
J. Chem. Phys. 157, 014108 (2022); https://doi.org/10.1063/5.0088061 157, 014108

© 2022 Author(s).

Additive eigenvectors as optimal reaction
coordinates, conditioned trajectories, and
time-reversible description of stochastic
processes
Cite as: J. Chem. Phys. 157, 014108 (2022); https://doi.org/10.1063/5.0088061
Submitted: 12 February 2022 • Accepted: 13 June 2022 • Published Online: 05 July 2022

Published open access through an agreement with JISC Collections

 Sergei V. Krivov

ARTICLES YOU MAY BE INTERESTED IN

Successes and challenges in using machine-learned activation energies in kinetic
simulations
The Journal of Chemical Physics 157, 014109 (2022); https://doi.org/10.1063/5.0096027

Transition rate theory, spectral analysis, and reactive paths
The Journal of Chemical Physics 156, 134111 (2022); https://doi.org/10.1063/5.0084209

A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with
electronic spin
The Journal of Chemical Physics 157, 011101 (2022); https://doi.org/10.1063/5.0093345

https://images.scitation.org/redirect.spark?MID=176720&plid=1817977&setID=533015&channelID=0&CID=668198&banID=520703476&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6a06a51a28cd72ad43dfa364682722e3de2b7626&location=
https://doi.org/10.1063/5.0088061
https://doi.org/10.1063/5.0088061
https://orcid.org/0000-0002-3493-0068
https://aip.scitation.org/author/Krivov%2C+Sergei+V
https://doi.org/10.1063/5.0088061
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088061
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0088061&domain=aip.scitation.org&date_stamp=2022-07-05
https://aip.scitation.org/doi/10.1063/5.0096027
https://aip.scitation.org/doi/10.1063/5.0096027
https://doi.org/10.1063/5.0096027
https://aip.scitation.org/doi/10.1063/5.0084209
https://doi.org/10.1063/5.0084209
https://aip.scitation.org/doi/10.1063/5.0093345
https://aip.scitation.org/doi/10.1063/5.0093345
https://doi.org/10.1063/5.0093345


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Additive eigenvectors as optimal reaction
coordinates, conditioned trajectories,
and time-reversible description of stochastic
processes

Cite as: J. Chem. Phys. 157, 014108 (2022); doi: 10.1063/5.0088061
Submitted: 12 February 2022 • Accepted: 13 June 2022 •
Published Online: 5 July 2022

Sergei V. Krivova)

AFFILIATIONS
University of Leeds, Astbury Center for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds,
Leeds LS2 9JT, United Kingdom

a)Author to whom correspondence should be addressed: s.krivov@leeds.ac.uk

ABSTRACT
A fundamental way to analyze complex multidimensional stochastic dynamics is to describe it as diffusion on a free energy landscape—free
energy as a function of reaction coordinates (RCs). For such a description to be quantitatively accurate, the RC should be chosen in an
optimal way. The committor function is a primary example of an optimal RC for the description of equilibrium reaction dynamics between
two states. Here, additive eigenvectors (addevs) are considered as optimal RCs to address the limitations of the committor. An addev master
equation for a Markov chain is derived. A stationary solution of the equation describes a sub-ensemble of trajectories conditioned on having
the same optimal RC for the forward and time-reversed dynamics in the sub-ensemble. A collection of such sub-ensembles of trajectories,
called stochastic eigenmodes, can be used to describe/approximate the stochastic dynamics. A non-stationary solution describes the evolution
of the probability distribution. However, in contrast to the standard master equation, it provides a time-reversible description of stochastic
dynamics. It can be integrated forward and backward in time. The developed framework is illustrated on two model systems—unidirectional
random walk and diffusion.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088061

I. INTRODUCTION AND MOTIVATION

A fundamental way to analyze complex multidimensional
stochastic dynamics is to describe it as diffusion on a free energy
landscape—free energy as a function of one or a few reaction
coordinates (RCs).1–8 For such a description to be qualitatively
accurate, the RCs should be chosen in an optimal way, e.g., in order
to minimize non-Markovian effects due to the projection.9,10

An important practical case is equilibrium reaction dynamics
between two end states A and B. The optimal RC in this case is
the committor function qB(x)—the probability to reach state B
before reaching state A starting from configuration x.1,11 The free
energy and the diffusion coefficient as functions of the committor
define a diffusive model of the projected dynamics. This diffusive
model can be used to compute exactly the following important
properties of the dynamics—the equilibrium flux, the mean first

passage times, and the mean transition path times between any two
points on the committor.12–15 This is true for free energy landscapes
of any complexity and does not require separation of timescales.
The diffusive model can be used to determine accurately and in
a direct manner the free energy barrier and the pre-exponential
factor—the two major determinants of the reaction dynamics.15 For
non-equilibrium dynamics (dynamics without the detailed balance),
it is, however, necessary to consider the second committor function
for time-reversed dynamics q−A(x). The two committors are gener-
ally different functions, and it is not clear how to construct a diffusive
model of such a dynamics analogous to the equilibrium case since
it is not clear how to construct a single optimal RC from the two
committors.

A practically important case of non-equilibrium dynamics is
stochastic dynamics in the phase space. Many approaches for the
RC analysis of MD simulations assume that dynamics is Markovian
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in the configuration space. It introduces a lower bound on the time
interval (lag time) that can be used for the analysis. In atomistic
MD simulations, the dynamics is Newtonian at the integration time
step. Hence, the lag time should be long enough for the system to
forget its momenta. Consideration of non-equilibrium Markovian
dynamics in the phase space and RCs as functions of phase space
should significantly decrease the lower bound on lag times. This,
in turn, should allow significantly shorter trajectories and higher
efficiency in parallel approaches for exascale computing, which use
a very large ensemble of short trajectories instead of a single long
one.16–23

Another weak point of the committor function is that it
requires two boundary states. While, for some simple cases, bound-
ary states can be defined in an obvious way, a proper definition
in a general case of a complex system is difficult.24 One approach,
which may work well for states associated with deep free energy
minima, is to use eigenvectors of the transfer operator.25,26 How-
ever, it will likely to fail for systems with many shallow minima, like
intrinsically disordered proteins. For some systems, introduction of
boundary states makes no sense at all, e.g., diffusion in a harmonic
well.

In order to address the limitation of the committor function,
here we extend the framework of optimal RCs to recently intro-
duced additive eigenvectors (addevs).27 They do not require bound-
ary states and can be used to describe non-equilibrium dynamics
without the detailed balance. The framework, however, assumes
a single optimal RC for the forward and time-reversed dynamics.
As a general solution, we suggest to consider all sub-ensembles
of trajectories satisfying this condition. An addev master equation
describing such sub-ensembles in a Markov chain is derived. The
equations have a spectrum of stationary solutions analogous to
the standard eigenvectors. Each solution describes a sub-ensemble
of trajectories together with the corresponding optimal RC. The
sub-ensemble describes a stationary current along an optimal RC
with trajectories performing periodic stochastic motion along it.
We suggest to call such sub-ensembles of trajectories performing
periodic stochastic motion stochastic eigenmodes. A long trajectory
may visit many such sub-ensembles, with each visit representing a
rare event or a fluctuation, with probability exponentially decreas-
ing with the time spent in a particular addev sub-ensemble. Thus,
one can decompose the stochastic dynamics onto a collection of such
stochastic eigenmodes. The derived equation can also be interpreted
as an evolution equation for probability distribution. However, in
contrast to the standard master equation for a Markov chain, it
is symmetric with respect to time-reversal and can be integrated
forward and backward in time. We emphasize that this notion
of time-reversibility is different from the standard notion of
time-reversible Markov chains, which just implies the validity of the
detailed balance.

