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Abstract

The technique of Cross-Lingual Word Embedding (CLWE) plays a fundamental role in
tackling Natural Language Processing challenges for low-resource languages. Its dominant
approaches assumed that the relationship between embeddings could be represented by a
linear mapping, but there has been no exploration of the conditions under which this as-
sumption holds. Such a research gap becomes very critical recently, as it has been evidenced
that relaxing mappings to be non-linear can lead to better performance in some cases. We,
for the Ąrst time, present a theoretical analysis that identiĄes the preservation of analogies
encoded in monolingual word embeddings as a necessary and sufficient condition for the
ground-truth CLWE mapping between those embeddings to be linear. On a novel cross-
lingual analogy dataset that covers Ąve representative analogy categories for twelve distinct
languages, we carry out experiments which provide direct empirical support for our theoret-
ical claim. These results offer additional insight into the observations of other researchers
and contribute inspiration for the development of more effective cross-lingual representation
learning strategies.

1 Introduction

Cross-Lingual Word Embedding (CLWE) methods encode words from two or more languages in a shared
high-dimensional space in which vectors representing lexical items with similar meanings (regardless of lan-
guage) are closely located. Compared with alternative techniques, such as cross-lingual pre-trained language
models, CLWE is orders of magnitude more efficient in terms of training corpora1 and computational power
requirements2. As a result, the topic has received signiĄcant attention as a promising means to support
Natural Language Processing (NLP) for low-resource languages (including ancient languages) and has been
used for a range of applications, e.g., Machine Translation (Herold et al., 2021), Sentiment Analysis (Sun
et al., 2021), Question Answering (Zhou et al., 2021) and Text Summarisation (Peng et al., 2021b).

1For example, Kim et al. (2020) show that inadequate monolingual data size (fewer than one million sentences) is likely to
lead to collapsed performance of XLM (Lample & Conneau, 2019) even for etymologically close language pairs. Meanwhile,
CLWE can easily align word embeddings for languages such as African Amharic and Tigrinya for which only have millions of
tokens (Zhang et al., 2020) are available.

2For example, XLM-R (Conneau et al., 2020) was trained on 500× Tesla V100 GPUs, whereas the training of
VecMap (Artetxe et al., 2018) can be finished on a single Titan Xp GPU.
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The most successful CLWE approach, CLWE alignment, learns mappings between independently trained
monolingual word vectors with very little, or even no, cross-lingual supervision (Ruder et al., 2019). One
of the key challenges of these algorithms is the design of mapping functions. Motivated by the observation
that word embeddings for different languages tend to be similar in structure (Mikolov et al., 2013b), many
researchers have assumed that the mappings between cross-lingual word vectors are linear (Faruqui & Dyer,
2014; Lample et al., 2018b; Li et al., 2021).

Although models based on this assumption have demonstrated strong performance, it has recently been
questioned. Researchers have claimed that the structure of multilingual word embeddings may not always
be similar (Søgaard et al., 2018; Dubossarsky et al., 2020; Vulić et al., 2020), which led to the emergence
of approaches relaxing the mapping linearity (Glavaš & Vulić, 2020; Wang et al., 2021a) or using non-
linear functions (Mohiuddin et al., 2020; Ganesan et al., 2021). These new methods can sometimes out-
perform the traditional linear counterparts, causing a debate around the suitability, or otherwise, of linear
mappings. However, to the best of our knowledge, the majority of previous CLWE work has focused on
empirical Ąndings, and there has been no in-depth analysis of the conditions for the linearity assumption.
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Figure 1: Wiki vectors (see ğ 4.3) of English (left)
and French (right) analogy word pairs based on
PCA (Wold et al., 1987). NB: We manually ro-
tate the visualisation to highlight structural sim-
ilarity.

This paper approaches the problem from a novel perspec-
tive by establishing a link between the linearity of CLWE
mappings and the preservation of encoded monolingual
analogies. Our work is motivated by the observation
that word analogies can be solved via the composition
of semantics based on vector arithmetic (Mikolov et al.,
2013c) and such linguistic regularities might be transfer-
able across languages. More speciĄcally, we notice that
if analogies encoded in the embeddings of one language
also appear in the embeddings of another, the correspond-
ing multilingual vectors tend to form similar shapes (see
Fig. 1), suggesting the CLWE mapping between them
should be approximately linear. In other words, we sus-
pect that the preservation of analogy encoding indicates
the linearity of CLWE mappings.

Our hypothesis is veriĄed both theoretically and empirically. We make a justiĄcation that the preservation
of analogy encoding should be a sufficient and necessary condition for the linearity of CLWE mappings. To
provide empirical validation, we Ąrst deĄne indicators to qualify the linearity of the ground-truth CLWE
mapping (SLMP) and its preservation of analogy encoding (SPAE). Next, we build a novel cross-lingual word
analogy corpus containing Ąve analogy categories (both semantic and syntactic) for twelve languages that
pose pairs of diverse etymological distances. We then benchmark SLMP and SPAE on three representative
series of word embeddings. In all setups tested, we observe a signiĄcant correlation between SLMP and
SPAE, which provides empirical support for our hypothesis. With this insight, we offer explanations to
why the linearity assumption occasionally fails, and consequently, discuss how our research can beneĄt the
development of more effective CLWE algorithms. We also recommend the use of SPAE to assess mapping
linearity in CLWE applications. We release our data and code at https://github.com/Pzoom522/xANLG.

This paper’s contributions are summarised as:

• Introduces the previously unnoticed relationship between the linearity of CLWE mappings and the preser-
vation of encoded word analogies.

• Provides a theoretical analysis of this relationship.
• Describes the construction of a novel cross-lingual analogy test set with Ąve categories of word pairs aligned

across twelve diverse languages.
• Provides empirical evidence of our claim and introduces SPAE to estimate the analogy encoding preser-

vation (and therefore the mapping linearity). We additionally demonstrate that SPAE can be used as an
indicator of the relationship between monolingual word embeddings, independently of trained CLWEs.
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• Discusses implications of these results, regarding the interpretation of previous results and as well as the
future development of cross-lingual representations.

