finally the transmission power. This is the subject of the two following
sections.

4.2 Dissipation of the coupling model

In this section, we first present the modes plotted as impulses where the height
of each impulse will be associated to the mode imaginary part. Figures 14 and
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15 present the modes computed without condensation and with condensation
respectively.
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Figure 14: Dissipation power of the admitted modes for the non-condensed
coupling model.
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Figure 15: Dissipation power of the admitted modes for the condensed coupling
model.

Concerning both figures, our first remark is that the dissipation power is
very low. In the non-condensed case, the maximal dissipation power is about
6.42 105 for an associated frequency of 6.59 105. Indeed, if we consider magni-
tude decreasing ratio r after a time t, we have

r = e−bt −→ t = −ln(r)/b.

Then for a decreasing ratio of 90%, a time of the order of t = −ln(0.1)/105 =
2.302 10−5 is necessary. As we have to consider usual molecular dynamics
time step of the order of the femtosecond, the necessary time is unreachable.
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Furthermore, the frequency of the mode of highest dissipation ratio is a very
low one. Moreover the wavelengths associated with these low frequencies are
much more higher than the size of the studied coupling zone. This totally
excludes that this mode can be responsible for the energy dissipation observed
in our simulations. In the condensed case, the maximal dissipation power is
1.22 10−9 for an associated frequency of 5.22 105 which is a lower dissipation
power. Then it can be concluded that the absorption observed in simulations
cannot be explained by dissipation effects.

4.3 Transmission of the coupling model

Beside the dissipative effects, the transmission from one model to the other for
each mode must be considered. Indeed, since the shape of the eigenvectors influ-
ences the wave transmission through the coupling, it is interesting to compare
the respective norms of each of these parts. We define the transmission power
by

T (ω) =
|| V C

ω ||
|| V A

ω || . (18)

This measurement is justified by the fact that we wish to evaluate how the
atomic vibrations are transmitted into mesh node vibrations. Figure 16 presents
the transmission power of the modes in the range [1 1011, 2.23 1012] for both
condensed and not-condensed cases. The first observation concerns the not-
condensed modes for which the transmission power is increasing until the cutoff
frequency mode. This means that the transmission is maximal around that
cutoff area. On the contrary, in the condensed case, the transmission power
is decreasing until the previously mentioned frequency. This clearly shows a
different behavior of our oscillator system in the problematic frequency band.

4.4 Correlation with finite element size

The results achieved from the simulation presented by figure 10 show that some
wave reflections still occur around a wave length of 14r0 which corresponds to a
frequency of 3.47 1012 radian per seconds according to atomic chain dispersion
law [3]. Neither dissipation power nor transmission power can clearly explain
this localized reflection rate. The spectrum study, presented in the previous
sections, must take into account that the system we are studying is a stimulated
oscillator. Then, the behavior of such a system is not the one of a freely evolving
one. This prevents us to have clear explanations of the reflection magnitudes or
even the knowledge of the stimulated modes with respect to a given stimulation
frequency.

But there is one additional parameter that strongly influences the reflection
rates, that is the finite element size. To point out this, we performed measure-
ments with different finite element sizes. The results are presented by figure 17
for a condensed constraint matrix. Clearly we can see the dependence on finite
element size despite the fact that the spectrum is extended by the condensation
of the constraint matrix.

Without any clue from the spectral study, we can still bring some infor-
mation about the frequency where the peaks of wave reflections are observed.
We can see that the cutoff frequency of the finite element model, the cutoff fre-
quency of the coupled model without lumped matrix and the frequency at which
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Unaffordable for FE
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Figure 16: (a) Transmission power of each mode for a coupling model with a
full constraint matrix. (b) Transmission power of each mode with a condensed
constraint matrix.

reflection peaks are observed (with lumped matrix) are in a constant interval.
Table 18 presents these relevant frequencies for various finite element sizes. The
frequencies associated to the reflection peaks where computed by inversion of
the dispersion equation for atomic chain. These numbers give us an intuitive
solution to understand what is occurring in such coupled simulations: the finite
element model is entering into resonance for a precise stimulation frequency.
To prove that, our spectral interpretation of the oscillator should be extended
with a dissipation/friction function in order to avoid energy accumulation in the
coupled zone. Indeed, without an energy dissipation any mode have an infinite
resonance.

