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Abstract
We provide a complete classification of the singularities of cluster algebras of finite type with trivial coefficients.
Alongside, we develop a constructive desingularization of these singularities via blowups in regular centers over
fields of arbitrary characteristic. Furthermore, from the same perspective, we study a family of cluster algebras
which are not of finite type and which arise from a star shaped quiver.

1. Introduction

Cluster algebras were originally introduced by Fomin and Zelevinsky to study total positivity phenomena
and Lusztig’s canonical bases in Lie theory, see for example [13, 31, 33]. They quickly developed to a
vibrant research area going far beyond its initial motivations, and with connections to many other areas,
such as algebraic geometry [3, 4, 25, 41, 40, 43], commutative algebra [22, 37, 38], combinatorics [42,
14], representation theory of finite dimensional algebras and quivers [35, 6, 21, 10], higher Teichmüller
spaces [12, 23], or mirror symmetry [26, 24, 30]. For further connections and applications, see, for
example, the surveys [29, 46].

A cluster algebra is a subring of the field of rational functions in n variables over a base field K .1
It is a commutative ring that is constructed differently than most rings that usually are considered in
commutative algebra: instead of generators and relations, one starts with a set of distinguished generators
(the cluster variables) and then iteratively constructs (via the process of mutation) all other generators
of the ring. In this article, we will mostly consider cluster algebras A(Q) that are constructed from a
quiver Q. We will also assume that Q is totally mutable, that is, we assume trivial coefficients. For the
precise definitions and an outline of the more general construction via skew-symmetrizable matrices we
refer to Section 2.

Our main theme here is to investigate cluster algebras from the perspective of singularity theory,
in particular, resolution of singularities. Our studies were motivated by an interesting coincidence in
classifications: on the one hand, cluster algebras A(Q) of finite type are classified by ADE-Dynkin
diagrams [19], whereas on the other hand the dual resolution graphs of the Kleinian surface singularities
are classified by the same diagrams, see [2, 7, 32], as well as simple hypersurface singularities in the
sense of Arnold [1]. For an overview, see for example, [45]. Thus, we were guided by the following:

1 In fact, one could also work over more general bases, for example, Z instead of K , see [18, Section 5] but we restrict our attention
to fields.
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Question 1.1. Let A be a cluster algebra. Which types of singularities can Spec(A) have? Can one
classify these singularities for certain types of cluster algebras?

Question 1.2. How can one describe resolutions of singularities of cluster algebras and do these
resolutions take into account the combinatorial structure of the cluster algebras?

So far, there are only few results in this direction. In [4], Benito, Muller, Rajchgot, and Smith proved
that locally acyclic cluster algebras are strongly F -regular (when defined over a field of prime character-
istic) and that they have at worst canonical singularities (over a field of characteristic 0). Further, Muller
et al. [39] showed that the lower bound cluster algebra (which is an approximation of a given cluster
algebra obtained by a suitable truncation of the construction process) is Cohen–Macaulay and normal.

In this paper we study cluster algebras of finite type, which can be classified in terms of Dynkin
diagrams (as mentioned above, finite-type cluster algebras from quivers are of type ADE, and more
generally, all cluster algebras of finite type are classified by the crystallographic Coxeter groups [19]).
We provide a complete classification of their singularities and describe their embedded desingularization
in the case of trivial coefficients. Due to the combinatorial nature of cluster algebras, the characteristic
of the base field K does not play an essential role.

Notation. For a Dynkin diagram Xn ∈ {An1 , Bn2 , Cn3 , Dn4 , E6, E7, E8, F4, G2 | ni ≥ i}, we denote by A(Xn)
the corresponding cluster algebra with trivial coefficients. Note that the corresponding variety
Spec(A(Xn)) is a different object to what is called a cluster variety. The latter will not play a role in
the present work.

Let us briefly introduce notions in the context of simple singularities, which we need to state our
classification theorem. For the entire list of simple singularities in arbitrary characteristics, we refer to
[27, Definition 1.2]. Let K be a field of arbitrary characteristic. A formal power series f ∈K[[x, y, z]]
is of type Am, for some m ∈Z≥1, if K[[x, y, z]]/〈f 〉 is isomorphic to K[[x, y, z]]/〈zm+1 + xy〉. Note that
if K is algebraically closed and char (K) �= 2, then we may perform a change in the variables such that
zm+1 + xy= zm+1 + x̃2 + ỹ2.

Let n ∈Zwith n≥ 3. A formal power series f ∈K[[z, x1, . . . , xn]] is of type A1 if K[[z, x1, . . . , xn]]/〈f 〉
is isomorphic to K[[z, x1, . . . , xn]]/〈g〉, where

g=
{

z2 + x1x2 + · · · + xn−1xn if n≡ 0 mod 2,

zx1 + x2x3 + · · · + xn−1xn if n≡ 1 mod 2.

Let N > n≥ 2. We say that an n -dimensional variety X ⊂AN
K with an isolated singularity at a closed

point x is locally isomorphic to an isolated hypersurface singularity of type A1 (resp. of type A2 if n= 2
and N = 3), if the completion of the local ring of X at x is isomorphic to K[[z0, x1, . . . , xn]]/〈f 〉, where
f is a power series of type A1 (resp. of type A2). If dim (Sing(X))≥ 1, we say that X is locally at some
U ⊆ Sing(X) isomorphic to a cylinder over an isolated hypersurface singularity of type A1 in Am+1

K , for
some m < n, if locally at U, X is isomorphic to a hypersurface in An+1

K defined by f (z, x1, . . . , xm)=
0, where f ∈K[z, x1, . . . , xm] is of type A1. Furthermore, in the local situation, we say that a regular
hypersurface V (h) is transversal to the cylinder, if (z, x1, . . . , xm) do not appear in h after a suitable
change in (xm+1, . . . , xn).

In fact, for the cases which we consider, we do not need to pass to the completion since we may
construct a suitable change of variables already after localizing.

Using the introduced notions, we can state our main result on the classification of singularities of
cluster algebras of finite type with trivial coefficients.

Theorem A. Let K be a field of characteristic p≥ 0.

(1) Spec(A(An)), n≥ 2, is singular if and only if p �= 2 and n≡ 3 mod 4, or if p= 2 and n≡ 1
mod 2. In the singular case, Spec(A(An)) is locally isomorphic to an isolated hypersurface
singularity of type A1.
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(2) Spec(A(Bn)), n≥ 2, is singular if and only if p �= 2 and n≡ 3 mod 4, or if p= 2. In the singular
case, Spec(A(Bn)) is locally isomorphic to an isolated hypersurface singularity of type A1.

(3) Spec(A(Cn)), n≥ 3, is singular if and only if p= 2. In the singular case, we have

Sing(Spec(A(Cn)))∼= Spec(A(An−2)).

(a) If n≡ 0 mod 2, then Sing(Spec(A(Cn))) is regular and Spec(A(Cn)) is locally isomorphic
to a cylinder over an isolated hypersurface singularity of type A1 in A3

K .
(b) If n≡ 1 mod 2 and n > 3, then Sing(Spec(A(Cn))) has an isolated singularity of type A1

at the origin and, locally at the origin, Spec(A(Cn)) is isomorphic to a hypersurface of the
form (where n= 2m+ 1):

Spec(k[x1, . . . , x2m, y, z]/〈 yz+ ( m∑
i=1

x2i−1x2i

)2 〉 ,

while at a singular point different from the origin, Spec(A(Cn)) is locally isomorphic to a
cylinder over an isolated hypersurface singularity of type A1 in A3

K .
(c) If n= 3, then Sing(A(Cn)) is isomorphic to two lines intersecting transversally at the origin.

All other statements of (2) remain true for m= 1.
(4) (a) Spec(A(D4)) is isomorphic to a subvariety of A6

K and Sing(Spec(A(D4))) consists of the six
coordinate axes. At the origin, Spec(A(D4)) is locally isomorphic to the intersection of two
hypersurface singularities of type A1, while at a singular point different from the origin,
Spec(A(D4)) is locally isomorphic to a cylinder over an isolated hypersurface singularity
of type A1 in A4

K intersected with a regular hypersurface which is transversal to the cylinder.
(b) If p �= 2 and n �≡ 0 mod 4 or if p= 2 and n≡ 1 mod 2, then the singular locus of

Spec(A(Dn)) has a single irreducible component Y0, which is regular and of dimension
n− 3. Moreover, Spec(A(Dn)) is locally at the singular locus isomorphic to a cylinder over
a hypersurface singularity of type A1 in A4

K .
(c) Let n > 4. If p �= 2 and n≡ 0 mod 4 or if p= 2 and n≡ 0 mod 2, then

Sing(Spec(A(Dn)))= Y0 ∪⋃4
i=1 Yi, where Yi are isomorphic to coordinate axes, for

i≥ 1, and Y0 is irreducible, singular at the origin, and of dimension n− 3. At the origin,
Spec(A(Dn)) is locally isomorphic to the intersection of two hypersurface singularity of
type A1, while Y0 is locally isomorphic to a hypersurface singularity of type A1. Away from
the origin, the situation is analogous to the two Dn-cases before.

(5) Spec(A(E7)) is singular if and only if p= 2. In the singular case, Sing(Spec(A(E7))) is a regular
surface and locally at the singular locus, Spec(A(E7)) is isomorphic to a cylinder over an
isolated hypersurface singularity of type A1 inA6

K intersected with a regular hypersurface which
is transversal to the cylinder.

(6) Spec(A(G2)) is singular if and only if p= 3. In the singular case, Spec(A(G2)) is locally
isomorphic to an isolated hypersurface singularity of type A2 in A3

K .
(7) The varieties corresponding to the cluster algebras A(E6), A(E8), and A(F4) are regular.

Cluster algebras of finite type arise in applications very often with nontrivial coefficients. The presence
of frozen variables (i.e., directions in which one cannot mutate) can affect the existence and type of
singularities. Therefore, an interesting question would be to extend the above classification in the case
of nontrivial coefficients. This is the subject of further future studies.

Part (1) of Theorem A has previously been proven for p �= 2 in [39, Proposition A.1]. Note that the
statement in loc. cit. is characteristic-free, but the special case char (K)= 2 has been overseen.

We note that from our classification follows that there is no obvious direct link between the singu-
larities of cluster algebras of finite types and the rational double-point singularities. For example, for
cluster algebras of type ADE, only hypersurface singularities of type A1 (cluster algebras of type A) or
more complicated configurations (cluster algebras of type D) appear.

https://doi.org/10.1017/S0017089522000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000209


4 Angelica Benito et al.

As a consequence of Theorem A, we can construct an embedded resolution of singularities for cluster
algebras of finite type.

Corollary B. Let K be any field and let X := Spec(A), where A is any cluster algebra of finite type.
There exists a finite sequence π of blowups in regular centers such that the strict transform of X along
π is regular and it has simple normal crossings with the exceptional divisors.

In order to prove Theorem A, we choose first a suitable presentation of the cluster algebra A(Xn),
which arises from an acyclic seed. The latter has the benefit that the cluster algebra can be described as
a quotient of a polynomial ring in 2n variables over K by an ideal generated by n relations determined
by the initial seed, the exchange relations.

We determine the singular locus by applying Zariski’s criterion for regularity [47, Theorem 11,
p. 39]. The latter is a variant of the Jacobian criterion for smoothness [9, Section 2.2], where derivatives
with respect to a fixed p-basis of the base field K have to be taken into account in the Jacobian matrix.
Since the coefficients appearing in the exchange relations are contained in Z, we do not have to consider
a p-basis of K . In particular, K can be any field and is not necessarily perfect.

In general, it is not very pleasant to handle the maximal minors of a matrix of size n× 2n. Via subtle
eliminations of variables, we deduce from the mentioned presentation a new one, which is better suited
for our task. In particular, the number of generators in the resulting set diminishes to at most three and
often only one. From this, we can then detect and classify the singularities of the corresponding variety
and thus of Spec(A(Xn)).

A key ingredients in our studies are continuant polynomials, as they naturally appear in the elim-
ination process. Therefore, as a preparation for Theorem A, we examine them from a perspective of
singularity theory in Section 3.

Furthermore, we also take a look beyond cluster algebras of finite type. More precisely, we investigate
the singularities of a class of cluster algebras which arise from a star shaped quiver Sn, where n≥ 2:

Observe that the case n≤ 4 has already been treated in Theorem A since the corresponding quivers
are coming from the Dynkin diagrams A2, A3, and D4, respectively.

Theorem C. Let K be any field and n≥ 4. Let A(Sn) be the cluster algebra over K arising form the
star-shaped quiver Sn. The singular locus Sing(Spec(A(Sn))) has (n− 1)(n− 2)2n−4 irreducible com-
ponents, where each of them is regular and of dimension n− 3. Locally at a generic point of such a
component, Spec(A(Sn)) is isomorphic to an A1-hypersurface singularity. On the other hand, locally at
the closed point determined by the intersection of all these components, Spec(A(Sn)) is isomorphic to
a toric variety, defined by the binomial ideal:

〈x1x2 − x2k−1x2k | k ∈ {2, . . . , n− 1}〉 ⊂K[x1, . . . , x2n−2]〈x1,...,x2n−2〉.
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The singularities of Spec(A(Sn)) are resolved by first separating the irreducible components of its
singular locus and then blowing up their strict transforms.