This paper is organized as follows: we start by introducing
addevs for a Markov chain and showing how they can be incor-
porated into the framework of optimal RCs. We then derive the
master equation for an addev and the corresponding sub-ensemble
of trajectories. The properties of the equation and its solutions are
illustrated on two model systems: unidirectional random walk and
diffusion. The first one is relatively simple to obtain exact analytical
results. The second is of larger practical interest; however, it is much
more complex to be solved exactly. Hence, this manuscript contains

only a very brief exposure to the results, and the detailed analysis
is presented in the follow-up manuscript. We conclude with a
discussion.

II. THEORY
A. Additive eigenvectors as optimal RCs

In this section, we define additive eigenvectors and show how
they can be used as optimal RCs.

Consider a finite discrete-time Markov chain with transition
probability matrix Pτ( j∣i), which equals the probability of transition
from state i to state j after time interval τ, and stationary probability
π( j). We assume that the detailed balance is not satisfied, and when
stationary dynamics is projected on RC W( j), there is a constant
non-zero flux. The simplest example is a circular three state system
1→ 2→ 3→ 1 shown in Fig. 1(a), with the flux in the counterclock-
wise direction. Correspondingly, we assume that W has a circular
topology: one can imagine W( j) as the value of the angle of point
j in polar coordinates or, equivalently, the position of point j when
projected on a circle. Figure 1(b) shows a bit more generic, complex
example of such a system. Rays from the center of the coordinate
system, shown by dashed lines, denote different values of the angle
or W RC. Figure 1(c) shows a model system with transitions
in one direction (counterclockwise) whose RC points W( j) are
laying/projected on a circle.

To remove the flux, one considers an RC that moves with the
flux, i.e., a moving frame of reference S( j, t) =W( j) − νt, which, in
this case, corresponds to a uniformly rotating frame of reference.
Since we consider stationary dynamics, the flux across any cutting
surface, e.g., those shown by dashed lines in Fig. 1(b), is the same.
To specify an RC that moves with the flux, we require that the aver-
age change of S( j, t), computed along the stationary trajectories, is
zero,27

∑
j

Pτ( j∣i)[S( j, t + τ) − S(i, t)] = 0. (1)

It is understood that indices, e.g., i and j, run over all the states of
the Markov chain 1, . . . , N, where N is their total number. It is easy
to see that (since Pτ( j∣i) > 0) for every state i, there are states with
S( j, t) > S(i, t) and with S( j, t) < S(i, t). In other words, S(i, t) has
neither maximum nor minimum. In a finite Markov chain, it is
possible if S(i, t) is a multi-valued function.

FIG. 1. Model systems with non-zero flux, where the detailed balance is not sat-
isfied: (a) the simplest, three state system, (b) generic system, and (c) system on
the circle with transitions in the counterclockwise direction only. Arrows indicate
unidirectional transitions.
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Substituting S( j, t) =W( j) − νt in Eq. (1), one obtains

∑
j

Pτ( j∣i)W( j) =W(i) + ντ, (2)

where W( j) is an additive eigenvector (or addev for brevity) and ν
is the additive eigenvalue.27 The term addev is due to the following:
the transition matrix transforms the vectors in a simple way—it just
adds a constant to every component of the vector. If one recalls that
W can be interpreted as the angle or be projected on a circle, the
action of the matrix can be interpreted as a rotation of the RC by an
angle.

Taking the limit τ → 0 and using Pτ( j∣i) = eτK( j∣i) ≈ δji
+ τK( j∣i), where K( j∣i) is the rate matrix, one obtains from Eq. (1)

∑
j

K(j∣i)[W( j) −W(i)] = ν. (3)

Generally, W( j) is a multi-valued function, analogous to the
angle. For example, consider the model system shown in Fig. 1(c),
where the system jumps to the nearest state in the counterclockwise
direction with rate r. Then, Eq. (3) gives W( j + 1) −W( j) = ν/r, i.e.,
the value of the RC W for the next state in the counterclockwise
direction is incremented by a constant ν/r. W constantly grows if
one moves in the counterclockwise direction and the value of W( j)
for particular state j increments by Nν/r when one makes a full turn

FIG. 2. Multi-valued RC W for the model system shown in Fig. 1(c). The model sys-
tem is shown in black. A fragment of W , consisting of two overlapping branches,
is shown in red. The entire multi-valued RC W consists of the infinite number of
branches going from −∞ to∞. It is analogous to the angle variable. The distance
between the branches, or the increment of W after a full turn, is indicated by Δ⊙W ,
which, for the angle, equals 2π.

and returns to the same state (see Fig. 2); here, N is the total num-
ber of states in the system. It is analogous to the increment of the
angle by ±2π after the full turn. Note that Eqs. (1)–(3) define S, W,
and ν up to an overall factor. One can fix the factor by setting the
increment of the RC after a full turn, which we denote by Δ⊙W,
to some convenient value. For example, by setting Δ⊙W = 2π, the
analogy with the angle variable can be made more complete.

It is easy to see that ν has the meaning of the stationary
flux. Consider a very long trajectory of length T, where the system
completed many revolutions NW . Then, the change in W will be
dominated by Δ⊙WNW that equals νT; hence, ν = NW/TΔ⊙W has
the meaning of the stationary flux—the number of revolutions per
second, multiplied by Δ⊙W. It also follows that if W is single valued,
i.e., Δ⊙W = 0, then ν = 0.

Note that, strictly speaking, addev equations for finite τ [e.g.,
Eqs. (1) and (2) and equations below] are valid only when contri-
butions due to the multi-valued nature of S or W can be neglected,
which introduces an upper bound on τ. For example, the change
in W for a finite trajectory, starting in state i and ending in
state j, equals W( j) −W(i) +NW Δ⊙W, where NW is the number
of full revolutions around W completed by the trajectory. While
Pτ( j∣i) correctly accounts for the weight of trajectories from i
to j, the NW Δ⊙W contribution is missing in the equations. One
solution is to consider only such small τ that NW ≈ 0. Another
is to explicitly consider different branches of W in the transition
matrix.

Consider now time-reversed stationary dynamics. It can be
obtained by time-reversing trajectories of the original process
X′t = XT−t ; we use primes to denote time-reversed quantities.
The time-reversed stationary dynamics is described by a finite
Markov chain with the transition probability matrix P′τ(i∣ j)
= Pτ(j∣i)π(i)/π( j). The addev for the time-reversed dynamics is
defined via

∑
j

P′τ( j∣i)[S′(j, t) − S′(i, t + τ)] = 0. (4)

Since P′is generally different from P, the addevs for forward and
time-reversed dynamics generally differ.

Next, we extend the framework of optimal RCs9,12,15,24,28 to
addevs. During the derivation of the equations, we assume that the
system dynamics is described by a finite Markov chain with tran-
sition probability matrix Pτ(i∣j). However, final equations require
only the knowledge of the RC time-series r(iτ), meaning that, in
practice, one does not need to construct a Markov chain.

