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ABSTRACT

In this paper, a hierarchical attention network is proposed to

generate utterance-level embeddings (H-vectors) for speaker

identification and verification. Since different parts of an ut-

terance may have different contributions to speaker identities,

the use of hierarchical structure aims to learn speaker related

information locally and globally. In the proposed approach,

frame-level encoder and attention are applied on segments

of an input utterance and generate individual segment vec-

tors. Then, segment level attention is applied on the segment

vectors to construct an utterance representation. To evaluate

the effectiveness of the proposed approach, the data of the

NIST SRE2008 Part1 is used for training, and two datasets,

the Switchboard Cellular (Part1) and the CallHome American

English Speech, are used to evaluate the quality of extracted

utterance embeddings on speaker identification and verifica-

tion tasks. In comparison with two baselines, X-vectors and

X-vectors+Attention, the obtained results show that the use of

H-vectors can achieve a significantly better performance. Fur-

thermore, the learned utterance-level embeddings are more

discriminative than the two baselines when mapped into a 2D

space using t-SNE.

Index Terms— Speaker Embeddings, Speaker Identifica-

tion, Hierarchical Attention, X-vectors, Attention Mechanism

1. INTRODUCTION

The generation of compact representation used to distinguish

speakers has been an attractive topic and widely used in some

studies, such as speaker identification [17], verification [19,

14, 11], detection [13], segmentation [7, 23], and speaker de-

pendent speech enhancement [2, 6].

To extract a general speaker representation, Najim et al.

[5] defined a “total variability space” containing the speaker

and channel variabilities simultaneously, and then extracted

the speaker factors by decomposing feature space into sub-

space corresponding to sound factors including speaker and

channel effects. With the rapid development of deep learning

technologies, some architectures using deep neural networks

*The first and second author contribute equally to this paper

(DNN) have been developed for general speaker representa-

tion [22, 20]. In [22], Variani et al. introduced the d-vector ap-

proach using the LSTM and averaging over the activations of

the last hidden layer for all frame-level features. David et al.

[20] used a five-layer DNN with taking into account a small

temporal context and statistics pooling. To further improve

the embedding quality, attention mechanisms have been used

in some recent studies [24, 26]. Wang, et al. [24] designed

an attentive X-vector where a self-attention layer was added

before a statistic pooling layer to weight each frame vector.

However, how to highlight the importance of different

parts of an input utterance is underdeveloped . For this is-

sue, a hierarchical attention mechanism is employed in this

paper. This is inspired by Yang’s work [25] in document clas-

sification, where it claimed that not all parts of a document

are equally relevant for answering a query and attention mod-

els were thus applied to both word and sentence level feature

vectors via a hierarchical network. In the proposed approach,

an utterance can be viewed as a document, and its divided

segments and acoustic frames are treated as sentences and

words, respectively. An attention mechanism is then used at

both frame level and segment level. The utterance embed-

ding can be constructed by first building representations of

segments from frames and then aggregating those into an ut-

terance representation. The use of this hierarchical attention

network (HAN) can offer a way to obtain a discriminative

utterance-level embedding by explicitly weight target relevant

features.

The rest of the paper is organized as follow: Section 2

presents the architecture of our approach. Section 3 depicts

the used data, experimental setup, and the baselines to be

compared. The obtained results are shown in Section 4, and a

conclusion is finally drawn in Section 5.

2. MODEL ARCHITECTURE

Figure 1 shows the architecture of a hierarchical attention net-

work. The network consists of several parts: a frame-level

encoder and attention layer, a segment-level encoder and at-

tention layer, and two fully connect layers. Given input acous-

tic frame vectors, the proposed model generates an utterance-



Fig. 1. Architecture of Hierarchical Attention Network.

level embedding, by which a classifier is trained to perform

speaker identification or verification. The details of each part

will be introduced in the following subsections.

2.1. Frame-Level Encoder and Attention

Assume that an utterance is divided into N segments: S ∈
RMN×L = {S1, S2, · · · , SN} with a fixed-length window.