The appearing integer sequence ((n− 1)(n− 2)2n−4)n≥4 can be found in the The On-Line
Encyclopedia of Integer Sequences [44, Sequence A001788]. In Remark 6.5, we explain the connection
to one of the descriptions given in loc. cit.

Let us give a brief summary of the contents: In Section 2, we recall basic notions and results on
cluster algebras. In particular, we address the classification of finite type via Dynkin diagrams. After
that we study the singularities of continuant polynomials in Section 3, as they play an essential role
in our investigations. Then, we show Theorem A and Corollary B by studying case by case the cluster
algebras A(Xn) of different Dynkin types in Sections 4 (quiver case) and 5 (non-quiver case). We end
with the proof of Theorem C in Section 6.

2. Cluster Algebras basics

Since we do not require that the reader is familiar with the theory of cluster algebras, we first briefly
recall the basics on cluster algebras associated with quivers and the necessary notions to deal with all
cluster algebras of finite type. That is, we also outline the more general theory using skew-symmetrizable
matrices. However, for most of the paper, we will be dealing with cluster algebras associated with quiv-
ers, so we provide a more detailed exposition for this case. For more details on the general theory, we
refer the reader to the literature [18, 19, 15, 16, 17].

A quiver Q is a finite directed graph. So, Q= (Q0, Q1) is a pair of two finite sets, where Q0 =
{1, . . . , n} is the set of vertices and Q1 is the set of arrows between the vertices. An element of Q1

can be identified with a pair (i, j) with i, j ∈Q0, where the corresponding arrow goes from i to j ; we
also write i→ j. Note that multiple arrows are allowed between two vertices. Additionally, we always
assume

• Q does not contain any loops, i.e., (i, i) /∈Q1 for all i ∈Q0.
• There are no oriented 2 -cycles in Q, i.e., if (i, j) ∈Q1, then (j, i) /∈Q1.

For example, the pictures of the quivers Q= ({1, 2, 3}, {(1, 2)1, (1, 2)2, (3, 2)}) and Q′ :=
({1, 2, 3, 4}, {(1, 2), (3, 2), (4, 2)}) are

(In the set of arrows for Q, we wrote (1, 2)α, for α ∈ {1, 2}, in order to indicate that there are two
different arrows from 1→ 2 appearing in Q.)

Definition 2.1. Let Q= (Q0, Q1) be a quiver and k ∈Q0 be a vertex. The quiver mutation μk (in direction
k) transforms Q into a new quiver Q′ =μk(Q), which is obtained in the following way:

(1) for every directed path i→ k→ j in Q, we add a new arrow i→ j;
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(2) we reverse the arrows incident to the vertex k ;
(3) we remove oriented 2-cycles until there is none left.

Two quivers Q(1) and Q(2) are called mutation-equivalent, if there exists a sequence of mutations
transforming Q(1) into a quiver Q′, which is isomorphic to Q(2) (i.e., there exists a bijection f : Q′0→Q(2)

0

between the set of vertices such that (i, j) ∈Q′1 if and only if (f (i), f (j)) ∈Q(2)
1 ). If this is the case, we write

Q(1) ∼Q(2).
Let us illustrate the mutation procedure for an example. Here, we mutate at the vertex k= 1:

Remark 2.2. In general, one subdivides the set of vertices into two disjoint sets: the mutable vertices,
for which we are allowed to perform a mutation, and frozen vertices, which cannot be mutated, see [15,
Section 2.1]. In this paper, we only deal with quivers where all vertices are mutable, so we will not go
into details of frozen variables.

From now on, we fix a field K and a field F , which is isomorphic to the field of rational functions
over K in n variables.

Definition 2.3. A labeled seed of geometric type in F is a pair (x, Q), where

• x= (x1, . . . , xn) is a n-tuple of algebraically independent elements and such that F ∼=
K(x1, . . . , xn);

• Q is a quiver with n vertices, which neither contains loops nor 2-cycles.

The n-tuple x is called the cluster of the seed and x1, . . . , xn are the cluster variables. The number n
of vertices is called the rank of the seed.

Since all seeds appearing in this article are labeled seeds of geometric type, we simply speak of seeds
in F .

The mutation of a quiver extends in the following way to a seed.

Definition 2.4. Let (x, Q) be a seed in F and let k ∈Q0 = {1, . . . , n}. The seed mutation μk (in direction
k) transforms (x, Q) into a new seed μk(x, Q)= (x′, Q′), which is obtained in the following way:

• Q′ =μk(Q);
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• x′ = (x′1, . . . , x′n), where xj
′ = xj for j �= k and x′k ∈F is the element determined by the exchange

relation:

xkx′k =
∏
i→k

xi +
∏
i←k

xi. (2.1)

Two seeds (x(1), Q(1)) and (x(2), Q(2)) are called mutation-equivalent, if there exists a sequence of muta-
tions transforming one seed into the other (up to permutation of the cluster variables, which also induces
an isomorphism of quivers). If this is the case, we write (x(1), Q(1))∼ (x(2), Q(2)).

Note that μk is an involution, i.e., μk(μk(x, Q))= (x, Q). On the other hand, there exist examples
for which μk(μ�(x, Q)) �=μ�(μk(x, Q)), where � �= k. For example, one can verify that μ3(μ1(Q)) �=
μ1(μ3(Q)) in the example given above.

Definition 2.5. Let (x, Q) be a seed in F . We set

X := X (x, Q) :=
⋃

(x′ ,Q′)∼(x,Q)

x′.

The cluster algebra A := A(x, Q) (of geometric type, over K) determined by the seed (x, Q) is defined
as the sub-K-algebra of F generated by all cluster variables:

A(x, Q) := K[X ].

Remark 2.6 (cf. [15, Section 3.1]). The data of Q can be encoded in an n× n integer matrix B= B(Q)
with entries bi,j, which are equal to the number of arrows i→ j in Q and where an arrow j→ i is counted
with negative sign for bi,j, i.e.,

bij := #{ arrows (i, j) ∈Q1} − #{ arrows (j, i) ∈Q1} .

Then B is called the exchange matrix. Note that B(Q) is skew-symmetric and that B determines Q, so that
sometimes the notion (x, B) for the seed (x, Q) is used. Moreover, mutation μk(Q) can also be defined on
the matrix B, where the mutation B′ := μk(B) of B in direction k is given by:

b′ij :=
{
−bij if i= k or j= k,

bij + 1
2
(|bik|bkj + bik|bkj|) otherwise.

(2.2)

More generally, the notion of a seed (x, B) and its corresponding cluster algebra A(x, B) can be
extended to the following setting:

• B := (bi,j)i,j∈{1,...,n} a skew-symmetrizable integer matrix, i.e., there exists a diagonal matrix D
with integer entries such that D B is skew-symmetric,

• where the mutation rule μk(B) is given by (2.2), and
• the exchange relations (2.1) become

xkx′k =
n∏

j=1
bj,k>0

x
bj,k
j +

n∏
j=1

bj,k<0

x
−bj,k
j . (2.3)

Let us point out that the sign pattern of a skew-symmetrizable matrix is skew-symmetric. The sign
pattern of a such a matrix can be encoded in terms of a quiver. More precisely, to a skew-symmetrizable
matrix B, one associates the quiver �(B) in the following way: if bi,j > 0, then we have an arrow i→ j.
Note that if B is skew-symmetric, then B= B(Q) and �(B) is the quiver Q with multiple arrows collapsed
into 1.

Example 2.7. Let us discuss the first nontrivial example. Consider the seed (x, Q), where x= (x1, x2)
and Q is the quiver with two vertices and one arrow between them:
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The following table describes the behavior of (x, Q) along repeated mutation:

Notice that x(212)
1 = x(21)

2 and x(212)
2 = x(21)

1 . Therefore, we have

A := A(x, Q)=K

[
x1, x2,

1+ x1

x2

,
1+ x2

x1

,
1+ x1 + x2

x1x2

]
=K

[
x1,

1+ x1

x2

,
1+ x2

x1

]
∼=

∼=K[u, v, w]/〈uvw− u− v− 1〉,

where the second equality holds since

x2 = x2 + 1

x1

· x1 − 1 and
1+ x1 + x2

x1x2

= x2 + 1

x1

· x1 + 1

x2

− 1.

Observe that the singular locus of Spec(A) is empty.
In the example above, all cluster variables can be expressed as Laurent polynomials in the initial

cluster variables x1 and x2. Indeed, this is always true by [18, Theorem 3.1]. In our context, this can be
stated as follows:

Theorem 2.8 (Laurent phenomenon). Let (x, Q) be a seed in F . Every cluster variable can be expressed
as a Laurent polynomial with integer coefficients in x.

It can be quite tedious to determine all seeds mutation-equivalent to a given initial seed (x, Q). A
useful tool for determining mutation-equivalent quivers and related invariants is the Java applet [28].

Sometimes, these calculations can be avoided by considering the lower cluster algebra, which can be
easily determined and which coincides with the cluster algebra in many interesting cases, see Theorem
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2.12 below. Note that the following results (Definition 2.9, Lemma 2.10, Theorem 2.12) also hold in the
skew-symmetrizable case, i.e., for A(x, B) where B is skew-symmetrizable.

Definition 2.9. Let (x, Q) be a seed in F . The lower bound cluster algebra L(x, Q) of (x, Q) is
defined as:

L(x, Q) := K[x1, . . . , xn, x′1, . . . , x′n],

where x′1, . . . , x′n are the elements that we obtain by the exchange relation (2.1) after mutating Q once
in direction 1, . . . , n, respectively.

We immediately see that the inclusion:

L(x, Q)⊆A(x, Q)

holds and whenever we have equality, then it is easy to provide a set of generators for A(x, Q).
Let J be the ideal of relations among the generators ofL(x, Q). Clearly, the exchange relations provide

the elements xkx′k −∏
i→k xi −∏

i←k xi ∈ J, for k ∈ {1, . . . , n}. In general, it may happen that these are not
all relations between the generators, see [39, Subsection 1.2]. Nonetheless, the following useful result
holds for acyclic quivers. Recall that a quiver is called acyclic, if it does not contain an oriented cycle.
In the case (x, B), we say that A(x, B) is acyclic if �(B) is an acyclic quiver.

Lemma 2.10 (cf. [5, Corollary 1.17]). If Q is acyclic, then the exchange relations (2.1) generate the ideal
J of relations among the generators of L(x, Q). Moreover, the polynomials xkx′k −∏

i→k xi −∏
i←k xi ∈ J,

for k ∈ {1, . . . , n}, form a Gröbner basis for J with respect to any term order for which x′1, . . . , x′n are
much larger than x1, . . . , xn.

In particular, the dimension of the corresponding variety Spec(L(x, Q)) is n if Q is acyclic.

Remark 2.11. In the skew-symmetrizable case, when �(B) is acyclic, the exchange relations (2.3)
generate the ideal of relations among the generators of L(x, B).

A seed (x, Q) is called totally mutable if it admits unlimited mutations in all directions. Since we
assume in this article that all vertices of a given quiver are mutable, the seeds (x, Q), which we consider,
are always totally mutable.

Theorem 2.12 (cf. [5, Theorem 1.20]). The cluster algebra A(x, Q) associated with a totally mutable
seed (x, Q) is equal to the lower bound L(x, Q) if and only if Q is acyclic.

Example 2.13. Let (x, Q) be the seed corresponding to

By the previous result, the cluster algebra A(x, Q) is given by:

A(x, Q)=K[x1, x2, x3, y1, y2, y3]/I,

I := 〈x1y1 − x2 − 1, x2y2 − x3 − x1, x3y3 − 1− x2〉.
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Recall that a vertex i of a quiver Q is called a sink (resp. source) if i is the target (resp. source) of every
arrow in Q incident to i. In Example 2.13, the vertex 1 is a source, while 3 is a sink. As a consequence
of [19, Proposition 9.2], one has the following lemma.

Lemma 2.14. All orientations on a tree are mutation-equivalent via sequences of mutations at sinks
and sources.

Example 2.15. Let us continue Example 2.13. The exchange relations imply

x2 = x1y1 − 1= det

(
x1 −1
−1 y1

)
;

x3 = x2y2 − x1 = x1y1y2 − y2 − x1 = det

⎛⎝ x1 −1 0
−1 y1 −1
0 −1 y2

⎞⎠ .

Therefore, Spec(A(x, Q)) is isomorphic to a hypersurface:

A := A(x, Q)∼=K[x1, y1, y2, y3]/〈x1y1y2y3 − y2y3 − x1y3 − x1y1〉.

Using the Jacobian criterion, one determines that the singular locus of Spec(A) is the origin
V(x1, y1, y2, y3). Locally at the origin, 1+ y2y3 is invertible. In particular, we may introduce the local
variable z1 := y1(1+ y2y3)+ y3 and we obtain

x1y1y2y3 − y2y3 − x1y3 − x1y1 =−(y2y3 + x1z1) .