2 Related Work

Linearity of CLWE Mapping. Mikolov et al. (2013b) discovered that the vectors of word translations
exhibit similar structures across different languages. Researchers made use of this by assuming that mappings
between multilingual embeddings could be modelled using simple linear transformations. This framework
turned out to be effective in numerous studies which demonstrated that linear mappings are able to produce
accurate CLWEs with weak or even no supervision (Artetxe et al., 2017; Lample et al., 2018b; Artetxe et al.,
2018; Wang et al., 2020; Li et al., 2021).

One way in which this is achieved is through the application of a normalisation technique called Şmean cen-
tringŤ, which (for each language) subtracts the average monolingual word vector from all word embeddings,
so that this mean vector becomes the origin of the vector space (Xing et al., 2015; Artetxe et al., 2016;
Ruder et al., 2019). This step has the effect of simplifying the mapping from being affine (i.e., equivalent to
a shifting operation plus a linear mapping) to linear by removing the shifting operation.

However, recent work has cast doubt on this linearity assumption, leading researchers to experiment with the
use of non-linear mappings. Nakashole & Flauger (2018) and Wang et al. (2021a) pointed out that structural
similarities may only hold across particular regions of the embedding spaces rather than over their entirety.
Søgaard et al. (2018) examined word vectors trained using different corpora, models and hyper-parameters,
and concluded conĄguration dissimilarity between the monolingual embeddings breaks the assumption that
the mapping between them is linear. Patra et al. (2019) investigated various language pairs and discovered
that a higher etymological distance is associated with degraded the linearity of CLWE mappings. Vulić et al.
(2020) additionally argued that factors such as limited monolingual resources may also weaken the linearity
assumption.

These Ąndings motivated work on designing non-linear mapping functions in an effort to improve CLWE
performance. For example, Nakashole (2018) and Wang et al. (2021a) relaxed the linearity assumption by
combining multiple linear CLWE mappings; Patra et al. (2019) developed a semi-supervised model that
loosened the linearity restriction; Lubin et al. (2019) attempted to reduce the dissimilarity between multi-
lingual embedding manifolds by reĄning learnt dictionaries; Glavaš & Vulić (2020) Ąrst trained a globally
optimal linear mapping, then adjusted vector positions to achieve better accuracy; Mohiuddin et al. (2020)
used two independently pre-trained auto-encoders to introduce non-linearity to CLWE mappings; Ganesan
et al. (2021) obtained inspirations via the back translation paradigm, hence framing CLWE training as to
explicitly solve a non-linear and bijective transformation between multilingual word embeddings. Despite
these non-linear mappings outperforming their linear counterparts in many setups, in some settings the linear
mappings still seem more successful, e.g., the alignment between Portuguese and English word embeddings in
Ganesan et al. (2021). Moreover, training non-linear mappings is typically more complex and thus requires
more computational resources.

Albeit at the signiĄcant recent attention to this problem by the research community, it is still unclear under
what condition the linearity of CLWE mappings holds. This paper makes the Ąrst attempt to close this
research gap by providing both theoretical and empirical contributions.

Analogy Encoding. Analogy is a fundamental concept within cognitive science (Gentner, 1983) that has
received signiĄcant focus from the NLP community, since the observation that it can be represented using
word embeddings and vector arithmetic (Mikolov et al., 2013c). A popular example based on the analogy
Şking is to man as queen is to womanŤ shows that the vectors representing the four terms (xking, xman,
xqueen and xwoman) exhibit the following relation:

xking − xman ≈ xqueen − xwoman. (1)

Since this discovery, the task of analogy completion has commonly been employed to evaluate the quality of
pre-trained word embeddings (Mikolov et al., 2013c; Pennington et al., 2014; Levy & Goldberg, 2014a). This
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line of research has directly beneĄted downstream applications (e.g., representation bias removal (Prade &
Richard, 2021)) and other relevant domains (e.g., automatic knowledge graph construction (Wang et al.,
2021b)). Theoretical analysis has demonstrated a link between embeddings’ analogy encoding and the
Pointwise Mutual Information of the training corpus (Arora et al., 2016; Gittens et al., 2017; Allen &
Hospedales, 2019; Ethayarajh et al., 2019; Fournier & Dunbar, 2021). Nonetheless, as far as we are aware,
the connection between the preservation of analogy encoding and the linearity of CLWE mappings has not
been previously investigated.

3 Theoretical Basis

We denote a ground-truth CLWE mapping as M : X → Y, where X and Y are monolingual word
embeddings independently trained for languages LX and LY, respectively.

Proposition. Encoded analogies are preserved during the CLWE mapping M ⇐⇒ M is affine.

Remarks. Following Eq. (1), the preservation of analogy encoding under a mapping can be formalised as

xα − xβ = xγ − xθ =⇒ M(xα) − M(xβ) = M(xγ) − M(xθ), (2)

where xα, xβ, xγ , xθ ∈ X.

If M is affine, for d-dimensional monolingual embeddings X we have

M(x) := Mx + b, (3)

where x ∈ X, M ∈ Rd×d, and b ∈ Rd×1.

Proof: Eq. (2) =⇒ Eq. (3). To begin with, by adopting the mean centring operation in ğ 2, we shift the
coordinates of the space of X, ensuring

M(⃗0) = 0⃗. (4)

This step greatly simpliĄes the derivations afterwards, because from now on we just need to demonstrate
that M is a linear mapping, i.e., it can be written as Mx. By deĄnition, this is equivalent to showing that M
preserves both the operations of addition (a.k.a. additivity) and scalar multiplication (a.k.a. homogeneity).

Additivity can be proved by observing that (xi + xj) − xj = xi − 0⃗ and therefore,

(xi + xj) − xj = xi − 0⃗
Eq. (2)
=====⇒ M(xi + xj) − M(xj) = M(xi) − M(⃗0)

Eq. (4)
=====⇒ M(xi + xj) = M(xi) + M(xj). (5)

Homogeneity can be proved in four steps.

