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émanant des établissements d’enseignement et de
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JEGA: a joint estimation and gossip averagingalgorithm for sensor network appliationsNiolas Maréhal∗ , Jean-Benoît Pierrot† , Jean-Marie Gore‡Thème COM � Systèmes ommuniantsProjet ARESRapport de reherhe n° 6597 � 25 juillet 2008 � 25 pagesAbstrat: Distributed onsensus algorithms are widely used in the area of sen-sor networks. Usually, they are designed to be extremely lightweight at the prieof omputation time. They rely on simple loal interation rules between neigh-bor nodes and are often used to perform the omputation of spatial statistialparameters (average, variane, regression). In this paper, we onsider the aseof a parameter estimation from input data streams at eah node. An averageonsensus algorithm is used to perform a spatial regularization of the parameterestimations. A two step proedure ould be used: eah node �rst estimates itsown parameter, and then the network applies a spatial regularization step. It ishowever muh more powerful to design a joint estimation/regularization proess.Previous work has been done for solving this problem but under very restri-tive hypotheses in terms of ommuniation synhroniity, estimator hoie andsampling rates. In this paper, we study a modi�ed gossip averaging algorithmwhih ful�lls the sensor networks requirements: simpliity, low memory/CPUusage and asynhroniity. By the same way, we prove that the intuitive ideaof mass onservation priniple for gossip averaging is stable and asympotiallyveri�ed under feedbak orretions even in presene of heavily orrupted andorrelated measures.Key-words: distributed algorithms, gossip algorithms, epidemi algorithms,averaging, average onsensus, estimation, spae-time di�usion, sensor networks
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JEGA: un algorithme d'estimation et moyennageonjoints pour appliation aux réseaux deapteursRésumé : Les algorithmes distribués de onsensus de moyenne (averageonsensus) sont ourrament utilisés dans le domaine des réseaux de apteurs.Conçus pour être extrêmement légers au prix d'un temps de onvergene aru,ils reposent sur des interations loales entre noeuds voisins et sont prinipale-ment utilisés pour le alul de paramètres statistiques empiriques (moyenne,variane, ...). Dans et artile, nous nous plaçons dans le adre de l'estimationsur haque noeud-apteur d'un paramètre à partir d'un �ot d'éhantillons. Unalgorithme de onsensus de moyenne est utilisé a�n de régulariser spatialle-ment les paramètres estimés. Il serait possible d'utiliser une proédure en deuxétapes: haque noeud alule tout d'abord une première estimation de sonparamètre, puis le réseau uniformise es estimations dans un deuxième temps. Ilest ependant plus intéressant d'utiliser un shéma d'estimation/régularisationonjointes. Dans de préédents travaux, une solution a été proposée pour ré-soudre e problème mais sous des hypothèses trop restritives en termes de syn-hronie des ommuniations, de hoix d'estimateur et de adene d'éhantillonage.Dans e rapport, nous étudions une version modi�ée d'un algorithme de moyen-nage pair-à-pair qui répond à la problématique préédemment itée tout enrespetant les spéi�ités des réseaux de apteurs: simpliité, faible usage desressoures (proesseur, mémoire, ...) et asynhronie.Mots-lés : algorithmes distribués, algorithmes gossip, algorithmes épidémiques,onsensus de moyenne, estimation, di�usion spatio-temporelle, réseaux de ap-teurs



JEGA: estimation et moyennage onjoints 31 IntrodutionSensor networks onsist of a great amount of small entities, alled nodes, equippedwith low ost hardware in order to balane the total network ost. They areommonly used for monitoring physial phenomena on wide areas suh as hy-drometry, landslides or �res, but also for traking purposes and in militarywarfare ([1℄,[2℄,[3℄,[4℄,[5℄). The diret drawbaks of low ost hardware are nu-merous: severe energy onstraints (battery lifetime), poor CPU and storageabilities, low transmission rates and small ommuniation range. Faing theselimitations and objetives, wireless sensor networks (WSN) have to self-organizetheir exhanges and the maneer sensor nodes must ahieve their mission. As inmost ases, omputations in a entralized fashion beome untratable and/orinadaptated, robust distributed algorithms have to be designed. The biggestpart of algorithm design for WSN is dediated to improving the performaneswhile preserving energy onsumption. For example, several data fusion shemesdevelopped in order to provide a good and ompat representation of the ob-served phenomenon an be made on the basis of a high number of low qualitymeasures [6℄ and simple loal interations between neighbor nodes (gossiping).The partiular lass of distributed onsensus algorithms is of great interest:they provide a robust way of homogenizing parameters among network nodes[7℄. More spei�ally, average onsensus algorithms seem to be a good hoiewhenever the stability and the quality of the onsensus point is a ritial issue[8℄, and extend to a wide panel of data fusion tools suh as estimators for statis-tial moments, linear regression and polynomial map �tting ([6℄, [9℄). However,a problem ours when data to be averaged are subjet to �utations. Thisis often the ase when a statistial parameter is estimated from time series ofnoisy data samples. As the number of available samples inreases, the estima-tion proess naturally ats as a temporal regularization sheme and �utuationsare redued: one would ask to adjust the urrent state of average onsensusin order to aount for informations with higher preision. For an additivezero-mean stationary measurement noise proess, the quality of this estimationinreases with the number of measures and, as a orollary, with time. Neverthe-less, gossip averaging algorithms are very slow to onverge in omparison withentralized algorithms: gossip-based onsensus algorithms onverge asymptoti-ally, rarely in �nite time. As sensor networks su�er from heavy onstraints ontheir resoures, time and energy must be saved, it thus beomes neessary torun the gossip averaging algorithm while the estimation is still in progress byusing orretion mehanisms. This double proess should be understood as aspatio-temporal regularization sheme: eah node performs individually a loalregularization of extrated features from sampled data (estimation) , while aspatial regularization (averaging) is performed in order to extrat a global har-ateristi. Previous work has been done on this topi, and an alternative versionof the algorithm introdued in [9℄ is desribed in this artile. As explained inthis paper, the originality of our work onsists mainly in the full asynhroniitythat is assumed for both data exhanges and estimation proesses, and in thewide range of estimators overed by the hypotheses. Moreover, our algorithman �nd many appliation ontexts: as an example, a lok synhronizationsheme for wireless sensor makes use of it [10℄. This paper is organized as fol-lows: setion 2 provides a short overview of gossip-based onsensus algorithms, their priniples and some known results. In setion 3, a solution is proposed,RR n° 6597