Therefore, Spec(A) has an singularity of type A1 at the origin. In particular, the blowup of the origin
resolves the singularities.

The determinants arising above are examples of continuants. They will play a central role in our
considerations, which is why we study some of their properties in the next section.

2.1. Finite-type classification

The central object of the present paper are cluster algebras of finite type. We end the section by recalling
this notion as well as a classification theorem connecting cluster algebras of finite type with Dynkin
diagrams. Precise references for more details are [19],[16], or [34, 5.1], for example.

Definition 2.16. Recall that we fixed a field F , which is isomorphic to the field of rational functions in
n variables over a field K.

(1) Let (x, B) be a seed in F . The cluster algebra A(x, B) is said to be of finite type if there are only
finitely many distinct seeds mutation-equivalent to (x, B).

(2) For any n× n square integer matrix B, its Cartan counterpart A(B)= (ai,j) is defined to be the
integer matrix ai,i := 2 and ai,j := −|bi,j| if i �= j.

Recall that a Cartan matrix A= (ai,j) is called of finite type if all its principal minors are positive. For
the 2× 2 principal minors, this implies the condition ai,jaj,i ≤ 3 for i �= j.

Definition 2.17 ([16, Definition 5.2.4]). Let A= (ai,j) be an n× n Cartan matrix of finite type. The
Dynkin diagram of A is a graph with vertices {1, . . . , n}, for which the edges are determined as follows:
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Let i, j ∈ {1, . . . , n} with i �= j. If ai,jaj,i ≤ 1, then the vertices i and j are joined by an edge if ai,j �= 0.
Whenever ai,jaj,i > 1, the following rule is applied for the edge between i and j :

Here are two examples. The graph on the right hand side is the Dynkin diagram of the corresponding
matrix on the left-hand side:

There is the following classification of cluster algebras of finite type, cf. [19, Theorem 1.4].

Theorem 2.18. Let (x, B) be a seed. The cluster algebra A(x, B) is of finite type if and only if the Cartan
counterpart of one of its seeds is a Cartan matrix of finite type.

Recall, that the Cartan matrices A(B) of finite type are classified by the Dynkin diagrams An, Bn, Cn,
Dn, E6, E7, E8, F4, G2 (for n≥ 1, 2, 3, 4 respectively), see [16, Theorem 5.2.6] or [8, Section 6.4].

Remark 2.19. In the proof for the classification of finite-type cluster algebras (see [20] or [16, Chapter
5]), the non-quiver cases Bn, Cn, F4, G2 are connected to the quiver cases via the process of folding. The
latter corresponds to taking a quotient with respect to a suitable group action on the quiver, see [16,
Section 4.4]. More precisely, one has

• The seed pattern of type G2 can be obtained from D4 via folding ([16, Section 5.7]);
• the seed pattern of type F4 arises from E6 through folding ([16, Exercise 4.4.12 and Section

5.7]);
• the seed pattern of type Cn comes from A2n−1 via folding ([16, Proof of Theorem 5.5.2]);
• we get the seed pattern of type Bn from Dn+1 by folding ([16, Proof of Theorem 5.5.1]).

3. Continuant polynomials

Continuants are classic in the study of determinants and were already considered by Euler.

Definition 3.1. A continuant of order n is the determinant of a tri-diagonal matrix of the form:
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

y1 b1 0 · · · · · · · · ·
c1 y2 b2 0 · · · · · ·
0 c2 y3 b3 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 · · · 0 cn−2 yn−1 bn−1

0 · · · · · · 0 cn−1 yn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We will consider the special case where bi = ci =−1 for all 1≤ i≤ n− 1 and denote this continuant by
Pn(y1, . . . , yn). We set P0 := 1.

These special continuants also appear in the work of Dupont [11] under the name generalized
Chebyshev polynomials.

Example 3.2. One can obtain all terms in the continuant from y1 · · · yn by replacing every pair of
consecutive yi by −1 (see [36,545]).

For example, one has P0 = 1, P1(y1)= y1, P2(y1, y2)= y1y2 − 1 and

P3(y1, y2, y3)= det

⎛⎝ y1 −1 0
−1 y2 −1
0 −1 y3

⎞⎠= y1y2y3 − y1 − y3 .

From the description as a determinant, it is obvious that the continuant is symmetric:

Lemma 3.3 (Symmetry). We have

Pn(y1, . . . , yn)= Pn(yn, . . . , y1).

The following properties are well known, see e.g [36, Number 547 (3), Number 561,(4)]:

Lemma 3.4 (Recursion). The following recursion holds

Pn(y1, . . . , yn)= y1Pn−1(y2, . . . , yn)− Pn−2(y3, . . . , yn).

Moreover, for 1≤ r≤ n− 1 we have

Pn(y1, . . . , yn)= Pk(y1, . . . , yk) · Pn−k(yk+1, . . . , yn)− Pk−1(y1, . . . , yk−1) · Pn−k−1(yk+2, . . . , yn).

Lemma 3.5 (Derivative). For 1≤ k≤ n, one has

∂

∂yk

Pn(y1, . . . , yn)= Pk−1(y1, . . . , yk−1) · Pn−k(yk+1, . . . , yn).

From the description of the continuant of Example 3.2, it is straightforward to verify that the terms
of order ≤ 2 of Pn(y1, . . . , yn), written Pn(y1, . . . , yn)≤2, depend on n mod 4 and are of the following
form:

Lemma 3.6. We have

P4k+1(y1, . . . , y4k+1)≤2 = y1 + y3 + · · · + y4k+1 ,

P4k+2(y1, . . . , y4k+2)≤2 =−1+ y1y2 + y1y4 + · · · + y1y4k+2 + y3y4 + · · · + y4k+1y4k+2

P4k+3(y1, . . . , y4k+3)≤2 =−y1 − y3 − · · · − y4k+3

P4k+4(y1, . . . , y4k+4)≤2 = 1− y1y2 − y1y4 − · · · − y1y4k+4 − y3y4 − · · · − y4k+3y4k+4.
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As a preparation for the remainder of the article, we study the singularities of the varieties determined
by the continuants and deformations of them.

Lemma 3.7.

(1) The variety Spec(K[y1, . . . , yn]/〈Pn〉)⊆An
K is regular for every n ∈Z+,

(2) The variety X2m+1,λ := Spec(K[y1, . . . , y2m+1]/〈P2m+1 + λ〉) is regular for every m ∈Z≥0.
(3) We have X2m+1,λ

∼= X2m+1,μ for every λ, μ ∈K \ {0}.

Proof.

(1) A straightforward induction using Lemma 3.4 shows that 〈Pn,
∂Pn

∂y1

〉 = 〈1〉. Thus, the Jacobian

criterion implies the first claim.
(2) The case λ= 0 follows from (1). Hence, we assume λ �= 0. Set n := 2m+ 1 and Qn := Pn + λ.

We compute the singular locus of Qn using the Jacobian criterion. Notice that
∂Qn

∂yi

= ∂Pn

∂yi

for

all i ∈ {1, . . . , n}. By the recursion of Lemma 3.4, the vanishing of Qn and
∂Pn

∂y1

imply that we

must have Pn−1(y2, . . . , yn)= 0 and Pn−2(y3, . . . , yn)= λ. Computing the partial derivative
∂Pn

∂y2
(using Lemma 3.5) consequently yields y1 = 0, since λ �= 0.

We prove by induction on k that we have
(ak) y1 = · · · = y2k−1 = 0,
(bk) Pn−2k(y2k+1, . . . , yn)= (− 1)k+1λ, and
(ck) Pn−(2k−1)(y2k, . . . , yn)= 0.

As we have just seen, all properties are true for k= 1. Thus, let us discuss how to obtain (ak+1), (bk+1),
(ck+1) from (ak), (bk), (ck). First, (ak) implies P2k(y1, . . . , y2k)= (− 1)k by Lemma 3.6. Therefore, we get
(using Lemma 3.5):

0= ∂Pn

∂y2k+1

= P2k(y1, . . . , y2k) · Pn−(2k+1)(y2k+2, . . . , yn)= (− 1)kPn−(2k+1)(y2k+2, . . . , yn) .

This implies (ck+1), i.e., Pn−(2k+1)(y2k+2, . . . , yn)= 0.
Using (bk) and Lemma 3.4, we obtain

(− 1)k+1λ= Pn−2k(y2k+1, . . . , yn)=−Pn−(2k+2)(y2k+3, . . . , yn) ,

or, in other words, (bk+1) holds.
It remains to show (ak+1). Since (ak) holds, we only have to prove y2k = y2k+1 = 0. The first recursion of

Lemma 3.4 applied for Pn−(2k−1)(y2k, . . . , yn), (bk), (ck), and (ck+1) provide 0= Pn−(2k+1)(y2k+2, . . . , yn)=
(− 1)k+1y2k · λ. Since λ �= 0, we get

y2k = 0.

Lemma 3.6, (ak), and y2k = 0 lead to P2k+1(y1, . . . , y2k+1)= (− 1)ky2k+1 and therefore, by Lemma 3.5, we
have

0= ∂Pn

∂y2k+2

= P2k+1(y1, . . . , y2k+1) · Pn−(2k+2)(y2k+3, . . . , yn)= λy2k+1 .

Since λ �= 0, assertion (ak+1) follows.
In particular, we get for (cm+1): 0= Pn−(2m+1) = P0 = 1, which is impossible and hence implies

Sing(X2m+1,λ)=∅.

(3) For the third part, it is sufficient to prove X2m+1,λ
∼= X2m+1,1 for every λ �= 0. Since all terms

appearing in P2m+1 are obtained from y1 · · · y2m+1 by replacing every pair of consecutive yi by
−1 (Example 3.2), we have
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P2m+1(λy1, λ
−1y2, . . . , λy2i−1, λ

−1y2i, . . . , λy2m+1)= λP2m+1(y1, y2, y3, . . . , y2m, y2m+1) ,

which implies X2m+1,λ
∼= X2m+1,1.

By Lemma 3.6, it is clear that P4k+2 + 1 and P4k − 1 are singular at the origin. Hence, the analog of
Lemma 3.7(2) is not true for n= 2m and singularities appear.

Proposition 3.8. Let λ ∈K \ {0}, m ∈Z+, and X2m,λ := Spec(K[y1, . . . , y2m]/〈P2m + λ〉). We have

Sing(X2m,λ)=
{

V(y1, . . . , y2m), if λ= (− 1)m+1,

∅, else.
(3.1)

In particular, X2m,λ has at most an isolated singularity at the origin. If Sing(X2m,λ) �=∅, then X2m,λ has a
singularity of type A1 at the origin. Therefore, blowing up the origin resolves the singularities of X2m,λ.

Proof. Set n := 2m and Qn := Pn + λ. We compute the singular locus of Qn using the Jacobian
criterion. As in the proof of Lemma 3.7(2), we prove by induction on k that we have

(ak) y1 = · · · = y2k−1 = 0,
(bk) Pn−2k(y2k+1, . . . , yn)= (− 1)k+1λ, and
(ck) Pn−(2k−1)(y2k, . . . , yn)= 0.

In particular, we get y1 = · · · = yn = 0 by (am) and (cm). In conclusion, we have

Sing(V(Qn))= V(Qn, y1, . . . , yn)= V((− 1)m + λ, y1, . . . , yn)) ,

which implies our claim on the singular locus, (3.1).
Finally, let us classify the isolated singularity at the origin if λ= (− 1)m+1. We show that there is a

coordinate transformation (y1, . . . , y2m) �→ (t1, . . . , t2m) after localizing at the maximal ideal correspond-
ing to the origin, such that

(− 1)m+1Q2m(t1, . . . , t2m)=
m∑

i=1

t2i−1t2i ,

which implies that X2m,λ has an A1-singularity at the origin. By Example 3.2, we can write down all terms
of the continuant explicitly. Note that Q2m(y1, . . . , y2m) only has terms of even order ≥ 2:

(− 1)m+1Q2m = y1y2 + · · · + y1y2m + y3y4 + · · · + y3y2m + y5y2m + · · · + y2m−1y2m−
− y1y2y3y4 − · · · − y1y2y2m−1y2m − · · · − y2m−3y2m−2y2m−1y2m + · · · +
+ (− 1)m+1y1y2 · · · y2m .

This can be written as:

(− 1)m+1Q2m = y1y2 +
m−1∑
k=1

y2k+1y2k+2(− 1)kP2k(y1, . . . , y2k)+

+ y1y4 + · · · + y1y2m + y3y6 + · · · + y3y2m + · · · + y2m−3y2m =

=y1(y2 +
m∑

�=2

y2�)+
m−1∑
k=1

y2k+1

(
y2k+2(− 1)kP2k(y1, . . . , y2k)+

m∑
�=k+2

y2�

)
.

By Lemma 3.6, the even continuants P2k yield locally around the origin units, so we may substitute for
k= 0, . . . , m− 1: t2k+2 := y2k+2(− 1)kP2k(y1, . . . , y2k)+∑m

�=k+2 y2�. By further introducing t2m := y2m

and t2k+1 := y2k+1 for k= 0, . . . , m− 1, we obtain that (− 1)m+1Q2m is of the desired form.