• Step 1: Observe that 0⃗ − xi = −xi − 0⃗, similar to Eq. (5) we can show that

0⃗ − xi = −xi − 0⃗
Eq. (2)
=====⇒ M(⃗0) − M(xi) = M(−xi) − M(⃗0)

Eq. (4)
=====⇒
×(−1)

M(xi) = −M(−xi). (6)

• Step 2: Using mathematical induction, for arbitrary xi, we show that

∀m ∈ N+, M(mxi) = mM(xi) (7)

holds, where N+ is the set of positive natural numbers, as
Base Case: Trivially holds when m = 1.
Inductive Step: Assume the inductive hypothesis that m = k (k ∈ N+), i.e.,

M(kxi) = kM(xi). (8)
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Then, as required, when m = k + 1,

M
(

(k + 1)xi

) Eq. (5)
===== M(kxi) + M(xi)

Eq. (8)
===== kM(xi) + M(xi) = (k + 1)M(xi).

• Step 3: We further justify that

∀n ∈ N+, M(
xi

n
) =

M(xi)
n

, (9)

which, due to Eq. (4), trivially holds when n = 1; as for n > 1,

M(
xi

n
) = M

(

xi + (−
n − 1

n
xi)

) Eq. (5)
===== M(xi) + M(−

n − 1
n

xi)

Eq. (6)
===== M(xi) − M(

n − 1
n

xi)
Eq. (7)

===== M(xi) − (n − 1)M(
xi

n
)

directly yields M( xi

n
) = M(xi)

n
, i.e., Eq. (9).

• Step 4: Considering the set of rational numbers Q = {0} ∪ {± m

n
|∀m, n}, Eqs. (4), (6), (7) and (9) jointly

justiĄes the homogeneity of M for Q. Because Q ⊂ R is a dense set, homogeneity of M also holds over R,
see Kleiber & Pervin (1969).

Finally, combined with the additivity that has been already justiĄed above, linearity of CLWE mapping M
is proved, i.e., Eq. (2) =⇒ Eq. (3).

Proof: Eq. (3) =⇒ Eq. (2). Justifying this direction is quite straightforward:

xα − xβ = xγ − xθ =⇒ Mxα − Mxβ = Mxγ − Mxθ

=⇒ Mxα + b − (Mxβ + b) = Mxγ + b − (Mxθ + b)

=⇒ M(xα) − M(xβ) = M(xγ) − M(xθ).

Summarising the proofs for both the forward and reverse directions, we conclude that the proposition holds.

Please note, the high-level assumption of our derivations is that word embedding spaces can be treated
as continuous vector spaces, an assumption commonly adopted in previous work, e.g., Levy & Goldberg
(2014b), Hashimoto et al. (2016), Zhang et al. (2018), and Ravfogel et al. (2020). Nevertheless, we argue
that the inherent discreteness of word embeddings should not be ignored. The following sections complement
this theoretical insight via experiments which conĄrm the claim holds empirically.

4 Experiment

Our experimental protocol assesses the linearity of the mapping between each pair of pre-trained monolingual
word embeddings. We also quantify the extent to which this mapping preserves encoded analogies, i.e.,
satisĄes the condition of Eq. (2). We then analyse the correlation between these two indicators. A strong
correlation provides evidence to support our theory, and vice versa. The indicators used are described in
ğ 4.1. Unfortunately, there are no suitable publicly available corpora for our proposed experiments, so we
develop a novel word-level analogy test set that is fully parallel across languages, namely xANLG (see ğ 4.2).
The pre-trained embeddings used for the tests are described in ğ 4.3.

4.1 Indicators

4.1.1 Linearity of CLWE Mapping

Direct measurement of the linearity of a ground-truth CLWE mapping is challenging. One relevant approach
is to benchmark the similarity between multilingual word embedding, where the mainstream and state-of-
the-art indicators are the so-called spectral-based algorithms (Søgaard et al., 2018; Dubossarsky et al.,
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2020). However, such methods assume the number of tested vectors to be much larger than the number of
dimensions, which does not apply in our scenario (see ğ 4.2). Therefore, we choose to evaluate linearity via
the goodness-of-Ąt of the optimal linear CLWE mapping, which is measured as

SLMP := −||M⋆X − Y ||F /r with M⋆ = arg min
M

||MX − Y ||F ,

where || · ||F and r denotes the Frobenius norm and the number of X’s rows. To obtain matrices X and
Y , from X and Y respectively, we Ąrst retrieve the vectors corresponding to lexicons of a ground-truth
LX-LY dictionary and concatenate them into two matrices. More speciĄcally, if two vectors (represented as
rows) share the same index in the two matrices (one for each language), their corresponding words form a
translation pair, i.e., the rows of these matrices are aligned. ŞMean centringŤ is applied to satisfy Eq. (4).
For fair comparisons across different mapping pairs, in each of X and Y , rows are standardised by scaling
the mean Euclidean norm to 1. Generic Procrustes Analysis (not necessarily orthogonal) (Bookstein, 1992)
is applied to Ąnd M⋆.

Large absolute values of SLMP mean that the optimal linear mapping is an accurate model of the true
relationship between the embeddings, and vice versa. SLMP therefore indicates the degree to which CLWE
mappings are linear.

4.1.2 Preservation of Analogy Encoding

To assess how well analogies are preserved across embeddings, we start by probing how analogies are encoded
in the monolingual word embeddings. We use the set-based LRCos, the state-of-the-art analogy mining tool
for static word embeddings (Drozd et al., 2016).3 It provides a score in the range of 0 to 1, indicating the
correctness of analogy completion in a single language. For the extension in a cross-lingual setup, we further
compute the geometric mean:

SPAE :=
√

LRCos(X) × LRCos(Y),

where LRCos(·) is the accuracy of analogy completion provided by LRCos for embedding X. To simplify
our discussion and analysis from now onward, when performing CLWE mappings, by default we select the
monolingual embeddings that best encode analogy, i.e., we restrict LRCos(X) ≥ LRCos(Y). SPAE = 1
indicates all analogies are well encoded in both embeddings, and are preserved by the ground-truth mapping
between them. On the other hand, lower SPAE values indicate deviation from the condition of Eq. (2).