4.5 Study of the dependence on the past history

The constraint matrix condensation changes radically the rates of wave reflec-
tions. As we showed in section 3, condensation induces one additional force
which is proportional to the value of the constraint applied on the velocities.
This force acts like a diffusion force always within the limit of the linear approx-
imation of the forces.

It is pointed out that under the condensation assumption, the governing
equation is given by (16). Concretely, in the case of discrete time integration,
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Figure 17: Reflection rates measured with respect to injected wavelength for a
bridging zone of size 104r0. We present the reflection rates for six finite element
sizes: 2r0, 4r0, 8r0, 13r0, 26r0 and 52r0.

FE size Cutoff FE Cutoff coupling reflection peak
2r0 1.11 1013 1.47 1013 1.30 1013 (λ = 5r0)
4r0 5.52 1012 8.14 1012 6.86 1012 (λ = 10r0)
8r0 2.75 1012 4.08 1012 3.47 1012 (λ = 20r0)
13r0 1.68 1012 2.46 1012 2.04 1012 (λ = 34r0)
26r0 8.22 1011 1.17 1012 1.12 1012 (λ = 62r0)
52r0 3.93 1011 5.52 1011 —

Figure 18: Cutoff frequencies for finite element model, coupled model and in
the last column frequencies with highest reflection rates.

the value of the constraint at time t = n∆t is

ġ(t) =
∆t

2

n∑

i=1

QiF∆t(t − i∆t)

which can be assumed to be a temporal convolution. Then, we are interested in
the matrix Q defined by (12), and particularly by its eigenvalues which grant
convergence of history. The history notion is related to the influence of con-
straint values of all steps preceding the current simulation time.

In section 3, we discussed the influence of the weighting of DOFs on the
boundary condition. The cases studied until now were such that no atom is
positioned exactly on the border of the bridging zone, thus avoiding a null
weighting. On the other hand, for the first node of the mesh, one must choose
a weighting value which is not zero. So far, we have considered a coefficient
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of 10−3 as suggested by the authors of [7]. But we observed that the weight
associated with the first node of the coupling modifies the eigenvalues of Q and
has a strong influence on the treatment of wave reflections. From now, we will
name this weight value as “history factor”. The choice of this denomination
will be justified later. In the following, we will study the relation between the
eigenvalues of the Q matrix and the history factor before providing reflection
rates induced by a variation of this factor.

4.5.1 Eigenvalues of the matrix Q

We consider the atomic chain containing 104 atoms into the bridging zone
which is coupled with a uniform finite element grid with h = 8r0. To give
comparative data, the weight of the second finite element node takes the value
h/R = 8r0/104r0 = 0.076. With an history factor of 10−3, the eigenvalues of the
matrix Q are contained in the interval [4.33 10−16, 9.98 10−1]. This information
is important, because according to lemma 3.2, the influence of a contribution at
time step i to the history is weighted by Qj−i where j is the current time step.
Then we have for a given upper bound 10−a of the eigenvalues:

λj−i
max ≤ 10−a

j − i ≤ −a
ln(10)

ln(λmax)

where λmax is the maximal eigenvalue of the matrix Q. Then, reaching an
attenuation factor of 10−5 for a contribution to the history requires 6031 time
steps to obtain it. This quantity will be referred as the size of the history.
Another way to understand the importance of this quantity would be to consider
it as the size of a sliding window that encompasses the past computations that
influence the present situation.

The important point here is that the history factor modifies the eigenvalues
and obviously the size of the history. Table 19 presents the history factor, the
related maximal eigenvalue of matrix Q and the history size. We observe a
decreasing behavior of the history size with respect to the history factor.

4.5.2 Reflection rates with respect to the history factor

The history factor, beside modifying the history size, is influencing the reflection
rates. The effect of the history factor on wave reflection rates is presented on
figure 20. The reflection rates are measured for the following history factors:
2 10−4, 6 10−4, 1 10−3, 6 10−3, 10−2 and 2 10−2. We have then different
reflection rates according to these history factors. Mainly, the best solution
with respect to magnitude of the reflections is given by an history factor value of
2 10−2, yielding a maximum at 28%. But this solution induces more reflections
in the high frequencies. A factor of 10−3 gives good results with a maximum
of 35% reflection rate and no reflections in the high frequency bandwidth. As a
compromise between magnitude and high frequency treatment, the factor 6 10−3

has a maximal rate at 30% while the reflection increase in the high frequencies
overcomes the solution of 10−3 by only a few percents. This clearly demonstrates
again that the choice of this parameter should not be chosen arbitrarily.
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history maximal size of
factor eigenvalue history
10−10 0.9999999998 6.02 1010