4 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Goreaddressing the problem of the parallel estimation and averaging while respet-ing the philosophy and paradigm of sensor networks. Further the onvergene isproved. After these theoretial onsiderations, simulation results are provided insetion 4 in order to give a qualitative study of its behaviour w.r.t. parameterssale. In addition to its apparant meaning, this work proves that priniples ofmass onservation are respeted and stable through our algorithm, even whenmeasurements are highly orrupted and orrelated.2 Distributed onsensus algorithms2.1 Priniples of gossip-based onsensus algorithmsDistributed onsensus algorithms/protools aim at agreeing all network nodeswith a ommon value or a deision in a deentralized fashion. From a signalproessing ontext, this an be understood as a spatial regularization proess.When data exhanges onsist of loal, asynhronous and simple interationsbetween neighbor nodes, suh algorithms refered to as gossip-based. The par-tiular sublass of gossip-based average onsensus algorithms does not limit tothe omputation of averages, but extends to the extration of a large varietyof aggregated and statistial quantities like sums/produts, max/min values,varianes, quantiles and rank statistis ([11℄ and [12℄). More diret applia-tions like least-squares regression of model parameters have also been adaptedto this algorithms ([6℄,[9℄). All these spei�ities make gossip-based onsensusalgorithms good andidates for sensor networks appliations, where bandwidth,energy onsumption and CPU/memory usage are enduring severe limitations forthe sake of nodes lifetime and size. Despite their suboptimality1, pure gossiponsensus algorithm an be used as a prelude to more sophistiated algorithmsby homogenizing parameters upon groups of nodes (for example, the redutionof arrier o�set for reduing time drift of TDMA shemes). The performaneanalysis of suh algorithms relies essentially on di�usion speed statistis andis then losely related to performanes of �ooding/multiasting proesses andmixing time of Markov hains: some asymptoti bounds on onvergene timeare given in [12℄ and [11℄.2.2 Gossip averagingIn pratial appliations, onsensus algorithms are often used in order to easilyhomogenize some parameters. However, one should distinguish situations inwhih the agreed value is ritial. For example, agreeing on a meeting pointis not as ritial as deteting the position of a sniper. Obtaining an averageis in general muh slower than any uniformization algorithm based on �ood-ing/broadasting tehniques, but ensures a good qualitity of onsensus.Gossip-based average onsensus algorithms (gossip averaging) have beenwidely studied in literature ([13℄,[14℄,[11℄,...). As suggested by their denomina-tion, they aim at omputing a global average of loal values. This paper fouson a version based on an asynhronous peer-to-peer ommuniations model aspresented in [6℄. Suh a model frequently ours in sensor networks applia-tions where full synhroniity is neither guaranteed nor easily tratable. Under1in omparison with any �nite-time onverging algorithm having the same objetiveINRIA



JEGA: estimation et moyennage onjoints 5this assumption, an interation onsists in hoosing a pair of neighbor nodes ateah iteration and making a loal averaging between them. A gossip averagingalgorithm is then desribed by a linear di�erene equation of the form:
Xk+1 = WkXk (1)where Xk is the vetor of nodes' values at iteration k (X0 ontains the initialvalues to be averaged) and Wk is a n-by-n matrix whih desribes instantaneouspairwise interations. In fat, Xk an be seen as a state vetor, and its om-ponents as estimates of the global average of intial values. Following Boyd'snotations, Wk ould be written:

Wk = I − (ei − ej)(ei − ej)
T

2

∆
= Wij (2)where ei = [0 . . . 0 1 0 . . .0]T is a n-dimensional vetor with ith entry equalto 1 (here, double index ij means that node i ontats node j). This learlyorresponds to the following rule (time into brakets, node's ID as index):

xi(k + 1) = xj(k + 1) =
xi(k) + xj(k)

2
(3)For onveniene, the Wk are onsidered to be i.i.d. random matries. Eah

Wij is hosen with probability pij , i.e. aording to the probability that node iinitiates an iteration involving node j.
W = E [Wk] = E [W0] =

1

n

∑

i,j

pijWij (4)where n stands for the number of network nodes.In [14℄, the following statement is proven:Proposition 1 ([14℄). If W is a doubly-stohasti ergodi matrix, then
Xk −−−−→

k→∞
θ̄1where θ̄ = 1

n

∑n

i=1 xi(0), and 1 = [1, . . . 1]
T ∈ Rn.This means that onvergene to the true average value is ensured if and onlyif the largest eigenvalue (in modulus) of W is equal to 1, with multipliity 1.In other words, W is the transition matrix of a Markov hain whose underlying(weighted) transition graph G is strongly onneted, i.e. for eah pair (i, j) ofverties of G, a path from i to j and a path from j to i are existing. In [15℄, theauthors proved that proposition 1 is equivalent to the following proposition.Proposition 2 ([15℄). Let G = (V , E) be the graph suh that:� the set of verties V is the set of network nodes.� there is an edge between two verties only if the orresponding nodes areinterating in�nitely many times.Then, Xk onverges to θ̄ if G is onneted.Another way to de�ne E with respet to the set Ek of ative links (edges) attime instant k is the following:

E =

∞⋂

n=0

∞⋃

i=n

Ek = lim sup
n

EnRR n° 6597



6 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Gore2.3 Performane analysis of noiseless gossip averagingThe onvergene speed of the standard gossip averaging algorithm is stronglyrelated to the seond largest eigenvalue (in modulus), λ2 of W (see [15℄). Givenlink probabilities, performanes are quanti�ed in terms of ǫ-averaging time, i.e.the minimal time that guarantees a relative error of order ǫ with probability atleast 1 − ǫ:
Tave(ǫ) = sup

X0∈Rn

inf

{
k : Pr

[∥∥Xk − θ̄1
∥∥2

‖X0‖2 ≥ ǫ

]
≤ ǫ

} (5)Boyd and al. derived upper and lower bounds for Tave(ǫ) based on the seondlargest eigenvalue of the orresponding matrix W :
0.5 log ǫ−1

log λ2(W )−1
≤ Tave(ǫ) ≤

3 log ǫ−1

log λ2(W )−1
(6)The eigenvalue λ2 is funtion of the link probabilities between pair of neighbornodes. Thus, one an try to redue λ2 by ating on neighbor links, in two ways:� link reation/deletion aording to topology-based heuristis.� neighbor seletion uniformly and randomly hosen, or not: potential heuris-tis.Some papers desribed solutions for the (distributed) optimization of λ2 for agiven network using semide�nite programming [16℄. The hoie of algorithmswith suh omplexity is questionable for sensor network appliations: their op-eration should remain reasonably feasible on the hosen arhiteture, and per-formane gains must be important enough to ompensate for time and energylost during optimization. However, this sheme is of great interest in a topology-stable network.2.4 Gossip averaging of noisy measuresIn some appliations, the parameters to be averaged are estimated from sampledstreams of data. Reently, a tremendeous work has been published to enhaneperformanes and robustness of onsensus algorithms ([17℄,[18℄) and to de�neprotools for thems. However, one of the most important pratial problemis the presene of additive measurement noise. When oupling noises orruptexhanges, Boyd et al proved that the onsensus point deviates from the trueaverage value, and takes the form of a random walk over Rn: the mean squarednorm of loal deviations inrease linearly with time. In [19℄, a solution is pro-posed to redue the rate of deviation, while in [9℄ the e�ort is done to providesimultaneous averaging and estimation. Nevertheless, the work done in [9℄ relieson exhanges synhroniity and only fous on the ase of least mean square es-timation. The problem is then to �nd a solution to desynhronizing exhangeswhile preserving the onvergene in ase of more general estimates. The maindi�ulty in this study remains the onvergene rate of the estimation proess.For example, the variane of the optimal estimator for the average of normallydistributed values onverges inversely proportionaly to the number of values.In [9℄, the proof of seond-order onvergene is based on the ondition that thevariane σt has a �nite norm l2(N). In general, the variane of an estimatordoes not ful�ll this requirement. INRIA



JEGA: estimation et moyennage onjoints 73 Joint estimation and gossip averagingSimilarly to the initial algorithm presented in [9℄, we propose to run an asyn-hronous spatial regularization (averaging) proess working jointly with the lo-al estimation of the parameters (temporal regularization). The main di�erenestands in the full asynhronoiity of our sheme, the hosen weights for intera-tions, and the retroation proess. Moreover, the onvergene of our algorithmis prooved in the following for a wide range of loal estimators under the sin-gle assumption that their spatio-temporal ovarianes derease to 0 with time,without any assumption neither on:� their onvergene rate w.r.t. to the number of samples.� data sampling rates.3.1 Measurement proess and estimationDuring the measurement proess, nodes ollet samples related to some data ofinterest. The goal of the estimation phase is to extrat some unkown param-eters or harateristis of the original data distribution only from samples. Inpartiular, an estimator of some parameter θ is said to be unbiased, if at anytime, the mean of the estimator is θ. In this work, a proper estimation proess isonsidered, i.e. onverging to the expeted parameter as the number of samplesgrows (the variane tends toward 0 with time): this estimation is refered to astemporal regularization. As an example, one should be interested in estimatingthe mean µ of some real-valued distribution D (of �nite variane σ2). It is wellknown that, given i.i.d. samples vk from the distribution, the sample averageonverges to the true mean µ, i.e.:
∀k ∈ N

∗, vk ∼ D(µ, σ)

⇒






E
[

1
n

∑n

k=1 vk
]

= µ

V
[

1
n

∑n

k=1 vk
]

= σ2

n
−−−−→
n→∞

0

Cov

(
1
m

m∑
k=1

vk,
1
n

n∑
l=1

vl

)
= σ2

max(m,n) −−−−−−−−−→
max(m,n)→∞

0

(7)In real experiments, samples may be orrelated and their distribution mayhange through time. However, some onsistanies in the measurement and esti-mation proesses are assumed: measurements an be taken from a time-varyingdistribution but the parameters to estimate must remain onstant through time.For instane, interferenes in wireless ommuniations are subjet to the net-work ativity dynamis, and are usually modelled as a entered random noise.In other words, their varianes (power) vary with time, but their means areonstant and equal to 0.3.2 Desription of the algorithmLet us start with some notations and onventions. For any node i, the urrentestimation of the parameter θi given samples available at node i up to time k isRR n° 6597



8 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Goredenoted by θ̂ki . These estimators are grouped in the n-dimensional vetor Zk:
Zk =

[
θ̂
(k)
1 , . . . , θ̂(k)

n

]T (8)As loal estimators are assumed unbiased, the vetor E [Zk] is onstantthrough time and is equal to the vetor of parameters to be estimated.
Z̄

∆
= E [Zk] = [θ1, . . . , θn]

T (9)In this paper, it is useful to onsider the di�erene between Zk and its mean,whih is denoted by Bk:
Bk

∆
= Zk − Z̄ =

[
b
(k)
1 , . . . , b(k)

n

] (10)We also de�ne the ovariane term Ckl
ij whih measures the relation betweenomponents of Zk through time:

Ckl
ij

∆
= E

[(
θ̂i

(k) − θi

)(
θ̂j

(l) − θj

)]
= E

[
b
(k)
i b

(l)
j

] (11)In the following of this artile, the proof of the onvergene will rely on theonly assumption that these omponents are asympotially unorrelated, i.e.
∀(i, j) ∈ [1, n]2, Ckl

ij −−−−−−→
(k+l)→∞

0 (12)For most of sensor network appliations, this assumption is quite not restritiveas su�iently spaed (temporally and/or spatially) samples tends to be unor-related too. In many ases, the Stolz-Cesaró theorem and its extensions helpin �nding su�ient onditions on sample onvarianes for ensuring assumption(12).The proposed algorithm is based on the standard gossip averaging algorithm(1), upon whih a simple feedbak is added to aount for estimated parametersupdates. This modi�ed algorithm takes the form of a non homogeneous systemof �rst-order linear di�erene equations, and is de�ned by:
{

Xk+1 = WkXk + Zk+1 − Zk
Z0 = X0 = [0 . . . 0]

T (13)The proof of the e�ieny of this algorithm relies on the onvergene ofevery omponent of the state vetor Xk to the spatial average of the estimatedparameters (θi)i=1..n while those of Zk should onverge to the loal parameters:
Xk −−−−→

k→∞

(
1

n

n∑

i=1

θi

)
1

Zk −−−−→
k→∞

Z̄ = [θ1, . . . , θn]
TIn system (13), the (random) matrix Wk ful�lls the same onditions as in thelassi gossip avaraging algorithms: it an be onstant through time or taken atINRIA



JEGA: estimation et moyennage onjoints 9random, but its mean must be a doubly stohasti2 ergodi3 matrix. The be-haviour of our system is very easy to desribe qualitatively. The paraontratingmatries (see [20℄) Wk homogenize the values of Xk while the omponents of Zkare stabilizing. If eah zi(k) is ergodi, Zk+1 − Zk tends to 0 as Xk tends to avetor olinear to [1 . . . 1]. The term Zk+1 −Zk implies a permanent orretionof the total weights of Xk. One an then onlude that after an in�nite time,the sum of the (idential) omponents of Xk is equal to the sum of those of Z̄.In the next two parts, a formal proof of this analysis is given.3.3 First-order moment onvergeneThe �rst result asserts that the mean limit of Xk is naturally the average ofestimated parameters, i.e. θ̄ = 1
n

∑n

i=1 θi:Proposition 3.
lim
k→∞

E [Xk] = θ̄1 (14)Proof. All along the proof, we take bene�t of the reursive form e�ieny ofupdate equation (13):
E [Xk+1] = E [WkXk + Zk+1 − Zk] (15)

= E [Wk] E [Xk] + E [Zk+1] − E [Zk] (16)
= WE [Xk] + Z̄ − Z̄ (17)This relation is true exept for k = 0: E [X1] = E [Z1] = Z̄. It follows:

E [Xk+1] = W k
E [Z1] (18)

= W kZ̄ (19)The ergodiity of W states that W k onverges to 11
T

n
as k grows. Togetherwith relation (19), it yelds to the expeted result:

E [Xk] −−−−→
k→∞

11
T

n
Z̄ = θ̄1 (20)3.4 Seond-order moment onvergeneNow that our algorithm is proved to onverge on average towards the onstantvetor θ̄1, the quality of this onvergene must be analyzed. In other words, anthe mean distane between onsensus and true average (statistially) be madearbitrarily small ? A positive answer is demonstrated below. Tehnial issuesstand in the random nature of matries appearing in the algorithm, and alsoin the simple fat that ovarianes are not assumed to have any �nite ℓp norm(in any diretion). More interestingly, the seond order onvergene is usefullto state the onvergene in probability as explained in the next setion.2its rows and olumns sum to 13it is the transition matrix of an ergodi (aperiodi and irreduible) Markov hainRR n° 6597



10 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie GoreProposition 4.
lim
k→∞

E

[∥∥Xk − θ̄1
∥∥2
]

= 0 (21)Proof. The proof of proposition 4 is more fastidious than tehnial. As the nextequation shows, the deviation is diretly related to the seond-order moment of
Xk:

E

[∥∥Xk − θ̄1
∥∥2
]

= E

[(
Xk − θ̄1

)T (
Xk − θ̄1

)] (22)The right-hand side of equation (22) an be developped as:
E
[
XT

kXk

]
− 2θ̄E

[
1

TXk

]
+ E

[∥∥θ̄1
∥∥2
] (23)whih gives trivially:

E

[∥∥Xk − θ̄1
∥∥2
]

= E

[
‖Xk‖2

]
− nθ̄2 (24)Thus, the goal is now to prove that E

[
‖Xk‖2

] onverges to nθ̄2 as k inreases.We rewrite the reursive system (13) into a more e�ient way. For this, we de�ne
Ψ(k, i) and Φ(k, i) in Mn(R)4 by:

Ψ(k, i)
∆
=

{
I if i ≥ k

Wk−1Wk−2 . . . Wi+1Wi otherwise (25)
Φ(k, i)

∆
= Ψ(k, i) − Ψ(k, i + 1) (26)By putting Φ(k, i) and Ψ(k, i) into system (13), one obtains a more e�ientformulation for Xk:





Xk = Zk +

k−1∑
i=1

Φ(k, i)Zi

Z0 = X0 = [0 . . . 0]
T

(27)This notation helps proving onvergene of the seond order moment of Xkwhere lassial upper bounding (see [14℄) would fail. As one should expetfrom expression (27), E

[
‖Xk‖2

] ould be written with seond-order momentsof measures:
E

[
‖Xk‖2

]
= E

[
‖Zk‖2

]
+ 2E

[
ZT

k

k−1∑

i=1

Φ(k, i)Zi

]