4.1.3 Validity of SPAE

As an aide, we explore the properties of the SPAE indicator to demonstrate its robustness for the interested
reader. The score produced by LRCos is relative to a pre-speciĄed set of known analogies. In theory, a low
LRCos(X) score may not reliably indicate that X does not encode analogies well since there may be other
word pairings within that set that produce higher scores. This naturally raises a question: does SPAE really
promise the validity as the indicator of analogy encoding preservation? In other words, it is necessary to
investigate whether there exists an unknown analogy word set encoded by the tested embeddings to an equal
or higher degree. If there is, then SPAE may not reĆect the preservation of analogy encoding completely, as
unmatched analogy test sets may lead to low LRCos scores even for monolingual embeddings that encode
analogies well. We demonstrate that the problem can be considered as an optimal transportation task and
SPAE is guaranteed to be a reliable indicator.

As analysed by Ethayarajh et al. (2019), the degree to which word pairs are encoded as analogies in word
embeddings is equivalent to the likelihood that the end points of any two corresponding vector pairs form a
high-dimensional coplanar parallelogram. More formally, this task is to identify

P⋆ = arg min
P

∑

x∈X

C
(

T P (x)
)

, (10)

3We have tried alternatives including 3CosAdd (Mikolov et al., 2013a), PairDistance (Levy & Goldberg, 2014a) and 3Cos-
Mul (Levy et al., 2015), verifying that they are less accurate than LRCos in most cases. Still, in the experiments they all exhibit
similar trends as shown in Tab. 2.
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Figure 2: An example of solving T P (·) in Eq. (11), with P = {(x1, x2), (x3, x4), (x5, x6), (x7, x8)}. In the
Ągure we adjust the position of x1, x3, x5 and x7 in the last step, but it is worth noting that there also
exists other feasible T P (·) given p⋆, e.g., to tune x2, x4, x6 and x8 instead.

where P is one possible pairing of vectors in X and C(·) is the cost of a given transportation scheme. T P (·)
denotes the corresponding cost-optimal process of moving vectors to satisfy

∀{(xα, xβ), (xγ , xθ)} ⊆ P,

T P (xα) − T P (xβ) = T P (xγ) − T P (xθ), (11)

i.e., the end points of T P (xα), T P (xβ), T P (xγ) and T P (xθ) form a parallelogram.

Therefore, in each language and analogy category of xANLG, we Ąrst randomly sample vector pairing
samples, leading to 1e5 different P. Next, for each of them, we need to obtain T P (·) that minimises
∑

x∈X
C

(

T P (x)
)

in Eq. (10). Our algorithm is explained using the example in Fig. 2, where the cardinality
of X and P is 8 and 4, respectively.

• Step 1: Link the end points of the vectors within each word pair, hence our target is to adjust these end
points so that all connecting lines not only have equal length but also remain parallel.

• Step 2: For each vector pair (xα, xβ) ∈ P, vectorise its connecting line into an offset vector as vα−β =
xα − xβ.

• Step 3: As the start points of all such offset vectors are aggregated at 0⃗, seek a vector p⋆ that minimises
the total transportation cost between the end point of p⋆ and those of all offset vectors (again, note they
share a start point at 0⃗).

• Step 4: Perform the transportation so that all offset vectors become p⋆, i.e.,

∀(xα, xβ) ∈ P, T P (xα) − T P (xβ) = p⋆.

In this way, the tuned vector pairs can always form perfect parallelograms. Obviously, as p⋆ is at the
cost-optimal position (see Step 3), this vector-adjustment scheme is also cost-optimal.

Solving p⋆ for high dimensions is non-trivial in real world and is a special case of the NP-hard Facil-
ity Location Problem (a.k.a. the P-Median Problem) (Kariv & Hakimi, 1979). We, therefore, use the
scipy.optimize.fmin implementation of the Nelder-Mead simplex algorithm (Nelder & Mead, 1965) to
provide a good-enough solution. To reach convergence, with the mean offset vector as the initial guess, we
set both the absolute errors in parameter and function value between iterations at 1e4. We experimented
with implementing C(·) using mean Euclidean, Taxicab and Cosine distances respectively. For all analogy
categories in all languages, P⋆ coincides perfectly with the pre-deĄned pairing of xANLG. This analysis
provides evidence that the situation where an unknown kind of analogy is better encoded than the ones used
does not occur in practice. SPAE is thus trustworthy.

4.2 Datasets

Calculating the correlation between SLMP and SPAE requires a cross-lingual word analogy dataset. This
resource would allow us to simultaneously (1) construct two aligned matrices X and Y to check the linearity
of CLWE mappings, and (2) obtain the monolingual LRCos scores of both X and Y. Three relevant resources
were identiĄed, although none of them is suitable for our study.
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1

♷A
NL

G G
Category # ♣♤ ♤♭ ♤♲ ♥♱ ♧♨ ♯♫
CAP† 31 Budapest

Ungarn
Budapest
Hungary

Budapest
Hungría

Budapest
Hongrie

Budapeszt
Węgry

GNDR† 30 sohn
tochter

son
daughter

hijo
hija

fils
fille

syn
córka

NATL† 34 Peru
Peruanisch

Peru
Peruvian

Perú
Peruano

Pérou
Péruvien

Peru
Peruwiański

G-PL‡ 31 kind
kinder

child
children

niño
niños

enfant
enfants

dziecko
dzieci

♷A
NL

G M

Category # ♤♭ ♤♳ ♥♨ ♧♱ ♫♵ ♱♴ ♲♫
ANIM† 32 eagle

bird
kotkas
lind

kotka
lintu

orao
ptica

ērglis
putns

орёл
птица

orel
ptica

G-PL‡ 31 machine
machines

masin
masinad

kone
koneet

stroj
strojevi

mašīna
mašīnas

машина
машины

stroj
stroji

Table 1: Results

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

बुडापे⡰ट
हंगरी
बेटा
बेटी
पे⣶
पे⣶
ब⡜चा
ब⡜चे

Table 1: Summary of and examples from the xANLG corpus. # denotes the number of cross-lingual anal-
ogy word pairs in each language. †Semantic: animal-species|ANIM, capital-world|CAP, male-female|GNDR,
nation-nationality|NATL. ‡Syntactic: grammar-plural|G-PL.