Observe that the statement and the proof of Proposition 3.8 are independent of the characteristic
p= char (K)≥ 0 of the field. Nonetheless, the characteristic plays a role when it comes to the condition
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λ= (− 1)m+1. For example, if λ= 1 and m= 2k, for some k ∈Z+, then P4k + 1 is regular if p �= 2 since
(− 1)2k+1 =−1 �= 1, while it is singular if p= 2.

4. Singularities of finite-type cluster algebras coming from quivers
4.1 An cluster algebras

Assume that Q is a simply laced Dynkin diagram of type An with any orientation. Since all trees with the
same underlying undirected graph are mutation-equivalent (Lemma 2.14), we may choose the following
orientation:

Recall that we denote by A(An) the corresponding cluster algebra.

Lemma 4.1. The cluster algebra A(An) is isomorphic to K[z1, . . . , zn+1]/〈fn〉 with

fn(z1, . . . , zn+1) := Pn+1(z1, . . . , zn+1)− 1 .

Here, Pn+1 is the continuant polynomial defined in Section 3. In particular, the variety Spec(A(An)) is
isomorphic to a hypersurface in An+1

K .

This result can also be found in [11, Corollary 4.2]. We provide a simpler and shorter proof.

Proof. By Theorem 2.12, A(An) is isomorphic to a quotient K[x1, . . . , xn, y1, . . . , yn]/I, where the
ideal I is generated by:

x1y1 − x2 − 1, x2y2 − x1 − x3, x3y3 − x2 − x4, . . . , xkyk − xk−1 − xk+1, . . .

. . . , xn−1yn−1 − xn−2 − xn, xnyn − xn−1 − 1 .

For i≥ 2 one can stepwise express each xi in terms of x1, y1, . . . , yn: The first equation shows that x2 =
x1y1 − 1= P2(x1, y1). Substituting into the second equation yields

x3 = x2y2 − x1 = P2(x1, y1)y2 − P1(x1) ,

which is by Lemmas 3.4 and 3.3 equal to P3(x1, y1, y2). Recursively, we obtain for k= 2, . . . , n:

xk = Pk(x1, y1, . . . , yk−1) .

Thus, the last generator fn := xnyn − xn−1 − 1 becomes

Pn(x1, y1, . . . , yn−1)yn − Pn−1(x1, . . . , yn−2)− 1= Pn+1(x1, y1, . . . , yn)− 1 .

In conclusion, we have K[x1, . . . , xn, y1, . . . , yn]/I ∼=K[z1, . . . , zn+1]/〈fn〉, where the generator on the
right-hand side is fn(z1, . . . , zn+1)= Pn+1(z1, . . . , zn+1)− 1.

Remark 4.2. Observe that the technique of the proof of Lemma 4.1 to reduce the number of generators
using continuant polynomials can be applied for any quiver Q= (Q0, Q1), which contains a string of n
vertices such that one them is a sink or a source. More generally, if i ∈Q0 is a vertex of Q such that #{j |
(i, j) ∈Q1} = 1 or #{j | (j, i) ∈Q1} = 1, then the exchange relation at i is of the form xixi

′ = xk +∏
j→i xj

or xixi
′ =∏

j←i xj + xk, for a unique vertex k ∈Q0, and hence xk can be eliminated.

Lemmas 4.1, 3.7, and Proposition 3.8 immediately imply Theorem A in the An-case, where it states

Corollary 4.3. Let A(An) be the cluster algebra of type An over a field K.
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If char(K) �= 2, then we have

(1) Spec(A(An)) is singular if and only if n≡ 3 mod 4.
(2) If n= 4m− 1, for some m ∈Z>0, then Spec(A(A4m−1)) is isomorphic to an isolated hypersurface

singularity of type A1 in An+1
K . In particular, the resolution of singularities of Spec(A(A4m−1))

is given by the blowup of the singular point.

On the other hand, if char(K)= 2, then we have

(1′) Spec(A(An)) is singular if and only if n≡ 1 mod 2.
(2′) If n= 2m− 1, for some m ∈Z>0, then Spec(A(A2m−1)) is isomorphic to an isolated hypersurface

singularity of type A1. In particular, the resolution of singularities of Spec(A(A2m−1)) is given
by the blowup of the singular point.

4.2. Dn cluster algebras

Next, we consider the quiver Q, whose underlying graph is a simply laced Dynkin diagram of type Dn,
for some n≥ 4. Since all orientations on a tree are mutation-equivalent (Lemma 2.14), we choose the
following orientation and numbering of the vertices for Q:

The corresponding cluster algebra, which we denote by A(Dn), coincides with the lower cluster alge-
bra of Q (Theorem 2.12) and the latter is completely described by its exchange relations by Lemma
2.10.

Lemma 4.4. The cluster algebra A(Dn) is isomorphic to

K[u1, u2, u3, u4, z1, . . . , zn−2]/〈h1, h2〉,
where

h1 := u1u2 − u3u4 − u1u2u3u4 − u2u4Pn−3(z1, . . . , zn−3),

h2 := u3u4 − Pn−2(z1, . . . , zn−2)− 1.

In particular, the variety Spec(A(Dn)) is isomorphic to a subvariety ofAn+2
K of codimension 2. (As before,

Pn−2 an Pn−3 are the continuant polynomials discussed in Section 3.)

Proof. As mentioned before, we have A(Dn)∼=K[x1, . . . , xn, y1, . . . , yn]/I, where I is the ideal
generated by:

x1y1 − x2 − 1, xkyk − xk+1 − xk−1, for k ∈ {2, . . . , n− 3} , (4.1)

g3 := xn−2yn−2 − xn−1xn − xn−3, g2 := xn−1yn−1 − xn−2 − 1, g1 := xnyn − xn−2 − 1 . (4.2)
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As in the proof of Lemma 4.1, we obtain from (4.1) xk = Pk(x1, y1, . . . , yk−1), for all k ∈ {2, . . . , n− 2}.
The last generator in (4.2) can be replaced by:

g′1 := g1 − g2 = xnyn − xn−1yn−1

If we substitute x2, . . . , xn−2 in the remaining two generators, we obtain
g2 = xn−1yn−1 − Pn−2(x1, y1, . . . , yn−3)− 1

and
g3 = Pn−2(x1, y1, . . . , yn−3)yn−2 − xn−1xn − Pn−3(x1, y1 . . . , yn−4)

= yn−2(xn−1yn−1 − 1− g2)− Pn−3(x1, y1, . . . , yn−4)− xn−1xn

= −xn−1(xn − yn−2yn−1)− yn−2 − Pn−3(x1, y1, . . . , yn−4)− yn−2g2 .

We introduce
(u1, u2, u3, u4) := (xn − yn−2yn−1, yn, xn−1, yn−1)

(z1, z2, . . . , zn−2) := (x1, y1, . . . , yn−3)

and obtain
h1 := g′1 = u1u2 − u3u4 + yn−2u2u4,
h2 := g2 = u3u4 − Pn−2(z1, . . . , zn−2)− 1.

On the other hand, g3 + yn−2g2 ∈ I yields that we may eliminate
yn−2 =−u1u3 − Pn−3(z1, . . . , zn−3),

which provides h1 = u1u2 − u3u4 − u1u2u3u4 − u2u4Pn−3(z1, . . . , zn−3), as desired.

By the previous result, Spec(A(Dn))∼= V(h1, h2)⊂An+2
K . Using this presentation, we determine the

singular locus of Spec(A(Dn)).

Lemma 4.5. Let A(Dn) be the cluster algebra of type Dn over a field K.
If char(K) �= 2, then we have

Sing(Spec(A(Dn)))∼=
{

Y0 ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4 if n≡ 0 mod 4,

Y0 otherwise,

where, for i ∈ {1, 2, 3, 4}, the component Yi is the ui-axis and so dim (Yi)= 1, while

Y0 := V(u1, . . . , u4, Pn−2(z1, . . . , zn−2)+ 1)

and dim (Y0)= n− 3. The only possible singular point of Y0 is the origin,

Sing(Y0)=
⎧⎨⎩

4⋂
i=1

Yi if n≡ 0 mod 4

∅ otherwise.

Observe that Y0 has two irreducible components if n= 4 since P2(z1, z2)+ 1= z1z2.
On the other hand, if char(K)= 2, the same statement holds true if we replace every condition n≡ 0

mod 4 by n≡ 0 mod 2.

Note that Lemmas 4.4 and 4.5 for n= 4 imply Theorem A(4)(a).

Proof of Lemma 4.5. By Lemma 4.4, Spec(A(Dn)) is isomorphic to the subvariety of An+2
K

determined by:
h1 = u1u2 − u3u4 − u1u2u3u4 − u2u4Pn−3(z1, . . . , zn−3)= 0,
h2 = u3u4 − Pn−2(z1, . . . , zn−2)− 1= 0.
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Observe that there is an ordering on the variables such that u1u2 is the leading monomial of h1 and u3u4 is
the one of h2. Hence, the dimension of Spec(A(Dn)) is equal to n and by applying the Jacobian criterion
for smoothness, the singular locus of Spec(A(Dn)) is determined by the vanishing of the 2× 2 minors
of the Jacobian matrix of (h1, h2). We abbreviate

Jac (Dn) := Jac (h1, h2;u1, u2, u3, u4, z1, . . . , zn−2).

The first four columns of Jac (Dn) are(
u2(1− u3u4) u1(1− u3u4)− u4Pn−3 −u4(1+ u1u2) −u3(1+ u1u2)− u2Pn−3

0 0 u4 u3

)
while the remaining columns are⎛⎜⎜⎝−u2u4

∂Pn−3

∂z1

· · · −u2u4

∂Pn−3

∂zn−3

0

−∂Pn−2

∂z1

· · · −∂Pn−2

∂zn−3

−∂Pn−2

∂zn−2

⎞⎟⎟⎠ . (4.3)

(Here, we use the obvious abbreviations Pn−2 and Pn−3.) Clearly, the maximal minors of the first matrix
are of the form u3( . . . ) and u4( . . . ). Suppose u3 = u4 = 0. The vanishing of h1 and h2 provides that for
a singular point, we have to have u1u2 = 0 and Pn−2 + 1= 0. Further, the first row of the first matrix
becomes

(
u2 u1 0 −u2Pn−3

)
and every entry of the first row of the second matrix is zero. Thus, if u1 =

u2 = 0, we obtain the irreducible component:

Y0 = V(u1, . . . , u4, Pn−2 + 1)

in the singular locus. On the other hand, suppose that u1 �= 0. Since u1u2 = 0 has to vanish, we get u2 = 0.
The minors corresponding to the derivatives with respect to (u2, zi), for i ∈ {1, . . . , n− 3} provide that

∂Pn−2

∂z1

= . . .= ∂Pn−2

∂zn−2

= 0.

This yields the irreducible component Y1 = V(u2, u3, u4)∩ Sing(V(Pn−2 + 1)) of the singular locus of
Spec(A(Dn)). Analogously, we get Y2 = V(u1, u3, u4)∩ Sing(V(Pn−2 + 1)) if u2 �= 0.

Next, suppose that u3 �= 0 or u4 �= 0. Then, the minors corresponding to the derivatives (u1, u4) and
(u2, u4) (resp. (u1, u3) and (u2, u3)) provide that we have to have

u2(1− u3u4)= 0 and u1(1− u3u4)− u4Pn−3 = 0 (4.4)

for a singular point. If 1− u3u4 = 0, we get that Pn−3(z1, . . . , zn−3)= 0. On the other hand, the vanishing
of h2 yields Pn−2(z1, . . . , zn−2)= 0, which is a contradiction as we have seen at the beginning of the proof
of Lemma 3.7.

Therefore, we get u2 = 0 if u3 �= 0 or u4 �= 0. This implies that all entries in the first row of the matrix
(4.3) are zero. Moreover, h1 = h2 = 0 is equivalent to u3u4 = Pn−2 + 1= 0. We have two cases:

• u3 = 0 and u4 �= 0. Then
∂h1

∂u3

=−u4 �= 0. The minors corresponding to the derivatives with

respect to (u3, zi) provide that all derivatives of Pn−2 have to vanish. Since
∂Pn−2(z1, . . . , zn−2)

∂zn−2

=
Pn−3(z1, . . . , zn−3), the second equality of (4.4) and u3 = 0 imply u1 = 0. Hence, we get the
irreducible component Y4 = V(u1, u2, u3)∩ Sing(V(Pn−2 + 1))

• u3 �= 0 and u4 = 0. Via the analogous arguments as in the previous case, we obtain the
irreducible component Y3 = V(u1, u2, u4)∩ Sing(V(Pn−2 + 1)) in the singular locus.

Note that this covers all cases, where the minors of Jac (Dn) vanish. Hence, we determined all
components of the singular locus. Furthermore, observe that

4⋂
i=1

Yi = Sing(Y0). (4.5)

https://doi.org/10.1017/S0017089522000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000209


Glasgow Mathematical Journal 19

First, assume char(K) > 2. By Lemma 3.7 and Proposition 3.8, we have

Sing(Pn−2(z1, . . . , zn−2)+ 1)=
{

V(z1, . . . , zn−2) if n≡ 0 mod 4

∅ otherwise.