Each segment Si ∈ R
M×L = {xi1, xi,2, · · · , xi,M} con-

tains M L-dimensional acoustic frame vectors xi,t ∈ R
1×L,

where i denotes the ith segment, t denotes the tth frame,

i ∈ {1, · · ·N}, t ∈ {1, . . . ,M}.
In the frame-level encoder, a one-dimensional CNN is

used on each segment, and followed by a bidirectional GRU

[3] in order to get information from both directions of acous-

tic frames and contextual information.
S

′

i = CNN(Si)
−→

h i =
−−−→

GRU(S
′

i)
←−

h i =
←−−−

GRU(S
′

i)

The output of a frame-level encoder hi = [
−→
h i,
←−
h i] ∈

RM×E = {hi,1,hi,2, · · · ,hi,M} contains the information

of the segment Si.

In the frame-level attention layer, a two-layer MLP is first

used to convert hi into score vector zi, by which a normalised

importance weight vector αi can be computed via a softmax

function [25].

αi,t =
exp(zi,t)∑M

t=0
exp(zi,t)

(1)

zi,t = Relu(hi,tW i,0 + bi,0)W i,1 , (2)

where zi,t and αi,t are a scalar score and normalized score for

each time step t respectively. W i,0 ∈ R
E×E , bi,0 ∈ R

1×E

and W i,1 ∈ R
E×1 are the parameters of a two-layer MLP.

These parameters are shared when processing N segments.

A weighted output of frame-level encoder is computed by

Ai,t = αi,thi,t (3)

Following [20], a statistics pooling is applied on Ai to com-

pute its mean vector (µi) and std (σi) vector over t. A seg-

ment vector V Si
is then obtained by concatenating the two

vectors:

V Si
= concatenate(µi,σi) (4)

2.2. Segment Level Encoder and Attention

For the segment-level encoder and attention, the same steps

used in frame-level encoder and attention are followed except

for a bi-directional GRU layer, as the omission of the GRU

layer can well accelerate training when processing a large

number of samples.

The output of the frame level encoder and attention is

V S ∈ R
N×E = {V S1

,V S2
, · · · ,V SN

}. The weight vector

αs ∈ RN×1 = {αs
1
, αs

2
, · · · , αs

N} of segment level attention

can be computed as follows [15]:

αs
i =

exp(zsi )∑N

i=0
exp(zsi )

zsi = Relu(V Si
W n,0 + bn,0)W n,1 ,

(5)

where zsi and αs
i are a scalar score and normalized score

for each segment vector V Si
respectively. W n,0 ∈ R

E×E ,

bn,0 ∈ R
1×E and W n,1 ∈ R

E×1 are the parameters of

a two-layer MLP. A vector is generated using a statistics

pooling over all weighted segments:

µU = mean(
∑

i

αs
iSi)

σU = std(
∑

i

αs
iSi)

V U = concatenate(µU ,σU )

(6)

The final speaker identity classifier is constructed using a

two-layer MLP with V U being its input. As shown in figure

1, the output of the first fully connected layer can be used as

the final utterance embedding, represented by EmbU .

3. EXPERIMENT

3.1. Data

Three datasets, NIST SRE 2008 part1 (SRE08), CallHome

American English Speech (CHE), and Switchboard Cellu-

lar Part 1 (SWBC), are used in this paper to train the pro-

posed model and evaluate utterance embedding performance.

SRE08 indicates the 2008 NIST speaker recognition eval-

uation test set [8], which contains multilingual telephone

speech and English interview speech. In this work, Part1



Dataset Type #Speaker Size (hour) #Utterance (1s) #Utterance (3s)

SRE08 Telephone+Interview 1336 640 3,528,326 1,176,453

CHE Telephone 120 60 252,224 84,460

SWBC Telephone 254 130 1,008,901 336,417

Table 1. Details of three telephone speech datasets: Part1 of Sre2008 (SRE08), CallHome(CHE), and Switchboard(SWBC).

of SRE2008, containing about 640-hour speech and 1336

distinct speakers, is selected in our experiments.

SWBC [4] contains 130 hours telephone speech, totally

254 speakers (129 male and 125 female) under various envi-

ronment conditions (indoors, outdoors and moving vehicles).