• Brychcín et al. (2019) described a cross-lingual analogy dataset consisting of word pairs from six closely
related European languages, but it has never been made publicly available.

• Ulčar et al. (2020) open-sourced the MCIWAD dataset for nine languages, but the analogy words in
different languages are not parallel4.

• Garneau et al. (2021) produced the cross-lingual WiQueen dataset. Unfortunately, a large part of its
entries are proper nouns or multi-word terms instead of single-item words, leading to low coverage on the
vocabularies of embeddings.

Consequently, we develop xANLG, which we believe to be the Ąrst (publicly available) cross-lingual word
analogy corpus. For consistency with previous work, xANLG is bootstrapped using established monolingual
analogies and cross-lingual dictionaries. xANLG is constructed by starting with a bilingual analogy dataset,
say, that for LX and LY. Within each analogy category, we Ąrst translate word pairs of the LX analogy
corpus into LY, using an available LX-LY dictionary. Next, we check if any translation coincides with its
original word pair in LY. If it does, such a word pair (in both LX and LY) will be added into the bilingual
dataset. This process is repeated for multiple languages to form a cross-lingual corpus.

We use the popular MUSE dictionary (Lample et al., 2018a) which contains a wide range of language pairs.
Two existing collections of analogies are utilised:

• Google Analogy Test Set (GATS) (Mikolov et al., 2013c), the de facto standard benchmark of
embedding-based analogy solving. We adopt its extended English version, Bigger Analogy Test Set
(BATS) (Gladkova et al., 2016), supplemented with several datasets in other languages inspired by the
original GATS: French, Hindi and Polish (Grave et al., 2018), German (Köper et al., 2015) and Span-
ish (Cardellino, 2019).

• The aforementioned Multilingual Culture-Independent Word Analogy Datasets
(MCIWAD) (Ulčar et al., 2020).

Due to the differing characteristics of these datasets (e.g., the composition of analogy categories), they are
used to produce two separate corpora: xANLGG and xANLGM. Only categories containing at least 30
word pairs aligned across all languages in the dataset were included. For comparison, 60% of the semantic
analogy categories in the commonly used GATS dataset contains fewer than 30 word pairs. The rationale for
selecting this value was that it allows a reasonable number of analogy completion questions to be generated.5

Information in xANLGG and xANLGM for the capital-country of Hindi was supplemented with manual

4Personal communication with the authors.
530 word pairs can be used to generate as many as 3480 unique analogy completion questions such as “king:man :: queen:?”

(see Appendix A).
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translations by native speakers. In addition, each analogy included in the data set was checked by at least
one Ćuent speaker of the relevant language to ensure that they are valid.

The xANLG dataset contains Ąve distinct analogy categories, including both syntactic (morphological) and
semantic analogies, and twelve languages from a diverse range of families (see Tab. 1). From Indo-European
languages, one belongs to the Indo-Aryan branch (Hindi|hi), one to the Baltic branch (Latvian|lv), two to
the Germanic branch (English|en, German|de), two to the Romance branch (French|fr, Spanish|es) and four
to the Slavonic branch (Croatian|hr, Polish|pl, Russian|ru, Slovene|sl). Two non-Indo-European languages,
Estonian|et and Finnish|fi, both from the Finnic branch of the Uralic family, are also included. In total,
they form 15 and 21 languages pairs for xANLGG and xANLGM, respectively. These pairs span multiple
etymological combinations, i.e., intra-language-branch (e.g., es-fr), inter-language-branch (e.g., de-ru) and
inter-language-family (e.g., hi-et).

4.3 Word Embeddings

To cover the language pairs used in xANLG, we make use of static word embeddings pre-trained on the
twelve languages used in the resource. These embeddings consist of three representative open-source series
that employ different training corpora, are based on different embedding algorithms, and have different
vector dimensions.

• Wiki6: 300-dimensional, trained on Wikipedia using the Skip-Gram version of FastText (refer to Bo-
janowski et al. (2017) for details).

• Crawl7: 300-dimensional, trained on CommonCrawl plus Wikipedia using FastText-CBOW.
• CoNLL8: 100-dimensional, trained on the CoNLL corpus (without lemmatisation) using

Word2Vec (Mikolov et al., 2013c).

5 Result

Both Spearman’s rank-order (ρ) and Pearson product-moment (r) correlation coefficients are computed to
measure the correlation between SLMP and SPAE. Note that, it is not possible to compute the correlations
between all pairs due to (1) the number of dimensions varies across embeddings series, and (2) the source
and target embeddings have been pre-processed independently for different mappings. Instead, results are
grouped by embedding method and analogy category.

Figures in Tab. 2 show that a signiĄcant positive correlation between SPAE and SLMP is observed for all
setups. In terms of the Spearman’s ρ, among the 18 groups, 5 exhibit very strong correlation (ρ ≥ 0.80) (with
a maximum at 0.96 for CoNLL embeddings on CAP of xANLGG), 4 show strong correlation (0.80 > ρ ≥ 0.70),
and the others have moderate correlation (0.70 > ρ ≥ 0.50) (with a minimum at 0.58: CoNLL embeddings
on ANIM and G-PL of xANLGM). Interestingly, although we do not assume a linear relationship in ğ 3, large
values for the Pearson’s r are obtained in practice. To be exact, 4 groups indicate very strong correlation,
6 have strong correlation, while others retain moderate correlation (the minimum r value is 0.58: Wiki

embeddings on CAP and G-PL of xANLGG). These results provide empirical evidence that supplements our
theoretical analysis (ğ 3) of the relationship between linearity of mappings and analogy preservation.