This implies

Sing(Spec(A(Dn)))∼=
{

Y0 ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4 if n≡ 0 mod 4

Y0 otherwise,

where Sing(Y0)= V(u1, . . . , u4, z1, . . . , zn−2)=⋂4
i=1 Yi is the origin if n≡ 0 mod 4, while Y0 is regular

in the second case. Observe that Yi is the ui-axis and so dim (Yi)= 1, for i ∈ {1, . . . , 4}, and dim (Y0)=
n− 3.

Let us turn to the case char(K)= 2. The same arguments apply and the only difference appears, when
we apply Proposition 3.8, which leads to the condition n≡ 0 mod 2 instead of n≡ 0 mod 4.

As before in the An-case, we can classify the singularities and construct a desingularization from this.

Proposition 4.6. Let A(Dn) be the cluster algebra of type Dn over a field K. We use the notation of
Lemma 4.5.

(1) If Sing(Spec(A(Dn)))∼= Y0, then the variety Spec(A(Dn)) is locally at Y0 isomorphic to a cylin-
der over a hypersurface singularity of type A1. In particular, the blowup with center Y0 resolves
the singularities.

(2) If Sing(Spec(A(Dn)))∼= Y0 ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4, then we have

(a) For every i ∈ {0, . . . , 4}, Spec(A(Dn)) is locally at a singular point different from the origin
isomorphic to a cylinder over a hypersurface singularity of type A1;

(b) Y0 is isomorphic to an (n− 3)-dimensional A1-hypersurface singularity;
(c) The singularities of Spec(A(Dn)) are resolved by first blowing up the origin and then

choosing the strict transform of
⋃4

i=0 Yi as the next center.

Proof. By Lemma 4.4, Spec(A(Dn)) is isomorphic to the subvariety of An+2
K given by:

h1 = u1u2 − u3u4 − u1u2u3u4 − u2u4Pn−3(z1, . . . , zn−3)= 0 ,
h2 = u3u4 − Pn−2(z1, . . . , zn−2)− 1= 0 .

First, suppose Sing(Spec(A(Dn)))∼= Y0, where

Y0 = V(u1, . . . , u4, Pn−2(z1, . . . , zn−2)+ 1) ,

is regular and of dimension n− 3. Moreover, Lemma 3.7 and Proposition 3.8 provide that H :=
Spec(K[u1, . . . , u4, z1, . . . , zn−2]/〈h2〉) is regular. Locally at Y0, the element 1− u3u4 is invertible and
thus we may introduce the local variable w1 := u1(1− u3u4)− u4Pn−3. Using the latter, we get h1 =
w1u2 − u3u4 locally. Therefore, locally at Y0, the variety Spec(A(Dn)) is isomorphic to an intersection
of a cylinder over an A1-hypersurface singularity and a regular variety H, which is transversal to the
cylinder. In particular, the blowup of Y0 is a desingularization of Spec(A(Dn)). This ends the proof of
part (1).

Let us come to the case Sing(Spec(A(Dn)))∼= Y0 ∪ Y1 ∪ Y2 ∪ Y3 ∪ Y4. By Lemma 4.5, this can only
happen if n≡ 0 mod 2. (Note that n≡ 0 mod 4 implies n≡ 0 mod 2.) Here, the singular locus of
Spec(A(Dn)) has five components, Y0 above and the ui-axes Yi for i ∈ {1, 2, 3, 4}. The only singular point
of Sing(Spec(A(Dn))) is the origin 0, which is also the singular locus of Y0, as well as the intersection
of the four other components Y1, . . . , Y4.
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The same argument as above shows that, locally at a singular point, which is contained in Y0 \ {0},
the variety Spec(A(Dn)) is isomorphic to a cylinder over an A1-singularity intersected with a regular
hypersurface, which is transversal to the cylinder.

Let us consider the other components. In the proof of Proposition 3.8, we have seen that there is a
local coordinate transformation (z1, . . . , zn−2) �→ (t1, . . . , tn−2), such that

Pn−2(t1, . . . , tn−2)+ 1=
m∑

i=1

t2i−1t2i , (4.6)

where m := n− 2

2
∈Z+, which is an integer since n≡ 0 mod 2.

Along the u1-axis without the origin, Y1 \ {0}, the term u1(1− u3u4)− u4Pn−3 is invertible and hence
we may introduce w2 := h1 = u2(u1(1− u3u4)− u4Pn−3)− u3u4 to replace u2. Thus, locally at a point of
Y1 \ {0}, we get that Spec(A(Dn)) is isomorphic to the hypersurface:

Spec(K[u1, u3, u4, t1, . . . , tn−2]/〈u3u4 −
m∑

i=1

t2i−1t2i〉) ,

which is a cylinder over an A1-hypersurface singularity. The analogous situation appears for Y2 \ {0}.
Let us consider the local situation at Y3 \ {0}. There, u3 is invertible so that it makes sense to define

w1 := u1u3, w2 := u2u−1
3 , w4 := u3u4. Using this, we obtain

h1 = u1u2 − u3u4 − u1u2u3u4 − u2u4Pn−3 =w2(w1(1−w4)−w4Pn−3)−w4 .

Furthermore, we may introduce v1 := w1(1−w4)−w4Pn−3 so that the vanishing of h1 allows to elimi-
nate the variable w4 in h2 =w4 − Pn−2 − 1. Hence, locally at a point of Y3 \ {0}, the variety Spec(A(Dn))
is isomorphic to

Spec(K[v1, w2, u3, t1, . . . , tn−2]/〈v1w2 −
m∑

i=1

t2i−1t2i〉) .

In other words, we are in the same situation as for Y1 \ {0}. The analogous argument (and using Lemma
3.6) provide the same result for Y4 \ {0}. Hence, we have shown (2)(a).

It remains to study the situation at the origin, which is the singular locus of Y0 and also equal to⋂4
i=1 Yi. By (4.6), Y0 is isomorphic to a hypersurface singularity in An−2

K of type A1. In particular, we get
(2)(b) and blowing up the origin resolves the singularities of Y0.

Finally, for (2)(c), the same argument as above (for Y0) provides that h1 =w1u2 − u3u4 locally at
the origin. In particular, h1 and h2 are both homogeneous of degree 2. This implies, if we blow up
the origin, then the singular locus of the strict transform of Spec(A(Dn)) is equal to Y ′0 ∪ Y ′1 ∪ . . .∪ Y ′4,
where Y ′i denotes the strict transform of Yi. Furthermore, for every i �= j, we have Y ′i ∩ Y ′j =∅. Therefore,
Z := ⋃4

i=0 Y ′i is regular and after blowing up with center Z all singularities are resolved by (2)(a).

4.3. E6, E7, E8 cluster algebras

Let us now turn our attention to the missing skew-symmetric cluster algebras of finite type, which are
those arising from orientations on E6, E7, E8 Dynkin diagrams. As before, we fix a field K .

Proposition 4.7. Let A(E6) (resp. A(E8)) be the cluster algebra of type E6 (resp. E8) over K.

(1) There exist presentations of A(E6) and A(E8) of codimension 3.
(2) The varieties Spec(A(E6)) and Spec(A(E8)) are regular.

Proof. We begin with E8. By Lemma 2.14, we may choose any orientation for the quiver, whose
underlying graph is the E8 Dynkin diagram. We choose
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Using the analogous arguments as as in the Dn-case, we obtain

A(E8)∼=K[x1, x6, x8, y1, . . . , y8]/〈h1, h2, h3〉,
where we define

h1 := P5(x1, y1, y2, y3, y4)− P2(x6, y6),

h2 := P2(x6, y6)y5 − x6P2(x8, y8)− P4(x1, y1, y2, y3),

h3 := P3(x8, y8, y7)− P2(x6, y6).

The singular locus of Spec(A(E8)) is determined by the vanishing locus of the 3× 3 minors of the
Jacobian matrix:

Jac (E8) := Jac (h1, h2, h3;x1, x6, x8, y1, . . . , y8).

First, observe that h3 = P3(x8, y8, y7)− P2(x6, y6)= x8y8y7 − x8 − y7 − x6y6 + 1. We get
∂h3

∂x8

= y7y8 − 1 �= 0, or
∂h3

∂y7

= x8y8 − 1 �= 0, or
∂h3

∂y8

= x8y7 �= 0, (4.7)

where the nonvanishing of at least one derivative can be seen by setting two derivatives equal to zero

which leads to the third derivative being nonzero. We fix z ∈ {x8, y7, y8} such that
∂h3

∂z
�= 0. The minor

determined by the derivatives with respect to (y5, y6, z) provides that we must have x6(x6y6 − 1)= 0 at a
singular point of Spec(A(E8)). If x6y6 − 1= 0, then vanishing of h3 and of the minor of Jac (E8) deter-
mined by the derivatives with respect (x6, y6, z) lead to a contradiction. Thus, we get x6 = 0. The columns

of Jac (E8) corresponding to z and y5 become the transpose of the vectors (0, 0,
∂h3

∂z
) and (0, 1, ∗), for

some entry ∗. Since
∂h3

∂z
is nonzero, we can only have a singular point if Jac (h1;x1, x6, y1, . . . , y4, y6)

is the zero vector. Note that
∂h1

∂x6

=−y6 and
∂h1

∂y6

=−x6 = 0. Using x6 = 0, the vanishing of h1 can be

reformulated as:

Q5 := P5(x1, y1, y2, y3, y4)+ 1= 0.

Since
∂h1

∂x1

= ∂Q5

∂x1

and
∂h1

∂yi

= ∂Q5

∂yi

, for i ∈ {1, . . . , 4}, we get the inclusion:

Sing(Spec(A(E8)))⊆ Sing(V(Q5))=∅ ,

where the last equality holds by Lemma 3.7. This concludes the proof for E8.
The statement for E6 follows by applying the analogous arguments for the quiver:

We leave the details as an easy exercise for the reader.
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Proposition 4.8. Consider the variety Spec(A(E7)) over any field K corresponding to the cluster algebra
of type E7.

(1) If char (K) �= 2, then Spec(A(E7)) is regular.
(2) If char (K)= 2, then Spec(A(E7)) is isomorphic to seven-dimensional subvariety of A10

K , whose
singular locus is a regular surface. Locally at the singular locus, Spec(A(E7)) is isomorphic to
a cylinder over an isolated hypersurface singularity of type A1 in A6

K intersected with a regular
hypersurface, which is transversal to the cylinder. In particular, the resolution of singularities
of Spec(A(E7)) is given by the blowup of the singular locus.

Proof. Analogous to the proof of Proposition 4.7, we choose the quiver:

and we obtain A(E7)∼=K[x1, x5, x7, y1, . . . , y7]/〈h1, h2, h3〉, where we define

h1 := P4(x1, y1, y2, y3)− P2(x5, y5),

h2 := P2(x5, y5)y4 − x5P2(x7, y7)− P3(x1, y1, y2),

h3 := P3(x7, y7, y6)− P2(x5, y5).

The same arguments as in the E8 case provide that Sing(Spec(A(E7))) is isomorphic to a subvari-
ety of V(x5)∩ Sing(V(Q4)), where Q4 := Q4(z1, z2, z3, z4) := P4(z1, z2, z3, z4)+ 1 and (z1, z2, z3, z4) :=
(x1, y1, y2, y3). Since char (K) �= 2, we have Sing(V(Q4))=∅, by Proposition 3.8, which concludes the
the proof of (1).

(2) Suppose char (K)= 2. We choose z ∈ {x7, y6, y7} such that
∂h3

∂z
�= 0. Then the minor of Jac (E7) :=

Jac (h1, h2, h3;x1, x5, x7, y1, . . . , y7) corresponding to the derivatives with respect to (y4, y4, z) and
(x5, y5, z) provide that at a singular point, we have x5 = 0. We get that P2(x5, y5)= 1 and hence

h1 = P4(x1, y1, y2, y3)− P2(x5, y5)= f3(x1, y1, y2, y3).

The minors corresponding to (∗, y4, z), where ∗ ∈ {x1, x5, y1, y2, y3} lead to the equality:

Sing(Spec(A(E7)))= Sing(V(f3))∩ V(x5, h2, h3)= V(x1, x5, y1, . . . , y5, P3(x7, y7, y6)+ 1) ,

which is regular by Lemma 3.7.
Let us consider the situation locally at the singular locus. Then, P2(x5, y5) and P2(y2, y3)= 1+ y2y3 are

units. Thus, we may introduce the local coordinates z1 := y1(1+ y2y3)+ y3 and z4 := h2 = P2(x5, y5)y4 −
x5P2(x7, y7)− P3(x1, y1, y2). As in (4.7), the derivatives of h3 = P3(x7, y7, y6)− P2(x5, y5) with respect to
x7, y7, and x6 cannot vanish at the same time, i.e., V(h3) is a regular hypersurface, which is transversal
to V(z4). Observe that (using char(K)= 2)

h1 = x1y1y2y3 + x1y1 + x1y3 + y2y3 + x5y5 = x1z1 + x5y5 + y2y3 .