+ E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Zi

∥∥∥∥∥

2


 (28)The limit of the �rst term is easily derived as:Proposition 5.
lim
k→∞

E

[
‖Zk‖2

]
=
∥∥Z̄
∥∥2 (29)4Mn(R) denotes the set of real n × n matries INRIA



JEGA: estimation et moyennage onjoints 11Proof.
E

[
‖Zk‖2

]
=

n∑

p=1

E

[(
θ(k)
p

)2
] (30)

−−−−→
k→∞

n∑

p=1

E [θp]
2

=
∥∥Z̄
∥∥2 (31)In order to make the proof learer to the reader, the two last terms of equa-tion (28) an be deomposed by separating noisy and deterministi omponents:

E

[
ZT

k

k−1∑

i=1

Φ(k, i)Zi

]
= E

[
Z̄T

k−1∑

i=1

Φ(k, i)Z̄

]
+ E

[
BT

k

k−1∑

i=1

Φ(k, i)Bi

]

+ E

[
BT

k

k−1∑

i=1

Φ(k, i)Z̄

]
+ E

[
Z̄T

k−1∑

i=1

Φ(k, i)Bi

] (32)
E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Zi

∥∥∥∥∥

2


 = E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Z̄

∥∥∥∥∥

2


+ E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Bi

∥∥∥∥∥

2




+ 2E




(
k−1∑

i=1

Φ(k, i)Z̄

)T(
k−1∑

i=1

Φ(k, i)Bi

)

 (33)As noise vetors Bi are entered, ross terms of equations (32) and (33)vanishes through linear ombinations:
E

[
ZT

k

k−1∑

i=1

Φ(k, i)Zi

]
= E

[
Z̄T

k−1∑

i=1

Φ(k, i)Z̄

]
+ E

[
BT

k

k−1∑

i=1

Φ(k, i)Bi

] (34)
E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Zi

∥∥∥∥∥

2


 = E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Z̄

∥∥∥∥∥

2


+ E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Bi

∥∥∥∥∥

2


 (35)The limit of the four terms remaining in (34) and (35) are obtained sepa-rately:Proposition 6.
lim
k→∞

E

[
Z̄T

k−1∑

i=1

Φ(k, i)Z̄

]
= nθ̄2 −

∥∥Z̄
∥∥2 (36)Proposition 7.

lim
k→∞

E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Z̄

∥∥∥∥∥

2


 =
∥∥Z̄
∥∥2 − nθ̄2 (37)RR n° 6597



12 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie GoreProposition 8.
E

[
BT

k

k−1∑

i=1

Φ(k, i)Bi

]
−−−−−→
k→+∞

0Proposition 9.
lim

i→+∞
E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Bi

∥∥∥∥∥

2


 = 0The proof of these four propositions is the fastidious task we announed forproving proposition (4), and is provided in appendix. Propositions 6 and 7 are areformulation of lassial results on gossip averaging algorithms ([16℄) adaptatedto the terminology of this artile, and do not ontains major di�ulties. On theontrary, the proof of propositions 8 and 9 is more tehnial and relies on thefat that the perturbations due to the measurement/estimation noise vanish ifthe assumption made on ovarianes in (12) is valid.Now, thanks to propositions 5 to 9 the limit of E

[
‖Xk‖2

] when k goes to
+∞ an be derived:

E
[
XT

kXk

]
−−−−→
k→∞

∥∥Z̄
∥∥+ 2(nθ̄2 −

∥∥Z̄
∥∥) + (

∥∥Z̄
∥∥− nθ̄2) (38)

= nθ̄2 (39)Equation (24) and relation (38) let us �nish the proof of proposition 4:
lim
k→∞

E

[∥∥Xk − θ̄1
∥∥2
]

= 0 (40)3.5 Convergene in probabilityProposition 4 ensures the onvergene in probability of Xk toward the uniformvetor θ̄1. This is the probabilisti ounterpart of the onvergene of sequeneson a normed vetor spae. Proposition 10 states that the probability of havingan error greater than a given threshold an be made arbitrary small, the timeindex being greater than a seond threshold depending on the error.Proposition 10. For any positive real numbers α and δ, there is an integer N ,suh that:
∀k ≥ N, Pr

[∥∥Xk − θ̄1
∥∥ ≥ δ

]
≤ α (41)Proof. If (Ω,B, P) is a probabilty spae, and f is a measurable real-valued fun-tion on Ω, Markov's inequality states that for any t ∈ R+:

P ({ω ∈ Ω : |f(ω)| ≥ t}) ≤ 1

t
EP [|f |] (42)In partiular, for any real random variable X and δ > 0, this is equivalentto:

Pr [|X | ≥ δ] ≤ E [|X |]
δ

(43)INRIA



JEGA: estimation et moyennage onjoints 13Applying inequality (43) to ∥∥Xk − θ̄1
∥∥, one obtains:

Pr
[∥∥Xk − θ̄1

∥∥ ≥ δ
]

= Pr
[∥∥Xk − θ̄1

∥∥2 ≥ δ2
] (44)

≤ δ−2
E

[∥∥Xk − θ̄1
∥∥2
] (45)By proposition (4), on an �nd an integer N suh that

∀k ≥ N, E

[∥∥Xk − θ̄1
∥∥2
]
≤ αǫ2 (46)Together, equations (45) and (46) ensure that ∀k ≥ N , one an guaranteethat:

Pr
[∥∥Xk − θ̄1

∥∥ ≥ δ
]
≤ α (47)Corollary 1. ∀α > 0, δ > 0, ∃N ∈ N, suh that ∀k ≥ N , the two followinginequalities hold:i) Pr