In addition, we explored whether the analogy type (i.e., semantic or syntactic) affects the correlation. To
bootstrap the analysis, for both kinds of correlation coefficients, we divide the 18 experiment groups into two
splits, i.e., 12 semantic ones and 6 syntactic ones. After that, we compute a two-treatment ANOVA (Fisher,
1925). For both Spearman’s ρ and Pearson’s r, the results are not signiĄcant at p < 0.1. Therefore,
we conclude that the connection between CLWE mapping linearity and analogy encoding preservation holds
across analogy types. We thus recommend testing SPAE before implementing CLWE alignment as an indicator
of whether a linear transformation is a good approximation of the ground-truth CLWE mapping.

6https://fasttext.cc/docs/en/pretrained-vectors.html
7https://fasttext.cc/docs/en/crawl-vectors.html
8http://vectors.nlpl.eu/repository/
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ρ = 0.67

r = 0.76

ρ = 0.83

r = 0.62

ρ = 0.84
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ρ = 0.78

r = 0.81

Wiki: NATL Crawl: NATL CoNLL: NATL Wiki: G-PL Crawl: G-PL CoNLL: G-PL

x
A

N
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ρ = 0.59

r = 0.67

ρ = 0.75

r = 0.73

ρ = 0.58

r = 0.62

ρ = 0.65

r = 0.65

ρ = 0.59

r = 0.74

ρ = 0.58

r = 0.76

Wiki: ANIM Crawl: ANIM CoNLL: ANIM Wiki: G-PL Crawl: G-PL CoNLL: G-PL

Table 2: Correlation coefficients (Spearman’s ρ and Pearson’s r) between SLMP and SPAE. For all groups,
we conduct signiĄcance tests to estimate the p-value. Empirically, the p-value is always less than 1e-2 (in
most groups it is even less than 1e-3), indicating a very high conĄdence level for the experiment results. To
facilitate future research and analyses, we present the raw SLMP and LRCos data in Appendix B.

Although there are strong correlations between the measures, they are not perfect. We therefore carried out
further investigation into the data points in Tab. 2 that do not follow the overall trend. Firstly, we identiĄed
that some are associated with ŞcrowdedŤ embedding regions, in which the correct answer to an analogy
question is not ranked highest by LRCos but the top candidate is a polysemous term (Rogers et al., 2017).
One example is the LRCos score of the CAP analogy for pl’s Wiki embeddings, which was underestimated.
If we consider the three highest ranked terms, rather than only the top term, then the overall ρ and r of
ŞWiki: CAPŤ (the Ąrst cell in Tab. 2) will increase sharply to 0.79 and 0.76, respectively.

Secondly, we noticed the in certain cases the source and target vectors of a word pair are too close (i.e. the
distance between them is near zero). This phenomenon introduces noise to the results of analogy metrics
such as LRCos (Linzen, 2016; Bolukbasi et al., 2016), and consequently, impact SPAE. For example, the
mean cosine distance between G-PL pairs is smaller in xANLGM (0.18) than xANLGG (0.24). Therefore,
the SPAE for G-PL is less reliable for xANLGM than xANLGG, leading to a lower correlation.

6 Application: Predicting Relationship between Monolingual Word Embeddings

As discussed in ğ 2, in many scenarios linear CLWE mappings outperform their nonlinear counterparts, while
in other setups nonlinear CLWE mappings are more successful. Therefore, an indicator that predicts the
relationship between independently pre-trained monolingual word embedding which helps decide whether to
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CLWE method CCA Proc Proc-B DLV RCSLS
S̄PAESeed dict. size 1K 3K 5K 1K 3K 5K 1K 3K 1K 3K 5K 1K 3K 5K

en-fi .26 .35 .38 .27 .37 .40 .36 .38 .27 .37 .40 .31 .40 .44 .41
en-hr .22 .30 .33 .23 .31 .34 .30 .34 .23 .31 .33 .27 .36 .38 .32
en-ru .34 .43 .45 .35 .45 .46 .42 .45 .35 .44 .47 .40 .49 .51 .46
fi -hr .17 .26 .29 .19 .27 .29 .26 .29 .18 .27 .29 .21 .30 .32 .23
fi -ru .21 .31 .34 .23 .31 .34 .32 .33 .23 .31 .34 .26 .34 .38 .33
hr-ru .26 .35 .37 .27 .35 .37 .35 .37 .26 .35 .37 .29 .38 .40 .26
Spearman’s ρ .83 .82 .86 .83 .84 .88 .83 .86 .84 .84 .87 .87 .88 .90

Table 3: Spearman’s ρ between the Word Translation performance (MRR) of linear-mapping-based CLWE
methods (from Glavaš et al. (2019); Proc-B’s performance with 5K seed dictionary was not available) and
the average analogy encoding preservation score (S̄PAE).

use linear or non-linear mappings without training actual CLWEs, would be beneĄcial. Use of this indicator
has the potential to reduce the resources required to Ąnd optimal CLWEs (e.g., some recent approaches need
several hours of processing on modern GPUs (Peng et al., 2021a; Ormazabal et al., 2021)), with corresponding
reductions in carbon footprint.

The proposed SPAE metric, which can be obtained within several minutes on a single CPU, can be leveraged
as such a metric. A high SPAE score suggests that the linear assumption holds strongly on the ground-truth
CLWE mapping, so it is feasible to train a linear CLWE mapping; otherwise, the non-linear approaches are
recommended.

To demonstrate this idea in practice, we revisited a systematic evaluation on CLWE models based on linear
mappings (Glavaš et al., 2019), which reported Mean Reciprocal Rank (MRR) of Ąve representative linear-
mapping-based CLWE approaches on the Word Translation task (the de facto stadard for CLWEs). We focus
on six language pairs (en-fi, en-hr, en-ru, fi-hr, fi-ru, hr-ru) as they are covered by both xANLGM

and the dataset of Glavaš et al. (2019). Additionally, only Wiki embeddings were involved in the experiments
of Glavaš et al. (2019). Thus, for each language pair, we aggregated SPAE of different analogy categories for
Wiki embeddings, then calculated the average, S̄PAE.