This implies the remaining parts of the proposition.
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5. Singularities of finite-type cluster algebras not coming from quivers

Next, let us discuss the singularities of cluster algebras of finite type for which it is necessary to work
with skew-symmetrizable matrices. Recall the exchange relations (2.3) in the matrix setting (Remark
2.6) as well as the definitions of Subsection 2.1.

5.1. Bn cluster algebras

A possible exchange matrix B for type Bn, n≥ 2, is given as:

B=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0 0 0

−1 0
. . . 0 0 0 0

...
. . .

. . .
. . .

...
...

...

0 0
. . . 0 1 0 0

0 0 · · · −1 0 1 0
0 0 · · · 0 −1 0 1
0 0 · · · 0 0 −2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(cf. [16, Section 5.5, (5.31)]) and the corresponding Dynkin diagram is of type Bn (where n is the number
of vertices):

Lemma 5.1. Let K be any field and n≥ 2. The cluster algebra A(Bn) is isomorphic to

K[z1, . . . , zn−1, u1, u2, u3]/〈gn, hn〉 ,

where gn := (u1u2 − 1)u3 − u2
1 − Pn−2(z1, . . . , zn−2) and hn := u1u2 − 1− Pn−1(z1, . . . , zn−1). In particu-

lar, the variety Spec(A(Bn)) is isomorphic to a codimension 2 subvariety of An+2
K .

Proof. Since the underlying diagram �(B) is acyclic of type Bn, we get the presentation:

A(Bn)∼=K[x1, . . . , xn, y1, . . . , yn]/〈x1y1 − x2 − 1, x2y2 − x1 − x3, . . . , xn−2yn−2 − xn−3 − xn−1,

xn−1yn−1 − x2
n − xn−2, xnyn − xn−1 − 1〉 .

As in the proof of Lemma 4.1 (type An), one can express xk in terms of x1, y1, . . . , yk−1:

xk = Pk(x1, . . . , yk−1), for 2≤ k≤ n− 1 .

If we plug this into the remaining generators xn−1yn−1 − x2
n − xn−2 and xnyn − xn−1 − 1, we obtain

g̃n := Pn−1(x1, y1, . . . , yn−2)yn−1 − x2
n − Pn−2(x1, y1, . . . , yn−3)= 0 ,

hn := xnyn − Pn−1(x1, y1, . . . , yn−2)− 1= 0 .

We replace g̃n by gn := g̃n + yn−1hn = (xnyn − 1)yn−1 − x2
n − Pn−2(x1, y1, . . . , yn−3). Therefore, A(Bn) is

isomorphic to K[x1, xn, y1, . . . , yn]/〈gn, hn〉, which yields the assertion after renaming the variables.

Proposition 5.2. Let K be any field and n≥ 2. For char(K) �= 2 the following holds

(1) Spec(A(Bn)) is singular if and only if n≡ 3 mod 4.
(2) If n= 4m− 1, for some m ∈Z>0, then Spec(A(B4m−1)) has an isolated singularity at the origin

and locally at the singular point, the variety is isomorphic to an A1-hypersurface singularity.
In particular, its resolution of singularities is given by the blowup of the singular point.
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On the other hand, if char(K)= 2, then we have

(1′) If n= 2m− 1, for some m ∈Z>0, then Spec(A(B2m−1)) has an isolated singularity of type A1 at
the origin.

(2′) If n= 2m, for some m ∈Z>0, then Spec(A(B2m)) has an isolated singularity of type A1 at the
closed point V(u1 − 1, u2 − 1, u3, z1, . . . , zn−1).

In particular, the resolution of singularities is given by the blowup of the singular point in both cases
(1′) and (2′)

Proof. We use the presentationA(Bn)∼=K[z1, . . . , zn−1, u1, u2, u3]/〈gn, hn〉 of Lemma 5.1, where gn =
(u1u2 − 1)u3 − u2

1 − Pn−2(z1, . . . , zn−2) and hn := u1u2 − 1− Pn−1(z1, . . . , zn−1). We consider the 2× 2
minors of the Jacobian matrix. The columns corresponding to u1, u2, u3 yield that the following equations
hold for the singular locus:

u1(u1u2 − 1)= u2(u1u2 − 1)= 2u2
1 = 0.

First, assume char (K) �= 2. Then, we have u1 = 0, which implies u2 = 0 and the u3 column of the Jacobian
matrix is (− 1, 0)T . This implies that the singular locus of Spec(A(Bn)) is contained in the singular locus
of Pn−1(z1, . . . , zn−1)+ 1= 0. The latter is empty if n− 1≡ 1 mod 2 (Lemma 3.7(2)) or if n− 1=
2m for some m ∈Z+ and m≡ 0 mod 2 (Proposition 3.8). Therefore, Spec(A(Bn)) is regular if n �≡ 3
mod 4.

Consider the case n≡ 3 mod 4. Then the singular locus of Pn−1(z1, . . . , zn−1)+ 1 is V(z1, . . . , zn−1)
(Proposition 3.8). In particular, Pn−2(z1, . . . , zn−2)= 0, by Lemma 3.6. Moreover, u1 = 0 implies that
gn = 0 is equivalent to u3 = 0. Hence, Spec(A(Bn)) has an isolated singularity at the origin. Locally at
the origin, u1u2 − 1 is invertible and thus the generator gn = (u1u2 − 1)u3 − u2

1 − Pn−2(z1, . . . , zn−2) can
be eliminated. This has no effect on hn since u3 does not appear in it. We obtain that, locally at the singular
point, Spec(A(Bn)) is isomorphic to an A1-hypersurface singularity, where the type of the singularity can
be seen by applying the same coordinate transformation as in the proof of Proposition 3.8.

Suppose char (K)= 2. We make a case distinction for u1(u1u2 − 1)= 0. If u1 = 0, then the same argu-
ments as for char (K) �= 2 apply, which provides an isolated A1-singularity at the origin if and only if
n≡ 1 mod 2.

Thus, let u1u2 − 1= 0. Then gn = hn = 0 is equivalent to u2
1 + Pn−2(z1, . . . , zn−2)=

Pn−1(z1, . . . , zn−1)= 0. The minor of the Jacobian matrix of gn and hn corresponding to (u2, zn−1) pro-
vides that we have to have u1u3Pn−2(z1, . . . , zn−2)= 0. Since u1u2 − 1= 0 and Pn−2(z1, . . . , zn−2)=−u2

1,
we obtain u3 = 0. The column of the Jacobian matrix with respect to u2 is (0, u1)T and u1 �= 0 provides
that all derivatives of Pn−2(z1, . . . , zn−2) have to vanish. If n≡ 1 mod 2, then V(Pn−2 + u2

1) is regular by
Lemma 3.7(2) (where u2

1 �= 0 takes the role of λ). On the other hand, if n≡ 0 mod 2, then Proposition
3.8 implies that V(Pn−2 + u2

1) has a singularity of type A1 at V(z1, . . . , zn−2) if and only if u1 = 1. From
this, we obtain assertion (2′).

5.2. Cn cluster algebras

We choose the exchange matrix B for type Cn, n≥ 3, as:

B=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0 0 0

−1 0
. . . 0 0 0 0

...
. . .

. . .
. . .

...
...

...

0 0
. . . 0 1 0 0

0 0 · · · −1 0 1 0
0 0 · · · 0 −1 0 2
0 0 · · · 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(cf. [16, Section 5.5, (5.32)]). The corresponding Dynkin diagram is of type Cn (where n is the number
of vertices):

For this cluster algebra, the characteristic of the field makes a significant difference. First, we provide
a suitable presentation of A(Cn).

Lemma 5.3. Let K be any field and n≥ 3. The cluster algebra A(Cn) is isomorphic to

K[z1, . . . , zn+1]/〈Pn(z1, . . . , zn)zn+1 − Pn−1(z1, . . . , zn−1)
2 − 1〉 ,

where Pn is the continuant polynomial defined in Section 3. In particular, the variety Spec(A(Cn)) is
isomorphic to a hypersurface in An+1

K .

Proof. Since the underlying diagram �(B) is acyclic, the cluster algebra A(Cn) has a presentation as:

K[x1, . . . , xn, y1, . . . , yn]/〈h1, . . . , hn〉,
where we define h1 := x1y1 − x2 − 1, hn := xnyn − x2

n−1 − 1, and hk := xkyk − xk−1 − xk+1, for k ∈
{2, . . . , n− 1}. Similar as for type An (see Lemma 4.1) one can for 2≤ k≤ n stepwise express xk in
terms of x1, y1, . . . , yk−1:

xk = Pk(x1, y1, . . . , yk−1) .

The only difference is in the last generator hn, which becomes

hn(x1, y1, . . . , yn)= Pn(x1, y1, . . . , yn−1)yn − Pn−1(x1, y1, . . . , yn−2)2 − 1 .

After renaming the variables, we obtain the assertion.

Proposition 5.4. Let n≥ 3 and K be a field with char (K) �= 2. The variety Spec(A(Cn)) is isomorphic
to a regular hypersurface in An+1

K .

Proof. The proof follows the steps of the proof of Proposition 3.8. We apply the Jacobian cri-

terion to the presentation A(Cn)∼=K[z1, . . . , zn+1]/〈hn(z1, . . . , zn+1)〉 of Lemma 5.3. Since
∂hn

∂zn+1

=
Pn(z1, . . . , zn)= 0, the equation hn = 0 for the singular locus is equivalent to Pn−1(z1, . . . , zn−1)2 =−1.
If −1 /∈K2 is not a square in K , the last equality cannot hold and we have shown that the claim.

Assume −1 ∈K2 and let λ ∈K \ {0} be such that λ2 =−1 and Pn−1(z1, . . . , zn−1)= λ. Using Lemma
3.5, we get

0= ∂hn

∂zn

= Pn−1(z1, . . . , zn−1)zn+1 = λzn+1

and thus zn+1 = 0.

We prove by induction on k that hn = ∂hn

∂zn+1

. . .= ∂hn

∂zn−2k

= 0 imply

(ak) zn+1 = · · · = zn−2k+1 = 0,
(bk) Pn−2k−1(z1, . . . , zn−2k−1)= (− 1)kλ, and
(ck) Pn−2k(z1, . . . , zn−2k)= 0.

As we have seen above, the statements are true for k= 0. Let us deduce (ak+1), (bk+1), (ck+1) from (ak),
(bk), (ck). First, (ak) and Lemma 3.6 imply P2k(zn−2k, . . . , zn−1)=±1. Using zn+1 = 0, (b0), and Lemma
3.5, we have
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0= ∂hn

∂zn−2k−1

=−2Pn−1(z1, . . . , zn−1)
∂Pn−1(z1, . . . , zn−1)

∂zn−2k−1

=

= (− 2)λPn−2k−2(z1, . . . , zn−2k−2)P2k(zn−2k, . . . , zn−1)= (∓ 2)λPn−2k−2(z1, . . . , zn−2k−2) ,

which provides (ck+1) as char (K) �= 2. If we apply the recursion of Lemma 3.4 for Pn−2k(z1, . . . , zn−2k) and
use (bk) and (ck+1), we obtain zn−2k = 0. On the other hand, Lemma 3.4 applied for Pn−2k−1(z1, . . . , zn−2k−1),
(bk), and (ck+1) provide (bk+1). It remains to prove zn−2k−1 = 0. For this, we consider the derivative of hn

by zn−2k−2 (using Lemma 3.5) and apply (b0), (bk+1), as well as P2k+1(zn−2k−1, 0, . . . , 0)=±zn−2k−1 (by
Lemma 3.6).

Next, we distinguish two cases: if n= 2m for some m ∈Z+, then we have not used the derivative by
z1 in the induction. Using zn+1 = 0 and (b0), we obtain the contradiction:

0= ∂hn

∂z1

=−2λP2m−2(z2, z3, . . . , zn−1)=∓λ �= 0 ,

where the last equality holds by applying (am−1) and Lemma 3.6.
Assume n= 2m+ 1, for some m ∈Z+. Statement (am) implies z2 = 0 and (bm−1) states P2(z1, z2)=

±λ. This leads to the equality λ=∓1, which contradicts the property λ2 =−1 (see the definition of λ

above).

Let us discuss the case char(K)= 2, which turns out to be more complicated.

Proposition 5.5. Let K be a field of characteristic 2. The singular locus of Spec(A(Cn)) is isomorphic
to Spec(A(An−2)) and is of dimension n− 2. Moreover, we have

(1) If n≡ 0 mod 2, then Sing(A(Cn)) is regular and Spec(A(Cn)) is locally at the singular locus
isomorphic to a cylinder over a A1-hypersurface singularity in A3

K . In particular, the blowup
with center Sing(A(Cn)) resolves the singularities of Spec(A(Cn)).