10−9 0.999999998 6.02 109

10−8 0.99999998 6.02 108

10−7 0.9999998 6.02 107

10−6 0.999998 6.02 106

10−5 0.99998 6.02 105

10−4 0.9998 6.02 104

10−3 0.998 6.03 103

10−2 0.98 6.17 102

10−1 0.92 1.41 102

Figure 19: Maximal and minimal eigenvalues of the matrix Q with respect to
the weighting of the first node of the bridging zone. The size of the history
is also presented as the number of time steps necessary to obtain a decreasing
factor 10−5.
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Figure 20: Reflection rates measured with respect to weight associated with
first node in the bridging zone.

We tried to explain such a behavior by the spectral approach used until
now. On figure 21, we report the transmission power of the modes obtained
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Figure 21: Spectral transmission power with respect to the history factors.
Injected history factors are 2 10−4, 6 10−4, 1 10−3, 6 10−3, 1 10−2 and 2 10−2.

with various history factors. We clearly see the influence of this parameter:
the lower the factor is, the lower the transmission power will be. Still, the
curves associated with the factors 2 10−4, 6 10−4 and 1 10−3 are really close in
comparison to the measured reflection rates.

In our model, the lack of understanding of this effect is due to the fact that
the governing equation used to compute the spectrum is valid in the limit where
the time step is going to zero. This limit behavior assumes that we neglect the
difference of the history sizes as a zero time step implies an infinite number of
iterations for the contraint value

ġ(t) =
∆t

2

n∑

i=1

QiF∆t(t − i∆t)

also providing zero contraint values. But all the simulations for the measurement
of the reflection rates used an identical finite time step. It could be interesting,
but really computational intensive, to measure the reflection rates with time
steps adapted to the history sizes.

5 Conclusion

We have given a detailed description of the phenomena induced by the Bridg-
ing Method. We proposed an approximation of the coupling scheme with a
controlled impact on the wave reflections, also measured on numerical 1D sim-
ulations. We verified that the condensation of the constraint matrix leads to
forces with a variable importance related to the past of the trajectories, ac-
cording to the so-called history factor. We observed the modifications of the
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spectrum and transmission power due to that parameter, but these results do
not allow - in the current state - to explain exactly all the observed modifica-
tions of the reflection rate curves. Moreover, our theoretical approach does not
permit to understand the magnitude of the differences that are measured.

Despite these points, we observed clearly that the problematic zone is di-
rectly related to the finite element size since it fixes the cutting frequency for
the finite element model, and we linked that frequency to the reflection peaks
thanks to simulation benchmarks. Then, this study brings helpful information
to adapt the size of the finite elements according to the problem which is studied
in the atomistic zone and to the wave frequencies that will be generated.

Because of the nature of the true problem - the wave reflections - it would
be interesting to consider an integration scheme with two distinct integration
time steps, one for molecular dynamics and one for continuum mechanics. In-
deed, it is intuitive that the treatment of the waves at the coupling interface
will (pseudo)average the atomic trajectories to transfer to acceptable mesh node
vibrations. The history size, the finite element size, and all the various parame-
ters studied here are responsible for the transfer quality ; results of some really
complex effects as demonstrated by our study. The authors of the method al-
ready suggested to use such a multi-time step algorithm, but with no other
justification than the computational gain. The spectral consideration of such a
scheme is expected to improve the reflections at some point, but the right choice
of both time step, will need some investigation.

Finally, we have to say that the Bridging Method is generic enough to deal
with any material, without any periodic assumption, which is a sufficient moti-
vation in trying to improve it. Still, the original formulation uses a weighting
of the Hamiltonians and will finally constrain only the velocities. We used
an approximation where the governing equation is most likely a Newton one,
with spatially weighted constraint corrections. It seems to be better if such a
constraint is not completely respected (condensation of the constraint matrix),
as we have proved in order to obtain lower reflection rates. This shows that
the transfer between the scales have to consider an history window. Obviously
the mesh nodes should not be constrained to instantaneous and high frequency
atomic trajectories. Then the future of this method might be to consider that
coupled models are constrained through kinetic energy. This could allow us to
filter mechanical waves and eventually split the energy of incoming waves into
thermal and strain energy contributions, according to the finite element sizes at
the interface. This is an interesting direction to finite temperature multiscale
simulations.
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