Validation criteria for addevs. Consider quantity Zout(x, τ)
whose derivative is defined as

dZout(x, τ)
dx

= ∑
i,j

δ[x − x(i)][x( j) − x(i) − ντ]nτ(j∣i), (5)

where nτ( j∣i) = Pτ( j∣i)π(i) is the stationary number of transition
from state i to j after time interval τ, δ is the Dirac delta function, and
x(i) is the position of state i of the Markov chain on the circular RC.
If the putative RC closely approximates addev W, i.e., x(i) ≈W(i)
and then summing first over j, one finds that dZout

(x,τ)
dx = 0, i.e., Zout

along W is constant.
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Analogously, quantity Zin(x, τ) whose derivative is defined as

dZin(x, τ)
dx

= ∑
i,j

δ[x( j) − x][x( j) − x(i) − ντ]nτ(j∣i) (6)

is constant when x closely approximates time-reversed addev W′.
These quantities can be computed from a long stationary RC

time-series r(iτ) of length T as follows:

dZout(x, τ)
dx

=
T/τ

∑
i=1

δ[x − r(iτ)][r(iτ + τ) − r(iτ) − ντ], (7a)

dZin(x, τ)
dx

=
T/τ

∑
i=1

δ[r(iτ + τ) − x][r(iτ + τ) − r(iτ) − ντ]. (7b)

Note that Zout equals Zin computed with time-reversed trajectory
r′(t) and vice versa.

Thus, if Zout(x, τ) profiles computed for all time intervals τ
are constant, up to statistical errors, then the putative RC closely
approximates a forward addev and analogously for the time-reversed
addevs. One way to see whether deviations from a constant are on
the order of statistical uncertainty is to divide the trajectory into sev-
eral parts, compute the profiles for each part separately, and compare
them.

Diffusive model: estimation of F(W) and D(W). Assume
now that the stochastic process/dynamics is such that the for-
ward and time-reversed addevs are identical, W =W′. Define
ZC,1 = (Zin + Zout)/2, which can be considered as a generalization
of ZC,1 for ν ≠ 0.12 ZC,1(x, τ) = const for all x along W. Integrating
ZC,1(x, τ) over x, one obtains 2∫ ZC,1(x, τ)dx = ∑i[r(iτ + τ)
− r(iτ)][r(iτ + τ)−r(iτ) − ντ]=T/τ⟨[r(t + τ)−r(t) − ντ]2⟩, which
is easy to show to be constant for for all lag times τ(τ ≪ T);12

we denote the constant as 2TD. Hence, one obtains that
ZC,1(x, τ)Δ⊙W = TD. From ⟨[r(t + τ) − r(t) − ντ]2⟩ = 2Dτ, one
sees that the mean-squared displacement computed from the sta-
tionary addev time-series grows linear with time, like for simple
diffusion.12

Consider very small τ when jumps from r(t) to r(t + τ) are
relatively short so that Zst

H(x), the conventional partition func-
tion or stationary probability, is approximately constant on the
scale of jumps. Then, one obtains ZC,1(x, τ) = τZst

H(x)D(x), where
D(x) = ⟨[r(t + τ) − r(t) − ντ]2⟩/(2τ) is the estimation of the posi-
tion dependent diffusion coefficient computed from short trajec-
tories in the region around x.12 Zst

H(x) can be estimated using
conventional histograms, which allows one to determine D(x).
However, note that Zst

H measures a non-equilibrium or stationary
partition function of dynamics with a non-zero flux. It is related
to the true/equilibrium free energy of the diffusive model as βF(x)
= − ln Pst(x) − ∫ x Jdx

D(x)Pst(x) , where β is an inverse temperature, J is
the flux, and Pst(x) = Zst

H(x)/Z, with Z = T/τ.29 For an addev RC
W, one obtains

βF(W) = − ln Zst
H(W) − αW, (8)

where α = ν/(ZC,1/T) is constant. Note that while Zst
H(W) is

single-valued, βF(W) is multi-valued with the increment of αΔ⊙W
for one complete revolution. For the model system in Fig. 2, F(W)

steadily decreases in the counterclockwise direction, i.e., the system
steadily moves by decreasing F and increasing W. One may con-
sider instead force f (W) = −dF/dW, which is single-valued. Since
ZC,1 and Zst

H are single valued functions, periodic in W, in order to
increase statistics during the calculation of these quantities from a
finite RC time-series, it is useful to collect all the statistics in a single
period of W.

Once F(W) and D(W) are computed, one may want to rescale
W to the natural coordinate W̃ so that D(W̃) = 1 and the dynamics
is described by the free energy profile F(W̃) only.15

Determination of j
+

and j
−

. Constancy of ZC,1(x, τ) for differ-
ent lag times τ allows one to compute some large scale properties
of the dynamics using the diffusive model. Consider, for example,
the fluxes/rates to make a complete revolution in the positive ( j

+
)

and negative ( j
−
) directions. To define them, consider a coarse-

grained model of the dynamics, where the system performs random
walk along W with steps of size ±Δ⊙W with rates j

±
. For very

large lag times, when the system jumps contain many revolutions,
one can round them up to the nearest integer number of revo-
lutions and neglect the difference. At this timescale, one obtains
D = Δ⊙W2[ j

+
+ j
−
] and ν = Δ⊙W[ j

+
− j
−
]. The diffusive model

allows the determination of D and ν and thus j±.
In summary, given an addev time-series, one may construct a

diffusive model that accurately approximates the dynamics. Given
the free energy profile, one can locate the transition state or the
rate limiting step and study its properties. One can determine the
free energy barrier and the corresponding pre-exponential factor.15

The dynamics projected on W has a constant drift ν, meaning
that the average position of the system moves with constant veloc-
ity ν along periodic coordinate W; it performs stochastic periodic
motion.

Generally, W ≠W′ and ZC,1(x, τ) is not constant. However,
close to equilibrium, when the flux is relatively small and W
and W′ are not very different, one may select such a coordi-
nate that has ZC,1(x, τ) = const for the smallest τ value. Since
ZC,1(x, τ) tends to a constant for large τ, it is likely that ZC,1(x, τ)
is approximately constant for all values of τ. Such a coordinate,
denoted as Weq, is obtained as an addev for the rate matrix,
which is the sum of forward and time-reversed rate matrices
K + K′. We believe that this approximation should work for such
non-equilibrium biophysical systems of practical interest as, e.g.,
enzymatic reactions, molecular motors, and biochemical networks.
Appendix A in the supplementary material contains detailed illus-
tration of the developed framework on a model system close to
equilibrium.