(2) If n≡ 1 mod 2 and n > 3, then Sing(A(Cn)) has an isolated singularity of type A1 at the origin.
Locally at the origin, Spec(A(Cn)) is isomorphic to a hypersurface singularity of the form
(where m is defined by n= 2m+ 1):

Spec(k[x1, . . . , x2m, y, z]/〈 yz+ ( m∑
i=1

x2i−1x2i

)2 〉 , where n= 2m+ 1,

while locally at a singular point different from the origin, Spec(A(Cn)) is again isomorphic to
a cylinder over the A1-hypersurface singularity given by V(x2 + yz)⊂A3

K .
The singularity Spec(A(Cn)) is resolved by three blowups: the first center is the origin, the
second is the strict transform of the original singular locus, and the third center is the strict
transform of an exceptional component created after the first blowup.

(3) If n= 3, then Sing(A(Cn)) is isomorphic to two regular lines intersecting transversally at the
origin. All other statements of (2) remain true for m= 1.

Remark 5.6. Observe that case (2) is not among the simple singularities.

Proof of Proposition 5.5. As we have seen above,A(Cn) is isomorphic to the hypersurface determined
by hn(z1, . . . , zn+1)= Pn(z1, . . . , zn)zn+1 − Pn−1(z1, . . . , zn−1)2 − 1. Since char(K)= 2, we can rewrite
this as:

hn(z1, . . . , zn+1)= Pn(z1, . . . , zn)zn+1 +
(
Pn−1(z1, . . . , zn−1)+ 1

)2
.
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The partial derivatives are
∂hn

∂zn+1

= Pn(z1, . . . , zn) ,

∂hn

∂zk

= zn+1

∂Pn(z1, . . . , zn)

∂zk

, for k ∈ {1, . . . , n} .

This implies that we can replace the condition hn(z1, . . . , zn+1)= 0 by:

fn−2(z1, . . . , zn−1)= Pn−1(z1, . . . , zn−1)+ 1= 0

when determining the singular locus, where fn−2(z1, . . . , zn−1) is the polynomial providing a hypersurface
presentation for the variety Spec(A(An−2)) (see Lemma 4.1 and use char(K)= 2).

Since the second factor of
∂hn

∂zn

= zn+1Pn−1(z1, . . . , zn) cannot vanish if fn−2 = 0 and since
Pn(z1, . . . , zn)= znPn−1(z1, . . . , zn−1)+ Pn−2(z1, . . . , zn−2), we obtain

Sing(A(Cn))= V(un, zn+1, fn−2(z1, . . . , zn−1)) =: D,

where we introduce un := zn + Pn−2(z1, . . . , zn−2). Observe that

hn = f 2
n−1 + zn+1

(
un(1+ fn−1)+ fn−1Pn−2

)
.

Corollary 4.3(1′) implies that Sing(A(Cn)) is singular if and only if n≡ 1 mod 2.
First, assume n≡ 0 mod 2. Then, V(fn−1) is regular and we may take un−1 := fn−1 as a local variable

locally at the singular locus. Furthermore, 1+ fn−1 is a unit and we may introduce the local variable
wn := un(1+ fn−1)+ fn−1Pn−2. Hence, hn = u2

n−1 + zn+1wn and claim (1) follows.
Suppose that n≡ 1 mod 2. By Corollary 4.3(2′), Sing(A(Cn)) has an isolated singularity of type A1

at the origin V(z1, . . . , zn−1, un, zn+1). The statement about the the type of singularity away from origin
follows with the same argument as in the case n≡ 0 mod 2.

Let us study the situation at the origin. Write n− 2= 2m− 1, for m ∈Z+. As we have seen in the
proof of Proposition 3.8, there is a coordinate transformation (z1, . . . , z2m) �→ (t1, . . . , t2m) such that
fn−2(t1, . . . , t2m)=∑2m

i=1 t2i−1t2i, locally around the origin. Furthermore, we can again introduce wn above
such that, locally at the origin, we obtain hn = (

∑m
i=1 t2i−1t2i)2 +wnzn+1, as desired.

Let us discuss the desingularization of the variety Spec(A(Cn)). First, we blow up with center the
origin. In order to simplify the presentation of the charts, we abuse notation and write zn := un.

We fix the notation when considering explicit charts of a blowup: (we only discuss this for the
blowup of the origin, but it can be adapted for any blowup with a smooth center.) Recall that
the blowup in the origin of An+1

K = Spec(R), where R := K[z1, . . . , zn+1], is given by Bl0 (An+1
K ) :=

Proj (R[Z1, . . . , Zn+1]/〈ziZj − zjZi | i, j ∈ {1, . . . , n+ 1}〉), where (Z1, . . . , Zn+1) are projective variables.
In particular, Bl0 (An+1

K ) is covered by the open subsets Di given by Zi �= 0, for i ∈ {1, . . . , n+ 1}. We
also say that Di is the Zi-chart.

Fix i ∈ {1, . . . , n+ 1}. Since ziZj − zjZi = 0, for j �= i, we obtain that zj = zi

Zj

Zi

in the Zi-chart. This

provides that the Zi-chart is isomorphic to Spec(K[z′1, . . . , z′n+1]), where we set z′i := zi and z′j := Zj

Zi

for
j �= i. In order to keep the notation light, we abuse it by using the same letter for the variables after the
blowup as before, i.e., the transformation of the variables will be written as zj = zizj for j �= i.

Zn-chart. We have zi = znzi for every i �= n. The strict transform of hn is

h′n = f ′2n−1z
2
n + zn+1(1+ z2

nf
′
n−1 + z2

nf
′
n−1P′n−2) ,

where we denote by f ′n−1 (resp. P′n−2) the strict transform of fn−2 (resp. Pn−2). The strict transform D′ of
D is empty in this chart. Hence, the only singularities which may appear have to be contained in the

exceptional divisor V(zn). On the other hand, we have
∂h′n

∂zn+1
′ = 1+ z2

nf
′
n−1 + z2

nf
′
n−1P′n−2, which implies

that the strict transform of Spec(A(Cn)) is regular in this chart.
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The analogous argument applies for the Zn+1-chart.
Z1-chart. (All other charts remaining are analogous.) We get zi = z1zi for every i �= 1 and

h′n = f ′2n−1z2
1 + zn+1

(
zn(1+ z2

1f
′
n−1)+ z2

1f
′
n−1P′n−2

)
.

By Corollary 4.3(2′) V(f ′n−1) is regular and thus the same is true for D′. Lemma 3.6 implies that
f ′n−1 = z2 + z4 + · · · + zn−1 +H for some H ∈ 〈z1, z2, . . . , zn−1〉2. In particular, V(f ′n−1) is transversal to
V(z1znzn+1) and we may introduce the variable u2 := f ′n−1 locally at D′.

Since any newly created singularities have to be contained in the exceptional divisor V(z1), the ele-
ment 1+ z2

1f
′
n−1 is invertible locally at the singular locus of V(h′n). We introduce the local variable

wn := zn(1+ z2
1f
′
n−1)+ z2

1f
′
n−1P′n−2 and we get

h′n = f ′2n−1z
2
1 +wnzn+1.

Obviously, we have Sing(V(h′n))=D′ ∪ V(z1, wn, zn+1). Both components are regular and V(h′n) is an
A1-singularity at every point expect their intersection. Let us define E := V(z1, wn, zn+1).

Next, we blow up with center D′. Observe that this is a well-defined global center, which is seen in
any Zi-chart with i ∈ {1, . . . , n− 1} as it is the strict transform of Sing(Spec(A(Cn))). There are no new
singularities contained in the exceptional divisor of the second blowup, and hence the singular locus
of V(h′ ′n) has to be the strict transform E ′′ of E (where h′ ′n is the strict transform of h′n after the second
blowup). Locally at E ′′, the hypersurface is given by an equation of the form x2 − yz= 0. Therefore,
after blowing up E ′′ all singularities are resolved. Again observe that E ′′ is a well-defined global center
at this step of the resolution process, since it is the singular locus of the strict transform after the second
blowup.

Case (3) is seen by explicit computation.

5.3. F4 and G2 cluster algebras

Let us discuss the remaining cases of A(F4) and A(G2).

For the cluster algebra A(F4), we pick the exchange matrix B=

⎛⎜⎜⎝
0 1 0 0
−1 0 1 0
0 −2 0 1
0 0 −1 0

⎞⎟⎟⎠ (cf. [16, Exercise

4.4.12]), whose corresponding Dynkin diagram is of type F4:

Lemma 5.7. For any field K, the variety Spec(A(F4)) is isomorphic to a regular hypersurface in A5
K .

Proof. The underlying graph �(B) is acyclic and thus A(F4) is isomorphic to its lower bound cluster
algebra. Similar as above, we obtain the presentation:

A(F4)∼=K[x1, . . . , x4, y1, . . . , y4]/〈x1y1 − x2 − 1, x2y2 − x1 − x2
3, x3y3 − x2 − x4, x4y4 − x3 − 1〉 .

By eliminating x1, x2, x3, this can be simplified to

A(F4)∼=K[x, y, z, w, t]/〈xyzwt− x2yt2 − xyz− yzw+ 2xyt− xwt+ x− y+w− 1〉 .

Hence, Spec(A(F4)) is isomorphic to a hypersurface in A5
K . Moreover, the Jacobian criterion shows that

the latter is regular.

Next, let us come to A(G2). A possible exchange matrix is B=
(

0 1
−3 0

)
(cf. [16, Section 5.7]) and

the corresponding Dynkin diagram is of type G2:

https://doi.org/10.1017/S0017089522000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000209


Glasgow Mathematical Journal 29

Lemma 5.8. Let K be any field. The variety Spec(A(G2)) is isomorphic to a hypersurface in A3
K .

(1) If char (K) �= 3, then Spec(A(G2)) is regular.
(2) If char (K)= 3, then Spec(A(G2)) has an isolated singularity of type A2 at a closed point. In

particular, the singularities of the variety are resolved by two point blowups.

Proof. Since �(B) is acyclic, the cluster algebra A(G2) is isomorphic to its lower bound cluster
algebra by Theorem 2.12. We get the presentation:

A(G2)∼=K[x1, x2, y1, y2]/〈x1y1 − 1− x3
2, x2y2 − 1− x1〉 .

Since x1 can be expressed in term of the other variables, we find

A(G2)∼=K[x, y, z]/〈z3 − xyz+ y+ 1〉 .

By the Jacobian criterion, this algebra is regular for char(K) �= 3, and for characteristic 3 the Jacobian
criterion yields Sing(A(G2))∼= V(x+ 1, y, z+ 1), a closed point.

Assume char(K)= 3 and set x′ := x+ 1, and z′ := z+ 1. Then, we obtain A(G2)∼=K[x′, y, z′]/〈z′3 −
x′yz′ + yz′ + x′y〉, where the singular point is the origin in the new coordinates. Applying the local

coordinate change x′ = x̃− z′

1− z′
yields

A(G2)〈x̃,y,z
′〉
∼=K[x̃, y, z′]〈x̃,y,z

′〉/〈z′3 + x̃y〉 ,

which is a singularity of type A2, see [27, Definition 1.2].

6. Star cluster algebras

The final section is devoted to the question how singularities of cluster algebras may look for more
general quivers. We examine the cluster algebra of a star-shaped quiver. Consider the star quiver Sn

with n vertices and the following orientation:

By Lemma 2.14, all orientations on this tree are equivalent. Since the quiver is acyclic (and all vertices
are mutable), the corresponding cluster algebra, denoted by A(Sn), is isomorphic to its lower bound
cluster algebra by Theorem 2.12.

Remark 6.1. Observe that S2 = A2, S3 = A3, and S4 =D4. By Corollary 4.3, Spec(A(S2)) is regular,
while Spec(A(S3)) is an A1-hypersurface singularity which is resolved by blowing up the singular locus.
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Moreover, by Lemma 4.5 and Proposition 4.6, the singular locus of Spec(A(S4)) has six irreducible
components of dimension 1 and we obtain a desingularization of Spec(A(S4)) by first blowing up the
intersection of these irreducible components, followed by the blowup of their strict transforms.

In particular, if suffices to restrict to the case n≥ 5 in the following, if needed.

Lemma 6.2. The cluster algebra A(Sn) has a presentation of the form:

K[z1, . . . , z2n−2]/〈h1, h2, . . . , hn−2〉 ,

where

h1 := z1z2(1− z2n−3z2n−2 +
n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

hk := z1z2 − z2k−1z2k, for k ∈ {2, . . . , n− 2} .

In particular, the n -dimensional variety Spec(A(Sn)) can be embedded into A2n−2
K .

Proof. Since A(Sn) is isomorphic to its lower bound cluster algebra, we have

A(Sn)∼=K[x1, . . . , xn, y1, . . . , yn]/I ,

where I is the ideal generated by the exchange relations:

x1y1 − xn − 1 , . . . , xn−1yn−1 − xn − 1 , xnyn − x1 · · · xn−2 − xn−1 .

The first generator allows us to substitute xn = x1y1 − 1 and we get

x1y1 − x2y2 , . . . , x1y1 − xn−1yn−1 , yn(x1y1 − 1)− x1 · · · xn−2 − xn−1 .