The stereo speech signals are split into two monos, and both

of them are used in experiments. CHE [1] contains 120 tele-

phone conversations speech between native English speakers

(totally 120 speakers). Among all of the calls, 90 of them

are placed to various locations outside North America. In this

dataset, speech from the left channel is used, as the labels of

speakers in the right channels is unavailable. In our experi-

ments, SRE08 is used to train the proposed model, by which

Utterance-level embeddings can be then generated using CHE

and SWBC.

3.2. Experiment Setup

In this work, after removing unvoiced signals using energy

based VAD [16], fixed length sliding windows (one second or

thre seconds) with half-size shift is employed to divide speech

streams into short segments. Each segment is viewed as an ut-

terance independently. The total number of utterances of the

three datasets are listed in Table 1. Each utterance is then split

into 10 equal-length fragments without overlap. Each frag-

ment is further segmented into frames using a 25ms sliding

window with a 10ms shift. All frames are converted into 20-

dimensional MFCC feature vectors. Similar to [25], to build

a hierarchical structure, each utterance, fragment and frame

vector obtained here are viewed as a document, sentence and

word, respectively.

To evaluate the utterance-level embeddings, speaker iden-

tification and verification are conducted using the utterance-

level embeddings generated on CHE and SWBC. Instead of

directly processing on the embeddings, PLDA back-end [18]

is applied on the embeddings to reduce the dimension to 300.

Both the SWBC and the CHE datasets are randomly split

into training and test data with 9:1 ratio for speaker identifi-

cation. For a speaker verification task, in SWBC, there are 50

speakers in the enrolment set and 120 speakers in the evalu-

ation set, with 10 utterances for each speaker. In the CHE,

there are 30 speakers in the enrolment set and 60 speakers in

the evaluation set. Each speaker has 10 utterances.

In order to compare the proposed approach with other

speaker embedding systems, two baselines are built using

the methods developed in previous studies. The first base-

line (”X-Vectors”) is based on a TDNN architecture [20]. It

is now widely used for speaker recognition and is effective

in speaker embedding extraction. The second baseline (”X-

Vectors+Attention”) is made by combining a global attention

mechanism with X-vectors. [24, 26]. For evaluation, in our

speaker identification task, prediction accuracy is reported

in this work. In the speaker verification task, the equal er-

ror rate (EER) is reported. Moreover, to show the quality

of the learned utterance-level embeddings, t-SNE [12] is

used to visualize their distributions after being projected in a

2-dimensional space.

Level Model Input Output

Frame-Level

CNN (30,20,1) (30,1,512)

Bi-GRU (30,512) (30,1024)

Attention (30,1024) (30,1024)

Statistics Pooling (30,1024) (1,2048)

Segment-Level

CNN (10,2048,1) (10,1,1500)

Attention (10,1500) (10,1500)

Statistics Pooling (10,1500) (1,3000)

Utterance-Level
DNN (512) (1,3000) (1,512)

DNN (512) (1,512) (1,512)

Table 2. Architecture of the proposed approach

Table 2 shows the configuration of the proposed architec-

ture. It also contains batch normalization [9] and dropout [21]

layers, where the dropout rate is set to 0.2. Adam optimiser

[10] is used for all experiments with β1 = 0.95, β2 = 0.999,

and ǫ = 10−8. The initial learning rate is 10−4.

4. RESULTS

Table 3 shows the prediction accuracy on the test data of

SRE08 using the proposed approach and two baselines. Two

different utterance lengths, 1 second and 3 seconds, are used

in the experiments, respectively. The use of the H-vectors

shows higher accuracy when using either 1-second or 3-

second input length than the two baselines. When the length

of input utterances is one second, the accuracy obtained using

the H-vectors can reach 94.5%, with 4.4% improvement over

X-vectors and 2.4% improvement over X-vectors+Attention,

respectively. When the length of input utterances is three

seconds, the accuracy obtained using the H-vectors can reach

98.5%, with about 3% improvement over X-vectors and

about 2% improvement over X-vectors+Attention. The pro-

posed approach is more robust than the two baselines when

processed utterances are short. In addition, the accuracies ob-

tained using 3-second utterances are better than those using

1-second utterances. This probably means a longer utterance

may contain more information relevant to a target speaker

than short ones.