Results are shown in Tab. 3, where the Spearman’s ρ between S̄PAE and Word Translation performance is
highlighted. Strong positive correlations are observed in all setups that were tested. These results demon-
strate that S̄PAE provides as accurate indication of the real-world performance of linear CLWE mappings,
regardless of the language pair, mapping algorithm, or level of supervision (i.e., size of the seed dictionary for
training). These results also provide solid support to the main statement of our paper, i.e., the ground-truth
CLWE mapping between monolingual word embeddings is linear iff analogies encoded in those embeddings
are preserved.

7 Further Discussion

Prior work relevant to the linearity of CLWE mappings has largely been observational (see ğ 2). This section
sheds new light on these past studies from the novel perspective of word analogies.

Explaining Non-Linearity. We provide three suggested reasons why CLWE mappings are sometimes
not approximately linear, all linked with the condition of Eq. (2) not being met.

The Ąrst may be issues with individual monolingual embeddings (see one such example in the upper part of
Fig. 3). In particular, popular word embedding algorithms lack the capacity to ensure semantic continuity
over the entire embedding space (Linzen, 2016). Hence, vectors for the analogy words may only exhibit local
consistency, with Eq. (2) breaking down for relatively distant regions. This caused the locality of linearity
that has been reported by Nakashole & Flauger (2018), Li et al. (2021) and Wang et al. (2021a).
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Figure 3: Illustration of example scenarios where the CLWE mapping is non-linear. Translations of English
(left) and Chinese (right) terms are indicated by shared symbols. Upper: The vector for ŞblueberryŤ
(shadowed) is ill-positioned in the embedding space, so the condition of Eq. (2) is no longer satisĄed. Lower:
In the Ąnancial domain some Eastern countries (e.g., China and Japan) traditionally use ŞblackŤ to indicate
growth and ŞgreenŤ for reduction, while Western countries (e.g., US and UK) assign the opposite meanings
to these terms, also not satisfying the condition of Eq. (2).

The second reason why a CLWE mapping may not be linear is semantic gaps. Despite analogies in our
xANLG corpus all are language-agnostic, the analogical relations between words may change or even dis-
appear sometimes. For example, languages pairs may have very different grammars, e.g., Chinese does have
the plural morphology (Li & Thompson, 1989), so some types of analogy, e.g. G-PL used above, do not hold.
Also, analogies may evolve differently across cultures, (see example in the lower part of Fig. 3). These two
factors go some way to explain why typologically and etymologically distant language pairs tend to have
worse alignment (Ruder et al., 2019).

Thirdly, many studies point out that differences in the domain of training data can inĆuence the similarity
between multilingual word embeddings (Søgaard et al., 2018; Artetxe et al., 2018). Besides, we argue that
due to polysemy, analogies may change from one domain to another. Under such circumstances, Eq. (2) is
violated and the linear assumption no longer holds.

Mitigating Non-Linearity. The proposed analogy-inspired framework justiĄes the success and failure of
the linearity assumption for CLWEs. As discussed earlier, it also suggests a method for indirectly assessing
the linearity of a CLWE mapping prior to implementation. Moreover, it offers principled methods for
designing more effective CLWE methods. The most straightforward idea is to explicitly use Eq. (2) as a
training constraint, which has very recently been practised by Garneau et al. (2021)9. Based on analogy
pairs retrieved from external knowledge bases for different languages, their approach directly learnt to better
encode monolingual analogies, particularly those whose vectors are distant in the embedding space. It
not only works well on static word embeddings, but also leads to performance gain for large-scale pre-
trained cross-lingual language models including the multilingual BERT (Devlin et al., 2019). These results
on multiple tasks (e.g., bilingual lexicon induction and cross-lingual sentence retrieval) can be seen as an
independent conĄrmation of this paper’s main claim and demonstration of its usefulness.

Our study also suggests another unexplored direction: incorporating analogy-based information into non-
linear CLWE mappings. Existing work has already introduced non-linearity to CLWE mappings by applying
a variety of techniques including directly training non-linear functions (Mohiuddin et al., 2020), tuning linear
mappings for outstanding non-isomorphic instances (Glavaš & Vulić, 2020) and learning multiple linear
CLWE mappings instead of a single one (Nakashole, 2018; Wang et al., 2021a) (see ğ 2). However, there
is a lack of theoretical motivation for decisions about how the non-linear mapping should be modelled.
Nevertheless, the results presented here suggest that ensembles of linear transformations, covering analogy
preserving regions of the embedding space, would make a reasonable approximation of the ground-truth
CLWE mappings and that information about analogy preservation could be used to partition embedding

9They cited our earlier preprint as the primary motivation for their approach.
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spaces into multiple regions, between which independent linear mappings can be learnt. We leave this
application as our important future work.

8 Conclusion and Future Work

This paper makes the Ąrst attempt to explore the conditions under which CLWE mappings are linear. The-
oretically, we show that this widely-adopted assumption holds iff the analogies encoded are preserved across
embeddings for different languages. We describe the construction of a novel cross-lingual word analogy
dataset for a diverse range of languages and analogy categories and we propose indicators to quantify lin-
earity and analogy preservation. Experiment results on three distinct embedding series Ąrmly support our
hypothesis. We also demonstrate how our insight into the connection between linearity and analogy preser-
vation can be used to better understand past observations about the limitations of linear CLWE mappings,
particularly when they are ineffective. Our Ąndings regarding the preservation of analogy encoding provide
a test that can be applied to determine the likely success of any attempt to create linear mappings between
multilingual embeddings. We hope this study can guide future studies in the CLWE Ąeld.