We can eliminate another generator via xn−1 = yn(x1y1 − 1)− x1 · · · xn−2, which provides
h1 := x1y1 − xn−1yn−1 = x1y1 − yn−1(yn(x1y1 − 1)− x1 · · · xn−2)

= x1y1(1− yn−1yn)+ yn−1(yn + x1 · · · xn−2) ,

while hk := x1y1 − xkyk, for k ∈ {2, . . . , n− 2}, are unchanged. Introducing z2n−3 := yn−1, z2n−2 := yn +
x1 · · · xn−2, and z2k−1 := xk, z2k := yk, for k ∈ {1, . . . , n− 2}, provides the assertion.

Theorem 6.3. Let n≥ 4. Let A(Sn) be the cluster algebra arising form the star-shaped quiver Sn over a
field K. Using the notation of Lemma 6.2, we have

Sing(Spec(A(Sn)))∼=
n−1⋃
k=1

n−1⋃
�=k+1

Dk,� ⊆A2n−2
K ,

for Dk,� := V(z2k−1, z2k, z2�−1, z2�, z2m−1 · z2m |m ∈ {1, . . . , n− 1} \ {k, �}) .

In particular, the singular locus consists of
(

n−1
2

)
2n−3 = (n− 1)(n− 2)2n−4 irreducible components,

where each of them is regular and of dimension n− 3. Furthermore, locally at a generic point of such a
component, Spec(A(Sn)) is isomorphic to an A1-hypersurface singularity. On the other hand, locally at
the closed point determined by the intersection of all irreducible components, Spec(A(Sn)) is isomorphic
to a toric variety, defined by the binomial ideal:

〈x1x2 − x2k−1x2k | k ∈ {2, . . . , n− 1}〉 ⊂K[x1, . . . , x2n−2]〈x1,...,x2n−2〉.

We have that the intersection of all irreducible components is the origin of A2n−2
K and after blowing up

the latter, we obtain in each chart a singularity which is of the same kind as the one of Spec(A(Sn−1))⊂
A2n−4

K . In other words, the singularities of Spec(A(Sn)) are resolved by first separating the irreducible
components of its singular locus and then blowing up their strict transforms.

As a preparation for the proof, we show the following lemma, which we will use to make an induction.
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Lemma 6.4. Let h := x1x2(1+ ρ)+ y1y2 ∈K[x1, x2, y1, y2, u1, . . . , ua], for ρ ∈ 〈y1〉. We have

(1) Sing(V(h))∩ V(x1x2)= V(x1, x2, y1, y2).
(2) If ρ = y1y2ρ1 + x1y1ρ2, for ρ1, ρ2 ∈K[u1, . . . , ua], then Sing(V(h))= V(x1, x2, y1, y2).

Moreover, locally at V(x1, x2, y1, y2), the variety V(h) is a cylinder over an A1-hypersurface singularity.
In particular, blowing up V(x1, x2, y1, y2) resolves the singularities of V(h).

Proof. Notice that the inclusion V(x1, x2, y1, y2)⊆ Sing(V(h)) is obvious. It remains to show the
equality. We have

∂h

∂x1

= x2(1+ ρ)+ x1x2

∂ρ

∂x1

,
∂h

∂x2

= x1(1+ ρ)+ x1x2

∂ρ

∂x2

,

∂h

∂y1

= x1x2

∂ρ

∂y1

+ y2 ,
∂h

∂y2

= x1x2

∂ρ

∂y2

+ y1 .

If x1x2 = 0, then the vanishing of the derivatives with respect to y1 and y2 implies y1 = y2 = 0. Since
ρ ∈ 〈y1〉,we obtain x1 = x2 = 0 from the other two derivatives. Thus, all components of the singular locus
with x1x2 = 0 are contained in V(x1, x2, y1, y2).

Consider the case ρ = y1y2ρ1 + x1y1ρ2 and x1x2 �= 0. Then, we have
∂h

∂x2

= x1(1+ ρ) and we must
have 1+ ρ = 0. This provides y1y2 = 0 since h= 0. But y1 = 0 is impossible as this would contradict

1+ ρ = 0. We get y2 = 0 and 0= 1+ ρ = 1+ x1y1ρ2. The vanishing of
∂h

∂y1

leads to the condition 0=
∂ρ

∂y1

= x1ρ2, which contradicts 1+ x1y1ρ2 = 0.

Finally, locally at a point of V(x1, x2, y1, y2), the element 1+ ρ is a unit since ρ ∈ 〈y1〉 and hence V (h)
is locally isomorphic to the hypersurface singularity V(x1x2 + y1y2)⊂A4+a

K . This implies the remaining
statements.

Proof of Theorem 6.3. By Lemma 6.2, we have A(Sn)∼=K[z1, . . . , z2n−2]/I, where I :=
〈h1, h2, . . . , hn−2〉 and

h1 = z1z2(1− z2n−3z2n−2 +
n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

hk = z1z2 − z2k−1z2k , for k ∈ {2, . . . , n− 2} .

Observe that each generator is of the form as h in Lemma 6.4. Furthermore, for every � ∈ {2, . . . , n− 2}
fixed, we may interchange the role of z1z2 and z2�−1z2� using the relation h� = 0. Hence, Lemma 6.4
implies that

D :=
n−1⋃
k=1

n−1⋃
�=1
� �=k

Dk,� ⊆ Sing(Spec(A(Sn))) . (6.1)

It remains to prove that this is an equality. Suppose there exists C⊂ Sing(Spec(A(Sn))) with C � D.
We deduce a contradiction via an induction on the number of generators h1, . . . , hn−2. If n− 2= 2, then
n= 4, i.e., S4 =D4 (by Remark 6.1). By Lemma 4.5, the singular locus of Spec(A(D4)) consists of the
six lines determined by Dk,�.

Suppose n− 2 > 2. The induction hypothesis implies that (6.1) is an equality for any
K[z1, . . . , z2m−2, u1, . . . , ua]/〈g1, . . . , gm−2〉 with m− 2 < n− 2 and

g1 = z1z2(1+ ρ)+ z2m−3z2m−2 ,

gk = z1z2 − z2k−1z2k , for k ∈ {2, . . . , m− 2} ,
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where ρ ∈ 〈z2m−3〉 ⊂K[z1, . . . , z2m−2, u1, . . . , ua] and where we have z1z2 = 0 or ρ is of the form as in (ii)
of Lemma 6.4.

We blow up the origin, which is the intersection of all irreducible components in D. Since C �
D, the strict transform C ′ of C must appear in one of the charts. Since (h1, . . . , hn−2) is a Gröbner
basis of the ideal I , the strict transform of I is generated by their strict transforms h′1, . . . , h′n−2. We go
through the different charts of the blowup.

Z2k−1-chart, k ∈ {2, . . . , n− 2}. Without loss of generality, we assume k= 2. We have zi = z3zi for
every i �= 3. (By abuse of notation, we denote the variables after the blowup by the same letter.) Hence,
we get

h′1 = z1z2(1− z2
3z2n−3z2n−2 + zn−2

3

n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

h′2 = z1z2 − z4 ,

h′k = z1z2 − z2k−1z2k , for k ∈ {3, . . . , n− 2} .

Since z4 appears only in h′2, we can eliminate it and forget the generator h′2 without changing the
other h′k, k≥ 3. Notice that h′1 is of the form as h in Lemma 6.4 and thus, we can apply the induction
hypothesis for

K[z1, z2, z5, z6, . . . , z2n−2, u1]/〈h′1, h3
′, . . . , hn−2

′〉 ,

where u1 := z3. Therefore, the corresponding singular locus is equal to the strict transform of D. In
particular, C ′ has to be empty in this chart.

Z2k-chart, k ∈ {2, . . . , n− 2}. Without loss of generality, we choose k= 2. We get zi = z4zi for every
i �= 3. The strict transforms of h1, . . . , hn−2 are

h′1 = z1z2(1− z2
4z2n−3z2n−2 + zn−1

4

n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

h′2 = z1z2 − z3 ,

h′k = z1z2 − z2k−1z2k , for k ∈ {3, . . . , n− 2} .

We eliminate h′2 by replacing z3 = z1z2. Observe that this changes h′1 as z3 appears in the product. Since
we have already treated the Z3-chart, it is sufficient to consider only those points of the Z4-chart, which
are not contained in the Z3-chart. Therefore, the singular points, which we have to determine here, fulfill
the extra condition z3 = 0. (Using the precise distinction of the variables before and after the blowup as
discussed in the proof of Proposition 5.5, we have z3 = z4z′3, where z′3 := Z3

Z4

, and hence, we avoid the
chart Z3 �= 0 by setting Z3 = 0, which leads to z′3 = 0). The relation z3 = z1z2 implies that we must have
z1z2 = 0, which is Lemma 6.4(1). Therefore, we can apply the induction hypothesis and obtain C′ =∅
in the Z4-chart.

Z1-chart. Here, zi = z1zi for every i �= 1 and we obtain

h′1 = z2(1− z2
1z2n−3z2n−2 + zn−2

1

n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

h′2 = z2 − z3z4 ,

h′k = z2 − z2k−1z2k , for k ∈ {3, . . . , n− 2} .

We replace z2 = z3z4 and drop h′2 in the list of generators. This provides

h′1 = z3z4(1− z2
1z2n−3z2n−2 + zn−2

1

n−1∏
�=1

z2�−1)+ z2n−3z2n−2 ,

h′k = z3z4 − z2k−1z2k , for k ∈ {3, . . . , n− 2} .
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Again, we can apply the induction hypothesis using u1 := z1 and the strict transform of C is empty in
this chart.

Combining the arguments of the Z1- and the Z4-charts shows that C′ =∅ in the Z2-chart.
Z2n−3-chart. We have zi = z2n−3zi for every i �= 2n− 3. The strict transforms of h1, . . . , hn−2 are

h′1 = z1z2(1− z2
2n−3z2n−2 + zn−1

2n−3

n−1∏
�=1

z2�−1)+ z2n−2 ,

h′k = z1z2 − z2k−1z2k , for k ∈ {2, . . . , n− 2} .

Since we already handled the Zi-charts for i ∈ {1, . . . , 2n− 4}, we only have to take those points into
account which are not contained in these charts. Therefore, analogous to the Z4-chart, it suffices if we
determine only those singular points, for which we have additionally z1 = . . .= z2n−4 = 0.

We may rewrite h′1 as:

z2n−2(1− z1z2z
2
2n−3)+ z1z2(1+ zn−1

2n−3

n−1∏
�=1

z2�−1)

and, by the previous, 1− z1z2z2
2n−3 is a unit. This implies that we may eliminate z2n−2 and forget h′1. The

resulting ideal is binomial. In particular, we can apply the induction hypothesis with u1 := z2n−3 (as
ρ = 0 is a possible choice) and we get C′ =∅ in the present chart.

The analogous arguments can be applied for the remaining Z2n−2-chart. This concludes the proof that
(6.1) is an equality.

The results on the desingularization, on the type of the singularity at a generic point of an irreducible
component of Sing(Spec(A(Sn))), and on the local description of Spec(A(Sn)) at the origin follow: in
each of the charts above, we blow up the intersection of the irreducible components of strict transform
D and continue this process until we eventually reach the case, where there is only one irreducible
component left. Since we eliminate after every blowup one generator, the strict transform of the variety
is isomorphic to a hypersurface as in Lemma 6.4 in every chart. In particular, we get a hypersurface
singularity of type A1 and all singularities are resolved after the next blowup.

Finally, after localizing at 〈z1, . . . , z2n−2〉, the factor in parentheses of h1 becomes a unit, which we
abbreviate as ε. Therefore, we may introduce x2n−2 := ε−1z2n−2 and the ideal generated by hk, for k ∈
{1, . . . , n− 2}, is binomial.

Remark 6.5. As we have seen and using Remark 6.1 for n ∈ {2, 3}, the number of irreducible com-
ponents in the singular locus of Spec(A(Sn)) is s(n) := (n− 1)(n− 2)2n−4, for n ∈ {2, 3, 4, 5, . . .};
more concretely, s(2)= 0, s(3)= 1, s(4)= 6, s(5)= 24, s(6)= 80, . . .. This integer sequence appears
in The On-Line Encyclopedia of Integer Sequences, [44, Sequence A001788]. There, the sequence is
a(n) := n(n+ 1)2n−2 = s(n+ 2), for n ∈Z≥0.

One of the provided descriptions is the following: let X be a set with 2n elements and let X1, . . . , Xn

be a partition of X into 2 -blocks. For n > 1, the number a(n− 1) coincides with the number subsets of
X with n+ 2 elements and which intersect every Xi for i ∈ {1, . . . , n}. This precisely describes how we
obtained the components of the singular locus. Let us briefly explain this (for the case Sn+1):

• The set X := {z1, . . . , z2n} is the set of variables.
• The partition in 2 -blocks is determined by the monomials appearing in h1, . . . , hn−1, namely,

the blocks are Xi := {z2i−1, z2i}, for i ∈ {1, . . . , n}.
• A subset with n+ 2 elements determines a regular (n− 2)-dimensional subvariety C⊂A2n

K .
The condition that every Xi has to be intersected ensures that we have C⊂ Spec(A(Sn+1)).
Furthermore, the number of elements n+ 2 provides that there is a generator which is singular
at C and that C⊂ Sing(Spec(A(Sn+1)) is an irreducible component.
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