For the general, far-from-equilibrium case, e.g., stochastic
dynamics in the phase space, we suggest a different strategy. In
the analysis of stochastic dynamics, a process of interest often rep-
resents a rare event. To analyze the properties and likelihood of
such rare events, one may study the stochastic dynamics of atypical
trajectories conditioned on this event. For example, in the analysis
of protein folding, one studies the transition paths (TPs) between
folded and unfolded states. Analogously, we suggest to study all
sub-ensembles of trajectories, for which W′ =W or in a general
case S′ = S, which can be described by the developed formalism.
Such sub-ensembles with the smallest ν eigenvalues, in particular,
describe rare events representing the slowest periodic processes with
the smallest fluxes.
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B. Addev master equations and time-reversible
description of stochastic dynamics

A usual way to specify a sub-ensemble of conditioned
trajectories is to consider first the entire ensemble of all possi-
ble trajectories, say, length T, and select from it a sub-ensemble
of trajectories satisfying the condition(s). For example, the TP
sub-ensemble consists of all the trajectories connecting directly
the boundary states.30 Another example is to consider only those
trajectories that avoid the so-called trap states.31 Schrödinger
first suggested considering an ensemble of stochastic trajecto-
ries that match not only the initial probability distribution but
also the final one.32–34 Such conditioned ensembles are now
known as Schrödinger bridges.35,36 One can condition trajecto-
ries to have some value of a rather general path functional, e.g.,
A = 1/T ∫ f (Xt)dt.37–40 A more general conditioning is possible.41

Dynamics in such a conditioned sub-ensemble is again described
by a conservative Markov chain, however, with a different, biased,
Doob’s h-transformed, transition matrix.37,39,40,42

One way to find the law of such conditioned trajectories,
e.g., their transition matrix, is to minimize the deviation from
the typical/original dynamics, namely, the Kullback–Leibler
divergence,41,43,44 under constraint, which, for addev sub-ensembles,
is S′ = S. This approach, however, leads to a complex system of
non-linear equations, which we were not able to solve in a general
case. Numerical minimization for a one-dimensional model
system produced just two obvious solutions: equilibrium dynamics
without flux J = 0 or flux without the barrier U = 0. Below, we
present another approach, where we describe a large family
of conditioned trajectories with S′ = S whose equations can be
obtained analytically. We start directly with the dynamics in the
sub-ensemble, which we assume to be Doob’s h-transformed. One
may assume that a specific conditioning has been imposed to have
the desired Doob’s h-transform, which results in S′ = S. We show
later (Section IVC) how to select a conditioning to obtain a desired
addev sub-ensemble.

We consider a finite discrete-time (and later continuous-time)
Markov chain with the transition probability matrix Pτ( j∣i). We
assume that dynamics in the addev sub-ensemble is described by a
Markov chain with a biased, generalized Doob’s h-transformed,39,40

conservative transition probability matrix P̃,

P̃(j, t + τ∣i, t) = Pτ(j∣i)
u(j, t + τ)

u(i, t) for i ≠ j, (9a)

∑
j

P̃(j, t + τ∣i, t) = 1, (9b)

i.e., the biased P̃(i, t + τ∣i, t) is found from Eq. (9b); here,
P̃(j, t + τ∣i, t) is the probability to be found in state j at time t + τ
if the system was in state i at time t and u(i, t) > 0 is a biasing
factor, to be determined later. Note that while we assume initially
that the dynamics is stationary, i.e., P̃(j, t + τ∣i, t) does not depend
on t, the equations are derived for the general case of non-stationary
dynamics.

For forward addev S( j, t), one has [cf. Eq. (1)]

∑
j

P̃(j, t + τ∣i, t)[S(j, t + τ) − S(i, t)] = 0. (10)

To define the time-reversed dynamics in the sub-ensemble, we
assume that the (stationary) probability distribution of the sub-
ensemble is expressed as P(i, t) = u(i, t)v(i, t), which can always be
done, since one can define v(i, t) = P(i, t)/u(i, t). It means that

∑
i

P̃(j, t + τ∣i, t)P(i, t) = P(j, t + τ). (11)

Then, the transition probability for time-reversed dynamics
(denoted as P̃ ′) is

P̃ ′(i, t∣ j, t + τ) = P̃(j, t + τ∣i, t)P(i, t)/P(j, t + τ). (12)

We check that the total transition probability P̃ ′ sums to 1,

∑
i

P̃ ′(i, t∣ j, t + τ) = 1, (13)

where we used Eq. (11). P(i, t) is the stationary probability for time-
reversed dynamics too,

∑
j

P̃ ′(i, t∣ j, t + τ)P(j, t + τ) = P(i, t), (14)

where we used Eq. (9b). From Eqs. (12) and (13), consequently,
the transition probability for the time-reversed dynamics is biased
analogous to that for the forward dynamics,

P̃ ′(i, t∣ j, t + τ) = Pτ(j∣i)
v(i, t)

v(j, t + τ) for i ≠ j, (15a)

∑
i

P̃ ′(i, t∣ j, t + τ) = 1, (15b)

i.e., the description is symmetric with respect to time-reversal.
Finally, we require that the addev for the time-reversed dynamics
is the same, i.e., forward and time-reversed dynamics are described
by the same addev as follows:

∑
j

P̃ ′(j, t∣i, t + τ)[S(j, t) − S(i, t + τ)] = 0. (16)

To summarize, the final system of equations [Eqs. (10), (11), and
(16)] can be written as

∑
j

Pτ(j∣i)
u(j, t)

u(i, t − τ) [S(j, t) − S(i, t)] = S(i, t − τ) − S(i, t), (17a)

∑
j

Pτ(i∣ j)
v(j, t)

v(i, t + τ) [S(i, t) − S(j, t)] = S(i, t) − S(i, t + τ), (17b)

∑
j

Pτ(i∣ j)
u(i, t + τ)

u(j, t) P(j, t) −∑
j

Pτ(j∣i)
u(j, t + τ)

u(i, t) P(i, t)

= P(i, t + τ) − P(i, t). (17c)

Written in such a way, equations do not depend on the diagonal
terms of the transition matrices that are biased in a complicated
way, as they cancel out.
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The equation for a continuous time Markov chain can be
obtained by taking limit τ → 0 and using Pτ( j∣i) = eτK( j∣i) ≈ δji
+ τK( j∣i), where K( j∣i) is the rate matrix,

∑
j

K(j∣i)u(j, t)
u(i, t) [S(j, t) − S(i, t)] = −dS(i, t)

dt
, (18a)

∑
j

K(i∣ j)v(j, t)
v(i, t) [S(i, t) − S(j, t)] = −dS(i, t)

dt
, (18b)

∑
j

K(i∣ j)u(i, t)
u(j, t)P(j, t) −∑

j
K(j∣i)u(j, t)

u(i, t)P(i, t) = dP(i, t)
dt

, (18c)

where P(i, t) = u(i, t)v(i, t). It is a system of equations with three
vectors of unknowns S(i, t), u(i, t), and v(i, t). By summing
Eq. (18c) over i, one finds that the total probability during temporal
evolution is conserved as d/dt∑i P(i, t) = 0.

This equation, which we refer to as the addev master equa-
tion (AME), is the main result of this paper. It describes stochastic
dynamics differently compared to the standard master equation
(SME) for Markov processes. The rest of the paper is devoted
to illustrating their properties on two model stochastic dynamics:
unidirectional random walk and diffusion. We first provide a few
general remarks about some of the AME properties.

The AME generally has a large set of stationary solutions.
A stationary solution, S(i, t) =W(i) − νt, u(i, t) = u(i), and v(i, t)
= v(i), describes an addev sub-ensemble of trajectories. We call
the triple (S, u, v) an addev with S or W being the phase of the
addev, u and v being the forward and time-reversed biasing factors,
respectively, and ν the addev eigenvalue. The biasing factors u and
v define the rate matrix of the biased process via Eq. (9) and the
stationary probability as P(i) = u(i)v(i). For this sub-ensemble of
trajectories, W is the addev for forward and time-reversed dynamics,
i.e., W =W′, and the framework of optimal RCs can be applied.
The overall dynamics of trajectories projected on W is rather
simple; they move (on average) with constant velocity ν along the
periodic coordinate W. We call such a solution, representing a
sub-ensemble of trajectories performing stochastic periodic motion,
a stochastic eigenmode. Each stationary solution describes a differ-
ent sub-ensemble of trajectories with a different pattern of global
stationary current along a different RC and is of interest to under-
stand the global properties of dynamics. Solutions with the smallest
ν eigenvalues describe the slowest processes and are of particular
interest. Thus, in contrast to the SME, which has a unique station-
ary probability distribution, to which every solution exponentially
relaxes, the AME addev master equation has a spectrum of station-
ary solutions with different stationary probability distributions and
a non-stationary solution does no relax to any of them.