[
max

1≤i≤n
|x(k)
i − θ̄| ≥ δ

]
≤ αii) ∀i ∈ [1, n], Pr

[
|x(k)
i − θ̄| ≥ δ

]
≤ αProof. This is a onsequene of the lassial norm inequality stating that

∀X ∈ R
n, ‖X‖∞ ≤ ‖X‖2 (48)Convergene in probability is then trivially dedued from this inequality.4 Simulation and analysisNo formal result is still available on the rate of onvergene of JEGA. Someresults may be expliitly dedued from the proof, but it seems more interestingto observe diretly the behaviour of quadrati error through time under thein�uene of parameters (noise, mean parameters, ...). Our goal is to get intuitiveand empirial knowledge of global tendenies. For this purpose, we onsider awireless network modeled as a random unit dis graph5 G where n nodes aredistributed unifomily on a square simulation plane of width d. For the sakeof simpliity, eah node updates its loal estimate at eah iteration k (it getsone sample). However, only one pair of nodes will interat. For this purpose,an initiator i is hosen randomly among the set of verties of G aording touniform distribution, while the destinator j is hosen uniformily randomly tooin the set of neighbors of i. We then ompute an estimate of the average value ofa parameter. Measurement noise are i.i.d. zero-mean gaussian random variableswith standard deviation σi at node i.5i.e. two verties share an edge if and only if their eulidean distane is 1

RR n° 6597



14 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Gore4.1 Impat of noise varianeIn this set of simulations, the entries of the steady state vetor Z̄ were takenone at random uniformily in the interval [0, 3]6 and kept onstant during thesimulations. We analyse the evolution of the mean square deviation under sev-eral values of σ in the set {10, 1, 0.1, 0.01}, taken identially for all nodes , andalso for noiseless measurements (σ = 0). This last ase orrespond to the stan-dard gossip averaging proess. We run the algorithm for Niter iterations andproess Navg simulations. The term MSE denotes the mean squared error normof the state vetor Xk, i.e. E

[∥∥Xk − θ̄1
∥∥2
].

n 40
d 100
r 2

σ {0, 0.01, 0.1, 1, 10}
Niter 1000
Navg 3000Table 1: Simulation parameters

In the noiseless ase, one reognize the lassial sum-exponential onvergenerate of gossip averaging algorithms, dominated for large k as follows:
E

[∥∥Xk − θ̄1
∥∥2
]
≤ [λ2(W )]kE

[∥∥X0 − θ̄1
∥∥2
] (49)Proof of this inequality an be found in [14℄. In the general ase, i.e. when

σ 6= 0, the error due to noise anellation should be superposed to the noiselesserror. We used standard sample mean estimators on eah node, whih areknown to onverge proportionnaly to the inverse of the number of samples.This trend is onserved in the global mean squared error (MSE) as seen on�gure 2, where we plotted the inverse normalized MSE. Thus, for small σ, theonvergene should be seen as experiening two di�erents states. The �rst stateorresponds to the oarse homogeneization of the omponents of Xk just as ifall estimates to be averaged were onstant (lassial gossip averaging, see [6℄and [16℄), while the seond orresponds to the slow anellation of estimationnoise, as if spatial averaging was instantaneous. However one should think thatthere are asymptotes towards any non-zero values. This false impression isgiven by the logarithmi sale and the fat that estimator varianes dereasesproportionnaly to k−1).4.2 Impat of message exhange rateThe �rst set of simulations shows an inrease of onvergene speed when σdereases. Thus, one should onsider two way of reduing virtually σ. Onone hand, the message exhange rate ould be redued by some fator, say K.On the other hand, the averaging proess �ows normally but data samples are6this arbitrary value was hosen to exhibit to desired phenomenon INRIA
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16 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Gorebu�ered and sent in bursts to estimators: this should avoid the propagationof information of poor quality. In fat, the �rst proposal indues a latenyproportional to K but leads to energy savings for ahieving a given error (see�gures 3 & 4: less exhanges are needed for a ahieving a given error), while theseond shemes seems not to improve onvergene. In fat, simulations showthat bu�ering reates jigsaw osillations around the error ahieved by standardsheme 7 (see �gures 5 & 6).
5 ConlusionIn this paper, we introdued a new distributed algorithm for joint estimationand averaging whih generalizes the spae-time di�usion sheme presented in[9℄, and named it JEGA. We proved the onvergene of our solution in termsof �rst and seond order moments of deviation to the true average, and thendedued the onvergene in probability of eah loal averaged estimate. Asit is here based on peer-to-peer interations, this algorithm is learly adaptedfor sensor networks appliations. However, we propose to generalize the proofsgiven here to the ase of synhronous interations haraterized by a onstanttransition matrix: suh an approah relies on �nding neessary onditions forergodiity and verifying their onsequenes on networking models. The abilityo�ered by JEGA of performing estimation and averaging in parallel gives rise toappliations in artography, loalization, or synhronization in wireless sensornetworks. Despite its simpliity, the main default of this algorithm is the di�-ulty to �nd a losed expression for its onvergene rate. Nevertheless, by meanof simulation, our analysis provides a good heurisiti for qualitatively preditthe mean behaviour of deviation through time. In a future work, we will fousour attention on a deepest analysis of onvergene rate and on �nding bettersolutions with the help of preditive/polynomial �lters ([21℄).

7no bu�ering, no exhange delay INRIA
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JEGA: estimation et moyennage onjoints 19Appendix A: Proofs for propositions in part 3.4Proof of proposition 6
E

[
Z̄T

k−1∑

i=1

Φ(k, i)Z̄

]
= Z̄T

E

[
k−1∑

i=1

Φ(k, i)

]
Z̄ (50)where the middle sum an be easily simpli�ed:

E

[
k−1∑

i=1

Φ(k, i)

]
= E

[
k−1∑

i=1

(Ψ(k, i) − Ψ(k, i + 1))

] (51)
= E [Ψ(k, 1)− Ψ(k, k)] (52)
= E [Wk−1Wk−2 . . . W1] − I (53)As the matries Wk are i.i.d., one an average them separately and obtains:

E

[
k−1∑

i=1

Φ(k, i)

]
= W k−1 − I (54)This last expression an be reinjeted in eq. (50):

E

[
Z̄T

k−1∑

i=1

Φ(k, i)Z̄

]
= Z̄T

(
W k−1 − I

)
Z̄ (55)By mean of ergodiity of W , one have:

Z̄T
(
W k−1 − I

)
Z̄ −−−−→

k→∞
Z̄T

(
11

T

n
− I

)
Z̄ = nθ̄2 −

∥∥Z̄
∥∥2 (56)Proof of proposition 7

E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Z̄

∥∥∥∥∥

2


 = E




∥∥∥∥∥

(
k−1∑

i=1

Φ(k, i)

)
Z̄

∥∥∥∥∥

2


 (57)
= E

[∥∥(Ψ(k, 1) − I) Z̄
∥∥2
] (58)

= E

[
Z̄TΨ(k, 1)TΨ(k, 1)Z̄

] (59)
− 2E

[
Z̄TΨ(k, 1)Z̄

]
+
∥∥Z̄
∥∥2 (60)Equation (59) is equivalent to the squared norm of the state vetor in stan-dard gossip averaging algorithms [16℄, and thus tends naturally toward the normof the average onsensus vetor:

E

[
Z̄TΨ(k, 1)

T
Ψ(k, 1)Z̄

]
−−−−→
k→∞

∥∥θ̄1
∥∥2

= nθ̄2 (61)As eq. (60) is equivalent to eq. (56), we an ompute the limit of eq. (57)for an in�nite k:
E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Z̄

∥∥∥∥∥

2


 −−−−→
k→∞

∥∥Z̄
∥∥2 − nθ̄2 (62)RR n° 6597



20 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie GoreProof of proposition 8This proof relies on the use of the following statement, whih is a speial aseof the theorems proved in [22℄:Proposition 11 ([22℄). Let E be either R or C, (un)n∈N a sequene of elementsof E suh that lim
n→∞

‖un‖ = 0, and z ∈ E with |z| < 1. Then,
lim

n→+∞

n∑

k=1

ukz
n−k = 0 (63)

W is learly symmetri and positive-semide�nite. It implies that W anbe diagonalized by an orthogonal matrix. In the following, Pj denotes theeigenvetor of W assoiated with the j-th eigenvalue λj .
E

[
BT

k

k−1∑

i=1

Φ(k, i)Bi

]
=

k−1∑

i=1

E
[
BT

kE [Φ(k, i)] Bi

] (64)
=

k−1∑

i=1

E
[
BT

k

(
W k−i − W k−i−1

)
Bi

] (65)
=

n∑

j=1

k−1∑

i=1

(
λk−ij − λk−i−1

j

)
E
[(

BT

kPj
) (

PT

j Bi

)] (66)where equation (65) results from the independane of estimation noises andexhange matries. For λj = 1, λk−ij − λk−i−1
j vanishes. On the other side, theovariane term an be bounded by a non-negative sequene having a zero limitat in�nity:

∣∣E
[(

BT

kPj
) (

PT

j Bi

)]∣∣ =

∣∣∣∣∣
∑

u,v

[
PjP

T

j

]
uv

Cki
uv

∣∣∣∣∣ (67)
≤ n2 max

u,v
max
k∈N

k>i

|Cki
uv|

∆
= n2Ci (68)The prerequisite ondition on Cki

uv ensures that Ci onverges to 0. Thus,
E
[(

BT

kPj
) (

PT

j Bi

)] does similarly for all normalized vetor Pj . On anotherside, |λj | < 1 whenever λj 6= 1. By splitting the summation over eigenvaluesand developping the multipliation by λk−ij − λk−i−1
j , equation (66) an beeasily expressed as a linear ombination of 2(n− 1) sums, eah of whih sati�esproposition 11. This implies that (66) goes to 0 as k grows, independantly ofthe derease rate of ovarianes8.Proof of proposition 9Let us start by rewritting equation (9):

E




∥∥∥∥∥

k−1∑

i=1

Φ(k, i)Bi

∥∥∥∥∥

2


 =

k−1∑

i=1

k−1∑

j=1

E

[
BT

j Φ(k, j)
T
Φ(k, i)Bi

] (69)8the partial sum (65) must be arefully manipulated in order to avoid divergene at large
k INRIA



JEGA: estimation et moyennage onjoints 21As we develop the term Φ(k, j)
T
Φ(k, i), we observe one again that the ompo-nents of eah Bi and Bj that are olinear to 1 (assoiated with eigenvalue 1)are not transmitted through Φ(k, i):

Φ(k, j)TΦ(k, i) = Ψ(k, j)TΨ(k, i) − Ψ(k, j + 1)TΨ(k, i)

− Ψ(k, j)
T
Ψ(k, i + 1) + Ψ(k, j + 1)

T
Ψ(k, i + 1) (70)For the sake of simpliity, Ξk(i, j) denotes E

[
Ψ(k, j)

T
Ψ(k, i)

]. It is useful tonotie that Ξk(i, j) an be fatorized by externalizing terms in i:
Ξk(i, j) = E

[
Ψ(k, j)

T
Ψ(k, i)

] (71)
= E

[
Ψ(k, j)

T
Ψ(k, j)Ψ(j, i)

] (72)
= E

[
Ψ(k, j)TΨ(k, j)W j−i

] (73)
= Ξk(j, j)W

j−i (74)Following the approah of [14℄ helps bounding the spetral radius of Ξk(j, j).For any n-dimensional vetor X ⊥ 1, the following inequalities hold:
XTΞk(j, j)X = XT

E

[
Ψ(k, j)

T
Ψ(k, j)

]
X (75)

= XT
E

[
Ψ(k − 1, j)

T
WΨ(k − 1, j)

]
X (76)

≤ λ2X
T
E

[
Ψ(k − 1, j)

T
Ψ(k − 1, j)

]
X (77)

≤ λk−j2 ‖X‖2 (78)Using this inequality in onjuntion with the Rayleigh-Ritz haraterizationtheorem, one obtains:
ρΨ(k, j)