To evaluate the quality of embeddings extracted using the



(a) X-vector (b) X-vector+Attention (c) H-vector

Fig. 2. Embedding visualization using t-SNE. Each color represents a speaker, and each point indicates an utterance.

Utterance Length Model Accuracy %

1 Second

X-vector 90.1

X-vector+Attention 92.1

H-vector 94.5

3 Seconds

X-vector 95.2

X-vector+attention 96.7

H-vector 98.5

Table 3. Identification accuracy on the test data of SRE08

when the utterance length is 1s or 3s.

Utterance Length Model Accuracy % EER %

1 Second

X-vector 84.8 1.94

X-vector+Attention 87.5 1.61

H-vector 89.1 1.44

3 Seconds

X-vector 89.4 1.46

X-vector+attention 91.0 1.21

H-vector 92.8 1.08

Table 4. Identification accuracy and Equal Error Rate (EER)

on CHE dataset when the utterance length is 1s or 3s.

proposed approach, two additional datasets are employed in

our experiments. Table 4 and Table 5 show the identification

accuracy and verification EER when using the embeddings

extracted on the SWBC and the CHE dataset, respectively. On

the two datasets, the H-vectors consistently outperforms the

two baselines whether the length of utterances is one second

or three seconds.

Since the model is trained on the SRE08 corpus, the iden-

tification performances on its test data are clearly better than

those on the other two datasets. As the SWBC dataset con-

tains a wide range of environment conditions (indoors, out-

doors and moving vehicles), both its identification and verifi-

cation performances are relatively worse than those obtained

on the CHE dataset.

To further test the quality of extracted utterance-level

embeddings, t-SNE [12] is used to visualise the distribution

of embeddings by projecting these high-dimensional vectors

into a 2D space. In the SWBC dataset, 10 speakers are se-

lected and 500 three-second segment are randomly sampled

for each speaker. Figure 2 (a), (b), and (c) show the distribu-

tion of selected samples of 10 speakers after using X-vectors,

X-vectors+Attention, and H-vectors, respectively. Each color

represents a single distinct speaker and each point represents

an utterance. The black mark represents the center point of

Utterance Length Model Accuracy % EER %

1 Second

X-vector 78.2 2.23

X-vector+Attention 81.0 2.05

H-vector 83.7 1.92

3 Seconds

X-vector 81.3 2.01

X-vector+attention 84.0 1.82

H-vector 86.2 1.69

Table 5. Identification accuracy and Equal Error Rate (EER)

on SWBC dataset when the utterance length is 1s or 3s.

each speaker class. Figure 2(a) shows the distribution of the

embeddings obtained by X-vectors. It is clear that, in this

figure, some samples from different speakers are not well dis-

criminated as there are overlaps between speaker classes. Due

to the use of an attention mechanism in X-vectors+Attention,

figure 2(b) shows a better sample distribution than figure 2(a).

However, some samples of a speaker labelled by a blue colour

are not well clustered. In figure 2(c), the embedding obtained

by H-vectors performs a better separation property than the

other two baselines.

5. CONCLUSION AND FUTURE WORK

In this paper, a hierarchical attention network was proposed

utterance-level embedding extraction. Inspired by the hier-

archical structure of a document made by words and sen-

tences, each utterance is viewed as a document, segments

and frame vectors are treated as sentences and words, respec-

tively. The use of attention mechanisms at frame and seg-

ment levels provides a way to search for the information rel-

evant to target locally and globally, and thus obtained bet-

ter utterance level embeddings, including better performance

on speaker identification and verification tasks using the ex-

tracted embeddings. Moreover, the obtained utterance-level

embeddings are more discriminative than the use of X-vectors

and X-vectors+Attention.

In the future work, different kinds of acoustic features

such as filter-bank and Mel-spectrogram will be investigated

and tested on some large datasets, such as Voxceleb1 and 2.
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