An addev sub-ensemble describes a small sub-set of all possible
trajectories, and a long equilibrium trajectory jumps from one
such sub-ensemble to another. An example of how such a jump
occurs, i.e., how a long equilibrium trajectory fluctuates to an addev
sub-ensemble, stays there for some time, and then relaxes back, is
illustrated in Sec. IV C. Each such fluctuation represents a rare event,
with probability exponentially decreasing with the time spent in the

addev sub-ensemble.39,40 After visiting one addev, the trajectory may
visit another and so on. One can approximate the entire ensemble
of trajectories by all possible sequences of addevs, which leads to a
path integral or sum over such sequences. An example is provided
in Sec. IV C.

Consider non-stationary addev solutions. The AME does not
define derivatives for du(i)/dt and dv(i)/dt separately; only deriva-
tive of their product dP(i)/dt is defined. To integrate the AME in
time, one can proceed as follows: introduce u(i, t) = R(i, t)α(i, t)
and v(i, t) = R(i, t)/α(i, t) and then express α via R and S using
Eqs. (18a) and (18b), thus eliminating α from the equations. Thus,
one obtains a system of differential equations on just R =

√
P

and S, which we call the module and the phase of an addev. A
non-stationary solution describes the evolution of the probability
distribution (together with the auxiliary phase function). In con-
trast to the SME, this evolution is time-reversible. One can integrate
the AME forward and backward in time. The SME can be for-
mally integrated back in time; however, eventually, the probability
distribution becomes negative. The reason is simple. The probability
distribution can be represented as a superposition of eigenvectors.
Eigenvectors other than the stationary one have negative compo-
nents and negative eigenvalues. During integration back in time,
their contribution becomes much larger than that of the stationary
eigenvector.

III. ILLUSTRATIVE EXAMPLES: UNIDIRECTIONAL
RANDOM WALK

Consider a model system shown in Fig. 1(c): a Markov chain
with N states on a circle with transitions to the nearest neighbor
in the counterclockwise direction only. The system is relatively
simple so that exact analytical results can be obtained and equations
can be simplified to allow numerical investigation of non-stationary
solutions. It illustrates many peculiarities of the addev description
of stochastic dynamics, such as time-reversibility, multi-valuedness
of S, oscillatory dynamics of the probability distribution, and
constructive interference.

A. Addev master equation
The rate matrix is K(k + 1∣k) = r for 1 ≤ k < N and K(1∣N) = r.

The SME for the evolution of the probability distribution is

dP(k)
dt

= −rP(k) + rP(k − 1). (19)

In this section, equations for the boundary values of k = 1 or k = N
are not given explicitly, and if they differ from the given equations
for generic values of k, one has to modify the indices accordingly.

Qualitatively, the equation describes a dissipating wave moving
in the counterclockwise direction. The initial probability distri-
bution exponentially relaxes with time to the equilibrium one
π( j) = 1/N. In the proper limit of many states N →∞, where the
distance between states Δx = 1/N and c = rΔx = const, the SME
reduces to the equation describing the deterministic dynamics of the
wave moving in the counterclockwise direction ∂P/∂t = −c∂P/∂x,
where x is measured along the perimeter of the circle.
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Equation (18) for this system reads (the dependence on the time
variable is omitted for brevity)

ru(k + 1)/u(k)[S(k + 1) − S(k)] = −dS(k)
dt

, (20a)

rv(k)/v(k + 1)[S(k + 1) − S(k)] = −dS(k + 1)
dt

, (20b)

ru(k)v(k − 1) − ru(k + 1)v(k) = d[u(k)v(k)]
dt

. (20c)

We first consider a stationary solution, where u(k, t) = u
and v(k, t) = v, due to translational symmetry. Taking S(k, t)
=W(k) – νt, we obtain the following equations: r[W(k + 1)
−W(k)] = ν for 1 ≤ k < N, i.e., at each step from k to k + 1W(k),
it is incremented by a constant value of ν/r, with general solution
W(k) = (k − 1)ν/r. The stationary solution is rather simple. The
multi-valued optimal RC W coincides with that discussed in detail
at the beginning of Sec. II A and is shown in Fig. 2.

Consider now non-stationary, time-dependent solutions. From
Eqs. (20a) and 20(b), one finds that −P(k) dS(k)

dt = −P(k + 1) dS(k+1)
dt ,

meaning that −P(k) dS(k)
dt = C, where C is some positive constant,

which leads to the following system of differential equations:

dS(k)/dt = −C/P(k), (21a)

dP(k)/dt = C
S(k) − S(k − 1) −

C
S(k + 1) − S(k) . (21b)

Again, it is understood that Eq. (21) for k = 1 and k = N is modified
accordingly.

Introducing Y(k) = S(k + 1) − S(k) for 1 ≤ k < N and Y(N)
= S(1) − S(N), where the values of S(1) and S(N) are taken in the
same branch, one obtains the following system of equations:

dY(k)/dt = C/P(k) − C/P(k + 1), (22a)

dP(k)/dt = C/Y(k − 1) − C/Y(k). (22b)

By taking the product of ru(k + 1)/u(k)P(k)Y(k) = C over all k
values, one finds C = r N

√
∏kY(k)P(k). Taking the time derivative

of lnC, it is easy to see that C stays constant during evolution, which,
in particular, means that neither P(k) nor Y(k) can become equal
to 0. It is also evident that both ∑P(k) = 1 and ∑Y(k) = Δ⊙S stay
constant.

Taking H = −NC as Hamiltonian, Eq. (21) can be given the
following Hamiltonian form:

H(S, P) = −Nr N

√
∏

k
[S(k + 1) − S(k)]P(k), (23a)

dP(k)/dt = −∂H/∂S(k), (23b)

dS(k)/dt = ∂H/∂P(k). (23c)

The equilibrium stationary state, where P(k) = 1/N and Y(k)
= Δ⊙S/N, has the lowest value of H. For any other state, H is higher,
and since H is constant during evolution, any such state does not
relax to the equilibrium one. In the vicinity of the equilibrium state,
where the quadratic expansion of H is quite accurate, the dynam-
ics should be well approximated by a superposition of harmonic
oscillations of normal modes.

If one selects the initial conditions as Y(k) = 1/P(k), then on a
timescale where this relation holds, Eq. (22) can be approximated by
(C = r)

dY(k)/dt = rY(k) − rY(k + 1), (24a)

dP(k)/dt = rP(k − 1) − rP(k), (24b)

where Eq. (24b) is the SME [Eq. (19)]. Both equations describe waves
running to the right with the average speed of c = rΔx so that the
relation Y(k) = 1/P(k) is approximately valid for some time. Thus,
starting with such initial conditions, the solution of Eq. (22) should
approximate the standard solution for the Markov chain. In the con-
tinuum limit of Δx → 0 and r = c/Δx, the deterministic equation of
the wave running to the right is recovered ∂P/∂t = −c∂P/∂x.