Additionally, we plan to expand our theoretical insight to contextual embeddings, inspired by Garneau et al.
(2021) who demonstrated that developing mappings that preserve encoded analogies beneĄts pre-trained
cross-lingual language models as well. We also aim to enrich xANLG by including new languages and
analogies to enable explorations at an even larger scale. Finally, we will further design CLWE approaches
that learn multiple linear mappings between local embedding regions outlined with analogy-based metrics
(see ğ 7).

Broader Impact Statement

CLWE bridges the gap between languages and is efficient enough to be applied in situations where limited
resources are available, including to endangered languages (Zhang et al., 2020; Ngoc Le & Sadat, 2020). This
paper presented a theoretical analysis of the mechanisms underlying CLWE techniques which has potential to
improve these methods. Moreover, the proposed SPAE metric predicts whether monolingual word embeddings
in different languages should be aligned using a linear or non-linear mapping, without actually training the
CLWEs. This indicator lowers the computational expense required to identify a suitable mapping approach,
thereby reducing the computational power needed and negative environmental effects.

Our analysis relies on the use of analogies and previous work has indicated that these may contain biases,
e.g., regarding gender (Bolukbasi et al., 2016; Sun et al., 2019). Any future work that incorporates analogies
within the CLWE process should be aware of the potential consequences of any biases that may be contained
within the analogies used. On the other hand, there is potential for the Ąndings of this work to be leveraged
for bias alleviation in cross-lingual representation learning.
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A Question Formulations

For an analogy category with t word pairs,
(

t

2

)

four-item elements can be composed. An arbitrary element,
α:β :: γ:θ, can yield eight analogy completion questions as follows:

α:β :: γ:? β:α :: θ:? γ:α :: θ:? θ:β :: γ:?

α:γ :: β:? β:θ :: α:? γ:θ :: α:? θ:γ :: β:?

Hence,
(

t

2

)

× 8 unique questions can be generated.

B Raw Data for Tab. 2

xANLGG en-de en-es en-fr en-hi en-pl de-es de-fr de-hi de-pl es-fr es-hi es-pl fr-hi fr-pl hi-pl

W
ik

i

CAP .16 .21 .17 .36 .23 .21 .18 .36 .22 .22 .35 .25 .35 .23 .33

GNDR .32 .42 .39 .26 .35 .48 .40 .41 .36 .39 .43 .38 .30 .40 .42

NATL .18 .16 .15 .14 .20 .19 .19 .33 .21 .16 .30 .21 .14 .20 .32

G-PL .22 .23 .22 .36 .26 .25 .23 .35 .26 .25 .38 .27 .37 .26 .38

C
ra

w
l

CAP .23 .23 .20 .23 .29 .26 .23 .24 .28 .23 .26 .28 .24 .29 .38

GNDR .57 .58 .59 .56 .54 .65 .66 .57 .59 .64 .56 .57 .56 .57 .58

NATL .32 .43 .27 .39 .29 .32 .35 .47 .35 .40 .43 .31 .46 .31 .42

G-PL .35 .24 .33 .48 .29 .33 .37 .44 .42 .33 .47 .33 .48 .42 .51

C
o
N

L
L

CAP .31 .58 .32 .55 .39 .58 .32 .56 .38 .59 .66 .59 .56 .40 .55

GNDR .48 .76 .49 .55 .48 .74 .55 .57 .50 .77 .76 .72 .59 .52 .58

NATL .37 .72 .26 .51 .38 .78 .34 .52 .36 .74 .74 .73 .50 .35 .50

G-PL .32 .67 .32 .48 .36 .65 .34 .47 .36 .68 .67 .65 .50 .38 .49

xANLGM

en en en en en en et et et et et fi fi fi fi hr hr hr lv lv ru

et fi hr lv ru sl fi hr lv ru sl hr lv ru sl lv ru sl ru sl sl

Wiki
ANIM .50 .50 .22 .31 .19 .15 .56 .27 .37 .30 .35 .29 .41 .30 .40 .32 .36 .28 .31 .22 .20

G-PL .25 .22 .37 .37 .28 .33 .24 .31 .29 .28 .26 .30 .29 .26 .27 .33 .32 .30 .33 .28 .28

Crawl
ANIM .55 .55 .55 .49 .55 .51 .34 .41 .45 .22 .41 .40 .46 .41 .45 .37 .23 .28 .38 .24 .43

G-PL .28 .43 .47 .43 .45 .40 .30 .45 .37 .43 .37 .46 .40 .44 .43 .42 .50 .54 .39 .35 .43

CoNLL
ANIM .54 .54 .99 .55 .50 .53 .29 .74 .46 .37 .43 .87 .51 .38 .46 .64 .77 .98 .42 .36 .41

G-PL .45 .40 .52 .42 .40 .42 .37 .77 .41 .41 .40 .81 .37 .36 .39 .84 .66 .77 .36 .40 .38

Table 4: Raw SLMP results (the negative sign is omitted for brevity).

Wiki Crawl CoNLL

CAP GNDR NATL G-PL CAP GNDR NATL G-PL CAP GNDR NATL G-PL

de .68 .25 .21 .23 .47 .48 .79 .77 .65 .43 .41 .55

en .94 .33 .94 .58 .57 .67 .76 .94 .87 .57 .79 .61

es .45 .13 .35 .13 .40 .57 .68 .87 .13 .07 .07 .17

fr .92 .27 .76 .13 .65 .50 .85 .87 .48 .14 .24 .35

hi .29 .30 .42 .07 .58 .59 .59 .32 .32 .37 .31 .16

pl .16 .21 .26 .10 .29 .55 .82 .84 .45 .45 .38 .52

Wiki Crawl CoNLL

ANIM G-PL ANIM G-PL ANIM G-PL

en .48 .65 .29 .87 .36 .58

et .12 .50 .52 1.00 .21 .48

fi .06 .65 .48 .87 .42 .54

hr .17 .20 .50 .68 .07 .11

lv .19 .10 .39 .84 .27 .23

ru .36 .40 .61 .87 .42 .55

sl .42 .23 .39 .81 .12 .39

Table 5: Raw monolingual LRCos results (left:xANLGG; right: xANLGM).
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