∆
= ρ

(
Ξk(j, j) −

11
T

n

) (79)
= max

X⊥1

‖X‖=1

{
XT

E

[
Ψ(k, j)

T
Ψ(k, j)

]
X
} (80)

≤ λk−j2 (81)Realling that any omponent of Bi olinear to 1 an be anelled, themodulus of its oordinates on a basis of eigenvetors of W are then resaled bya fator less than or equal to λj−i2 when we apply W j−i. This gives rise to thefollowing inequality:
∣∣E
[
BT

j VkV
T

k W j−iBi

]∣∣ =
∣∣∣
∑

λj−ip E

[
BT

j VkV
T

k V pV
T

pBi

]∣∣∣ (82)
≤ (n − 1)n2λj−i2 max

u,v
|Cij
uv| (83)where Vk is any unitary vetor of R

n, and V p is an eigenvetor of W (and thenof W j−i) assoiated with eigenvalue λp. Let Sijk be the spetrum of Ξk(i, j),RR n° 6597



22 Niolas Maréhal , Jean-Benoît Pierrot , Jean-Marie Goreonstituted of eigenvalues λψ of assoiated eigenvetor VλΨ
. Using this notation,

E
[
BT

j Ξk(i, j)Bi

] an be brought into a useful form for bounding purposes:
∣∣E
[
BT

j Ξk(i, j)Bi

]∣∣ =
∣∣E
[
BT

j Ξk(j, j)W
j−iBi

]∣∣ (84)
≤

∑

λΨ∈S
ij
k

λψ 6=1

∣∣λΨE
[(

BT

j VλΨ
V T

λΨ
W j−iBi

)]∣∣ (85)
≤ (n − 1)2ρΨ(k, j)n2λj−i2 max

u,v
|Cij
uv| (86)Coupling equations (81) and (83), the following majorization states:

∣∣E
[
BT

j Ξk(i, j)Bi

]∣∣ ≤ (n − 1)2n2λk−i2 max
u,v

|Cij
uv | (87)Let us de�ne ξ

∆
=

√
λ2, and remember that i < j: immediately 0 ≤ λk−i2 =

ξ2k−2i ≤ ξ2k−i−j . This inequality hene implies:
∣∣∣∣∣∣

∑

i<j

E
[
BT

j Ξk(i, j)Bi

]
∣∣∣∣∣∣
≤ (n − 1)2n2

∑

i<j

λk−i2 max
u,v

|Cij
uv | (88)

≤ (n − 1)2n2
∑

i<j

ξ2k−i−j max
u,v

|Cij
uv|

︸ ︷︷ ︸
−−−−→
k→∞

0

(89)The onvergene toward 0 of the right-hand side is ensured by proposition12:Proposition 12. ([22℄) Let E be either R or C, (uij)(i,j)∈N2 ∈ EN
2 suh that

lim
(i+j)→∞

‖uij‖ = 0, and z ∈ E with |z| < 1. Then
lim

n→+∞

∑

1≤i,j≤n

uijz
2n−i−j = 0 (90)When i = j, a lassial result from [14℄ states that:

E
[
BT

i Ξk(i, i)Bi

]
≤ λk−i2 E

[
‖Bi‖2

] (91)Then, summing over i gives the diagonal limit:
0 ≤

k−1∑

i=1

E
[
BT

i Ξk(i, i)Bi

]
≤

k−1∑

i=1

λk−i2 E

[
‖Bi‖2

]

︸ ︷︷ ︸
−−−−→
k→∞

0

(92)In the same way, it is easy to bound terms with Ξk(i + 1, j), Ξk(i, j + 1)or Ξk(i + 1, j + 1) in equation (69). We obtain 4 sums in the spirit of theombination of equations (88) and (92) that tend to 0 as k goes to in�nity.INRIA



JEGA: estimation et moyennage onjoints 23Appendix B: Optimality of 1/2 weightsGiven a weight α ∈ [0, 1] for exhanges, the transition matrix Wij takes theform:
Wij = I − α(ei − ej)(ei − ej)

T (93)Under the assumption that Wk i.i.d. random matries drawn from the setof Wij , performane bounds are derived given the seond smallest eigenvalue of
E
[
WT

k Wk

] (see [15℄), i.e.:
λ

(α)
2

∆
= ρ

(
E
[
WT

k Wk

]
− 11

T

n

) (94)
= max

X⊥1

‖X‖=1

XT
E
[
WT

k Wk

]
X (95)One an try to optimize this riterion aording to parameter α. Proposition13 answers simply to this problem.Proposition 13. For peer-to-peer exhanges with �xed link probabilities and �xexhange weight α ∈ [0, 1], λ

(α)
2 is optimal for α = 1/2.Proof. Let pij be the probabilty that, if node i is hosen as initiator, it ontatsnode j. Then E

[
WT

k Wk

] an be easily rewritten with the same notations as inequation (93):
E
[
WT

k Wk

]
=

1

n

∑

i,j

pijW
T

ijWij (96)
= I − 2α(1 − α) (ei − ej) (ei − ej)

T (97)Then, writting λi(M) the i-th eigenvalue of M in dereasing order, one has:
λ

(α)
2 = ρ



 1

n

∑

i∼j

pijWij
TWij



 (98)
= λ2

(
I − 2α(1 − α) (ei − ej) (ei − ej)

T

) (99)
= 1 − 2α(1 − α)λn−1




∑

i∼j

pijEij



 (100)
= 1 − 2α(1 − α)µ (101)Now, derivating λ
(α)
2 w.r.t. weight α gives:

∂λ
(α)
2

∂α
= (−2 + 4α)µ (102)Sine E [Wk] is ergodi, µ annot be null . Thus the only way for λ

(α)
2 tohave a null derivative is that α = 1/2. The matrix E

[
WT

k Wk

] is trivially doublystohasti and then λ
(α)
2 ≤ 1 = λ

(0)
2 . As a onsequene, λ

(α)
2 is minimum for

α = 1/2.RR n° 6597
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