Let us illustrate numerical solutions of Eq. (22); the details
of the analysis are provided in Appendix B in the supplementary
material. We consider how a δ-like distribution in a 100 state sys-
tem evolves with time (Fig. 3). Initial P was selected as P(50) = 1 and
P(k ≠ 50) = 0.001 followed by the normalization of total probability
to one. Initial values of Y were taken as Y(k) = 1/P(k) and then re-
scaled to have Δ⊙S = 1. The forward solution of Eq. (20) describes
a wave moving to the right, which slowly dissipates [Fig. 3(a)]. In
comparison, the same initial δ-like distribution, when evolved using
the SME [Eq. (19)], dissipates much faster [Fig. 3(c)]. Both waves
propagate with similar speed. One can evolve the probability distri-
bution backward in time by integrating the corresponding equations

FIG. 3. Forward (a and c) and backward (b and d) time evolution of initial δ-like
probability distribution obtained by integrating Eqs. 22(a) and 22(b) and Eqs. 19(c)
and 19(d); legends show integration time. Coordinate i is periodic; the wave that
disappeared at the right border reappears at the left border. Equation (22) can be
integrated forward and backward in time. Integration of Eq. (19) backward in time
results in negative probabilities (d). For details, see the text.
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backward in time. For Eq. (22), the backward in time evolution of
the initial δ-like distribution is very similar to the forward evolution,
which describes a dissipating wave moving to the left [Fig. 3(b)]. The
SME quickly leads to unphysical, negative values for the probability
distribution [Fig. 3(d)].

Note that, for this particular initial condition, both forward
and backward temporal evolutions obtained by integrating Eq. (22)
describe a dissipating, spreading wave. However, if one starts with S
and P vectors obtained for t = −0.9 [light blue curve in Fig. 3(b)]
as initial vectors and integrates Eq. (22) forward in time, then
the wave, in contrast, will initially focus by becoming higher and
narrower [e.g., dark blue t = 0 curve in Fig. 3(b), or see Appendix B
in the supplementary material]. Such a focusing can be interpreted
as a constructive wave interference. If one computes the relative
entropy −∑j P( j, t)log[P( j, t)/π( j)] as a function of time, it will
decrease (see Appendix B in the supplementary material). For SME,
the relative entropy monotonously increases.45

B. Two-state system
Decreasing the number of states, N, we arrive at the smallest

system of just two states. Unlike systems with N > 2, this system
satisfies the detailed balance since the two states are connected
by backward and forward transitions. The SME describes an
exponential decrease of an initial probability distribution to the
equilibrium state π(1) = π(2) = 1/2. The dynamics described by the
time-reversible equations is very different.

The dynamics is analyzed using Eq. (22). The following normal-
ization is employed: Y(1) + Y(2) = Δ⊙S = 1. Denoting Y(1) = Y
and P(1) = P, one has

dY/dt = C/P − C/(1 − P), (25a)

dP/dt = C/(1 − Y) − C/Y , (25b)

where C = r
√

P(1 − P)Y(1 − Y) and r = 2.
Figure 4(a) shows the phase portrait of the two-state system

[Eq. (25)]. For the initial values of P close to the equilibrium value
of 1/2, the trajectories on the phase plane are circles, i.e., the system
performs harmonic oscillations around the minimum of H = −2C
with the frequency of 2r = 4. Figure 4(b) shows trajectories
P ∼ 1/2 + a sin(4t) and Y ∼ 1/2 − a cos(4t). As amplitude increases,

FIG. 4. Oscillating dynamics of the two-state system: (a) phase plane and (b) and
(c) P(t) and Y(t) trajectories of the smallest curve (circle) and the largest curve
(square) on the phase plane, respectively.

the oscillations become more non-linear. For the initial values of P
significantly different from the equilibrium value, the phase curves
start to deviate from circles, and for P ≈ 1, they became square-like.
The system exhibits non-linear oscillatory dynamics. The corre-
sponding trajectories [Fig. 4(c)], which have a square-wave-like
form, show that significant changes in one coordinate happen, while
the other stay close to either 0 or 1. The period of these oscillations
is shorter compared to the harmonic ones.

Let us discuss in more detail the multi-valued nature of the
S(k, t) functions. For large N, the multi-valuedness does not cause
confusion since all the neighboring states (k), which appear in the
same equation, can be considered to be at the same branch. How-
ever, for the system with just two states, the situation becomes
confusing. For example, we used normalization Y(1) + Y(2) = 1.
However, using Y(1) = S(2) − S(1) and Y(2) = S(1) − S(2), one
obtains 0 = 1. To recover the correct one, recall that the distance
is measured on the circle rather than on the line and S(1) in
Y(2) takes a different value from S(1) in Y(1). However, how
this should be formalized in, e.g., Eq. (21b) or Eq. (25b), which
contains both Y(1) and Y(2)? One approach is to represent the
multi-valued function as Smv(k, t) = dmv(k) + S(k, t), where dmv(k)
is a fixed multi-valued function with the same multi-valued char-
acter as Smv(k, t) and S(k, t) is single valued. As dmv(k), one
can take, for example, a particular multi-valued solution W(k).
For example, for the N-state system considered here, as dmv(k),
one can take dmv(k) = k/NΔ⊙S, with dmv(k + 1) − dmv(k) = Δ⊙S/N
appearing in the equations. For the two-state system with normaliza-
tion Δ⊙S = 2, one obtains Smv(2, t) − Smv(1, t) = 1 + S(2, t) − S(1, t)
and Smv(1, t) − Smv(2, t) = 1 + S(1, t) − S(2, t). Such a representa-
tion will be used in Sec. IV A, where one-dimensional random walk
is considered. If the dependence on the spatial degree of freedom
is neglected, the random walk is reduced to random changes in the
direction—the two-state system considered here.

IV. ILLUSTRATIVE EXAMPLES: DIFFUSION
Next, we consider a more interesting and practically more

important case of diffusion. The addev equations for diffusion
are much more complex, and to keep the paper relatively short,
we deferred most of the results to the follow-up paper. Here, we
derive the addev equations for diffusion, obtain simple plane wave
solutions, and show how the corresponding sub-ensembles can be
obtained by conditioning.

A. Addev master equation for diffusion
Consider the Markov chain approximating diffusion on the

line. The rate matrix K(i + 1∣i) = K(i − 1∣i) = r describes transitions
to the left and right nearest-neighbor states with constant rate r. If
Δx denotes the distance between states, then the diffusion constant
is D = rΔx2.

From the physical point of view, if the spatial dependence is
neglected, the dynamics can be roughly considered as two-state
dynamics, where the system moves right or left and switches between
the two such states with rate r. Thus, it should allow the two-state
solutions considered in Sec. III B. To describe such solutions, the
direction the system currently moves in needs to be distinguished.
For this purpose, an internal degree of freedom is introduced; it
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equals 1 or 2 when the systems moves right or left, respectively.
The reaction rate matrix in the extended configuration space is
K(i + 1, 1∣i, 1) = K(i − 1, 2∣i, 2) = K(i + 1, 1∣i, 2) = K(i − 1, 2∣i, 1) = r.

Equation (18) for the rate matrix in the extended configura-
tion space reads (the internal degree of freedom is represented by
a subscript, while the dependence on the time variable is omitted for
brevity)

r
u1(i + 1)

u1(i)
[S1(i + 1) − S1(i)] + r

u2(i − 1)
u1(i)

[1 + S2(i − 1) − S1(i)]

= −dS1(i)
dt

, (26a)

r
u2(i − 1)

u2(i)
[S2(i − 1) − S2(i)] + r

u1(i + 1)
u2(i)

[1 + S1(i + 1) − S2(i)]

= −dS2(i)
dt

, (26b)

r
v1(i − 1)
v1(i)

[S1(i) − S1(i − 1)] + r
v2(i − 1)
v1(i)

[1 + S1(i) − S2(i − 1)]

= −dS1(i)
dt

, (26c)

r
v2(i + 1)
v2(i)

[S2(i) − S2(i + 1)] + r
v1(i + 1)
v2(i)

[1 + S2(i) − S1(i + 1)]

= −dS2(i)
dt

, (26d)

ru1(i)v1(i− 1) + ru1(i)v2(i − 1) − ru1(i+ 1)v1(i) − ru2(i − 1)v1(i)

= d[u1(i)v1(i)]
dt

, (26e)

ru2(i)v2(i+ 1) + ru2(i)v1(i+ 1) − ru1(i+ 1)v2(i) − ru2(i− 1)v2(i)

= d[u2(i)v2(i)]
dt

. (26f)

Here, the multi-valued function S is represented as dj + Sj(i, t),
where Sj(i, t) is single valued, while dj is a multi-valued particu-
lar solution of the two-state system, meaning d1 − d2 = d2 − d1 = 1,
where we used convenient normalization Δ⊙S = 2 (see the end of
Sec. III B). It is straightforward to check that the following solu-
tion satisfies the equation u1(i, t) = u2(i, t) = v1(i, t) = v2(i, t) = 1
and Sj(i, t) = −νt, where ν = r. It can be considered as a solution in
the rest frame of reference. It just describes the internal dynamics
of the internal degree of freedom; it is the solution of the two-state
system.

B. Plane wave solutions
Some properties of Eq. (26) can be elucidated by considering a

simple family of plane wave solutions. Let u1(i, t) = u1, u2(i, t) = u2,
v1(i, t) = v1, v2(i, t) = v2, S1(i, t) = S′1 + iΔxk − νt, and S2(i − 1, t)

= S′2 + iΔxk − νt, where k is the wavenumber and S′1 and S′2 are some
constants, and without loss of generality, S′1 can be set to 0. Eq. (26)
simplifies to (c = rΔx)

ck + ru2/u1(1 + S′2) = ν, (27a)

− ck + ru1/u2(1 − S′2) = ν, (27b)

ck + rv2/v1(1 − S′2) = ν, (27c)

− ck + rv1/v2(1 + S′2) = ν, (27d)

u1v2 − u2v1 = 0. (27e)

From Eq. (27e), one obtains that u2/u1 = v2/v1, which, together with
Eqs. (27a) and (27c), means that S′2 = 0. From Eqs. (27a) and 27(b),
one obtains the dispersion relation ν2 = r2 + k2c2.

Interpretation of this stationary addev solution is as fol-
lows: it describes a sub-ensemble of trajectories with biased
rate matrix K̃(i + 1, 1∣i, 2) = ru1/u2, K̃(i − 1, 2∣i, 1) = ru2/u1, and
K̃(i + 1, 1∣i, 1) = K̃(i − 1, 2∣i, 2) = r, where u1/u2 =

√
ν + ck/

√
ν − ck

and stationary probabilities P1/P2 = (ν + ck)/(ν − ck). A stochastic
trajectory from this sub-ensemble performs a biased random walk,
with a non-zero mean drift velocity of v = rΔx(P1 − P2)/(P1 + P2)
= c2k/ν. Expressing ν as a function of easily observable v leads to
familiar relativistic expression ν = r/

√
1 − v2/c2. c can be interpreted

as an upper bound on drift velocity v, attained when the system
moves only in one direction. Note that c = rΔx is an average velocity
for a trajectory of the Markov chain moving in one direction. A tra-
jectory can move faster, however, with an exponentially decreasing
likelihood.

C. Obtaining an addev sub-ensemble by conditioning
Here, we show that for every stationary addev solution, one can

find such a function of a state of the Markov chain f (i) and a value
A that the sub-ensemble of trajectories conditioned on,

A = 1/T∫
T

0
f (Xt)dt, (28)

and the corresponding addev sub-ensemble are equivalent, i.e., they
both are described by the same biased rate matrix K̃(i∣ j); here, Xt is
the trajectory. For simplicity, we consider a stationary case. Note that
the conditioned trajectories are considered in the quasi-stationary
regime at long T, i.e., for such t, that both t and T − t are large.

Consider a finite continuous time Markov chain with rate
matrix K(i∣j) from Sec. II B. We follow Ref. 40. Let λ and L( j) be the
largest eigenvalue and the corresponding left eigenvector of matrix
K(i∣j) − δij f (i),

∑
i

L(i)K(i∣ j) − L( j) f ( j) = λL( j). (29)
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The sub-ensemble of trajectories satisfying condition Eq. (28),
in the quasi-stationary regime, is described by the conserva-
tive Markov chain with rate matrix M(i∣ j) = K(i∣ j)L(i)/L( j)
− δij( f ( j) + λ). Or equivalently, M(i∣j) = K(i∣ j)L(i)/L( j) for
i ≠ j and M(i∣i) is found from ∑i M(i∣ j) = 0. If one can find such
f (i) that L(i) = u(i), then M(i∣ j) = K̃(i∣ j). Using Eq. (29) as the
equation on f and taking L(i) = u(i) and λ = 0, one finds

f ( j) = ∑
i

K(i∣ j)u(i)/u( j). (30)

For A, one finds by computing the average of Eq. (28)

A = ∑
j

f ( j)P( j) = ∑
j

f ( j)u( j)v( j)/∑
j

u( j)v( j). (31)

To illustrate such a conditioning, we consider addev solutions
describing plane waves from Sec. IV B. For f and A, one obtains
f (i, 1) = r(u2/u1 − 1), f (i, 2) = r(u1/u2 − 1), and A = r(r/ν − 1).
Details of simulation are provided in Appendix C in the supple-
mentary material. Figure 5 shows that the addev sub-ensemble
of trajectories agrees with that obtained from the conditioning.
Figure 5(b) shows that in the conditioned trajectories, one can iden-
tify three regions: (1) small t, (2) large t and T–t, and (3) small T–t;
here, T = 30 is the total length of the trajectories. Region 2 describes
the quasi-stationary regime of the conditioned ensemble. Regions 1
and 3 describe non-stationary dynamics, leading to/from the quasi-
stationary regime. Figure 5(c) shows that the rates K̃ are correct
already in region 1.40 Adding the equilibrium ensemble of trajec-
tories for t < 0 and t > T, one obtains a possible picture of how an
equilibrium trajectory fluctuates to an addev sub-ensemble and then
relaxes back.

The probability to observe a trajectory in such an addev sub-
ensemble for (sufficiently long) time Δt can be estimated as ∼eAΔt by
using the large deviation principle39,40 or the Kullback–Leibler diver-
gence.41 A can be expressed as A = r(r/ν − 1) = r(

√
1 − v2/c2 − 1)

= −L(v), where v = Δx/Δt is the drift velocity and c = rΔx is
the maximal drift velocity (see Sec. IV B). The probability to
observe a sequence of addevs, where each addev is independent,
can be estimated as ∼ exp(−∑i L(Δxi/Δti)Δti). For small v, where
L(v) ≈ rv2/(2c2), the obtained probability takes a familiar form of
that for the path integral for Brownian motion, however, with the
diffusion coefficient D = c2/(2r) = rΔx2/2 half of that for the under-
lying Markov chain. For large v, L(v) allows propagation only with
speed ∣v∣ < c, while the standard treatment of diffusion46 and in
particular this Markov chain allow propagation with infinite speed.
Note that similar properties of the finite propagation speed and the
diffusion coefficient of c2/(2r) or Δx2/(2τ) have the stochastic tele-
graph process47 and the discrete-time random walk,46 respectively;
here, c and r are the speed and rate of changing the direction of the
telegraph process and Δx are τ the spatial and temporal steps of the
random walk, respectively.

The suggested conditioning, which provides an addev sub-
ensemble, is not unique. For example, one may assume that all
states of the Markov chain are connected with rate f (i) to a new
“trap” state and consider trajectories conditioned on never visit-
ing this state. This sub-ensemble of trajectories is described by the

FIG. 5. Sub-ensemble of trajectories obtained by conditioning [Eq. (28)], corre-
sponding to the addev solution describing plane waves with k = 0.2 (Sec. IV B).
(a) A sample of trajectories (gray lines); the average displacement ⟨X t⟩ computed
from equations (black line) and estimated from the trajectories (black crosses).
(b) Probabilities P1(t) and P2(t) are shown by red and blue colors, respec-
tively. Lines show values computed from equations, while crosses show those
estimated from trajectories. (c) Rates: K̃(i + 1, 1∣i, 1) (yellow), K̃(i − 1, 2∣i, 2)
(green), K̃(i + 1, 1∣i, 2) (blue), and K̃(i − 1, 2∣i, 1) (red) as functions of time along
the trajectory.

formalism of quasi-stationary distributions with the same equations
as above.31 One may interpret the trap state as representing the equi-
librium ensemble of trajectories. Then, f (i) describes the leakage of
trajectories from the addev sub-ensemble to the equilibrium ensem-
ble, and the conditioning can be interpreted as the requirement for
the trajectory to stay forever in the addev sub-ensemble. Note that
for λ = 0, some of f (i) values are negative and serve as the source of
trajectories rather than sink. Such f (i) values are more appropriately
interpreted as cloning rates.

The fact that conditioning that provides an addev sub-ensemble
is not unique suggests that the addev equation is more funda-
mental. The derivation of the equation shows that there is not
much flexibility. If one stays within the framework of the general-
ized Doob’s h-transform39,40 and assumes that forward and time-
reversed dynamics are described by the same addev, the equation
uniquely follows.

J. Chem. Phys. 157, 014108 (2022); doi: 10.1063/5.0088061 157, 014108-10

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0088061
https://www.scitation.org/doi/suppl/10.1063/5.0088061


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

V. CONCLUDING DISCUSSION

In this manuscript, the framework of optimal reaction coordi-
nates has been extended to include additive eigenvectors (addev).
In particular, the addev validation criteria have been developed,
and it was described how to determine the parameters of the
diffusive model, which can be used to compute exactly some prop-
erties of the dynamics. The framework assumes that addevs for
forward and time-reversed dynamics are equal. For systems not far
from equilibrium, which include such practically important cases
as enzymatic reactions, molecular motors, and chemical networks,
the addevs for forward and time-reversed are not very different. In
such cases, one can introduce an intermediate optimal RC, Weq, so
that the diffusive model provides a rather good approximation of the
dynamics.

For systems far from equilibrium, in particular stochastic
dynamics in phase space, which is a main motivation for the devel-
opment, we suggested considering all sub-ensembles of trajectories
conditioned on the forward and time-reversed addevs being the
same. We have derived the addev master equation that describes
such sub-ensembles for a Markov chain. A stationary solution of the
equation is an addev. It describes a stochastic eigenmode, a station-
ary stochastic periodic process, which phase (on average) linearly
grows with time. The biasing factor of the addev determines the
biased rate matrix and specifies the sub-ensemble of trajectories. A
non-stationary solution describes the evolution of the probability
distribution (together with the auxiliary phase function). In contrast
to the standard master equation for Markov chains, this evolution is
time-reversible. One can integrate equations forward and backward
in time.

The developed framework has been illustrated on two model
dynamics—unidirectional random walk and diffusion. The first
system demonstrates the following properties of the addev equation:
(i) time-reversible description of stochastic dynamics; (ii) evolution
of the probability distribution toward a more focused distribution,
which can be interpreted as a constructive wave interference; and
(iii) that the probability distribution has oscillatory dynamics and
does not relax to an equilibrium distribution. A brief analysis of
diffusion shows that the addev equation has a spectrum of sta-
tionary solutions. In particular, the plane-wave solutions were used
to illustrate how an addev sub-ensemble can be obtained by con-
ditioning and how such sub-ensembles approximate equilibrium
dynamics.

In order to avoid overburdening of this manuscript, we
have deferred the detailed analysis of diffusion to the follow-up
manuscript, where we show, in particular, how to find exact numer-
ical solutions of the derived equations in more complex cases of
bound states. We also show that in some regimes, the solutions of
the addev equation can be closely approximated by one-dimensional
relativistic Dirac and Schrödinger equations, which support the
notion that addevs describe stochastic periodic processes or stochas-
tic eigenmodes. These developments are an essential step toward
practical applications of the framework to the analysis of MD
simulations.

The addev master equation provides a new time-reversible
description of the evolution of probability distributions. While more
complex, such a description can provide a better approximation to
the stochastic dynamics in the phase space. First, at small timescales,

the dynamics is close to the time-reversible classical Newton dynam-
ics. Second, coherent state solutions of the Schrödinger equation
approximate classical trajectories.48,49 This suggests that an addev
coherent state solution for diffusion in configuration space can
describe/approximate classical Newtonian dynamics in phase space.
Such a time-reversible description also solves the following fun-
damental problem: given current probability distribution P(i, t1),
find P(i, t0) for any t0 < t1. One can formally introduce the time-
reversed Markov process with transition probability P′(i, t∣j, t + τ)
= Pτ( j∣i)P(i, t)/P′(i, t∣j, t + τ) so that the time-reversed evolution
satisfies P(i, t) = ∑j P′(i, t∣j, t + τ)P( j, t + τ). However, first, P′ is
non-stationary and second, P′ is different for different P(i, t0) val-
ues. So, it is not clear how find P(i, t0) from just knowing P(i, t1) or
the state of the process at t1. The addev master equation shows that
just knowing P(i, t1) and S(i, t1), one can find P(i, t0) and S(i, t0)
for any t0 < t1. If one is uncomfortable with including the auxiliary
function S, one can modify the statement as follows: knowing P(i, t1)
and P(i, t2), one can compute P(i, t0) for any t0; P(i, t2) is used to
determine S(i, t1).

SUPPLEMENTARY MATERIAL

See the supplementary material for Appendixes A–C as Jupyter
Notebooks in a single zip archive file.
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