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Abstract

A probabilistic model is presented to predict the formation and propagation of

crack networks in thermal fatigue. It is based on a random distribution of sites

where cracks initiate and on the shielding phenomenon corresponding to the re-

laxed stress field created around cracks. Currently, the model considers only het-

erogeneous uniaxial stress loading even if thermal fatigue is multiaxial. However,

the first simulations on a uniaxial mechanical loading representative of the stress

gradient that appears in thermal fatigue shocks are in qualitative agreement with

experimental results. The larger the stress amplitude, the denser the crack network

and the smaller the crack sizes.
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1 Introduction

Thermal fatigue is still a major issue in many industrial activities, as proven by

very recent publications on this subject in aircraft [1,2], automotive [3,4], metal

forming [5–7], braking [8–10], electronic [11,12] and nuclear [13–16] industries.

In the case of cooling systems in nuclear power plants, observations revealed

the presence of thermal crazing on the internal part of pipes [17]. These crack

networks are not a major issue for the structure as long as cracks do not

traverse the pipe thickness. Consequently, it is important to know how the

crack networks are created and propagate.

The present approach models these phenomena in a probabilistic way, namely

the sites where cracks may initiate are described by a Poisson point process.

This hypothesis was already used to analyze probabilistic features associated

with brittle fracture [18], multiple cracking of composites [19], dynamic frag-

mentation of ceramics [20], damage and fracture in cyclic fatigue [21–23]. In

many instances, Monte-Carlo simulations are then devised to account for the

afore-mentioned phenomena [19,21,24,22]. In the present case, closed form ex-

pressions are derived. The conditions for initiation or propagation of cracks are

controlled by the probability of finding these sites in the relaxed stress zone

created by the cracks already present on the material surface. It is shown that

this shielding phenomenon it the key for understanding the partition between

stopped and propagating cracks. The present model gives access to various

quantities such as the shielding probability, the propagating and formed crack

densities. The first quantity gives an information on the possible saturation

of the crack network, the second one describes the number of active cracks

per unit surface in the network and the last one represents the total number
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per unit surface of cracks and is thus directly comparable with the densi-

ties of crack networks obtained in thermal fatigue experiments (e.g., SPLASH

tests [25]).

The SPLASH configuration, derived from Marsh’s experiments [26], mimics

in laboratory environments the conditions for initiation and development of

crack networks due to thermal fatigue in the same way as those observed in

the mixing zone of cooling systems of Pressurized Water Reactors (PWR).

Other experimental facilities have been developed to produce thermal fatigue

on tubular specimens (for instance Cythia [27], Biax [28] and Fat3D [29] at

the Atomic Research Center (CEA), or Intherpol [30] at Électricté de France

(EDF)). On some of the previous experimental configurations (namely, Biax

and Intherpol), a mean axial stress may be superimposed to the cyclic thermal

fatigue loading. The advantage of the SPLASH experiment compared with

the other ones is its higher frequency that allows for running tests up to one

million cycles. The thermal loading is however more difficult to control. A

few large scale thermohydraulic tests have been designed to reproduce the

mixing conditions in a tee, but the temperature measurements on the surface

of the pipe is difficult to perform and the interpretation of such tests requires

extensive care.

In the first part of the paper, the framework of the study is presented. Details

are given on the formation and propagation of crack networks in thermal fa-

tigue by considering several scales of propagation and by introducing various

hypotheses on which the probabilistic model is derived. Second, the applied

loading is evaluated and the material parameters are identified. In the last

part, the results of calculations associated with the probabilistic model are

presented and commented. In particular, the changes of the obscuration prob-
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ability, the mesocrack density and the propagation density with the number of

cycles for a loading representative of SPLASH conditions are obtained. A sim-

plified approach of this model is presented by considering a particular crack

propagation law. This approach makes it possible to give bounds to all quanti-

ties of the probabilistic model. The first results are then compared with those

for more severe conditions in order to validate the model in a qualitative way.

2 Crack Networks

2.1 Different Scales

In high cycle fatigue, three scales are considered [31], namely, the micro-, meso-

and macroscales. The microscale corresponds to stage I propagation of cracks

in high cycle fatigue and interacts with the material microstructure (e.g., the

characteristic length is that of grains for the 304L stainless steel considered

herein). During this step, the cracks are considered as microstructurally short

(they will be referred to as microcracks). This scale ends when the crack prop-

agation is no longer dependent on the microstructure, which corresponds to

the mesoscale or stage II. Mesocracks are formed after microcrack propaga-

tion or alternatively, mesocracks are formed on randomly distributed sites and

with an initial size a0 = 64 µm greater than the average grain size of, say,

304L stainless steel (φg = 50 µm). Hence, with such a definition, it is con-

sidered that once a mesocrack has formed, it cannot stop on microstructural

obstacles such as grain boundaries (contrary to microcracks). We assume that

mesocracks propagate according to a Paris’ law. The last step is concerned

with coalesced mesocracks that form a macrocrack (i.e., a long crack).
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In the present work, we only deal with crack networks formed at the mesoscale

(i.e., made of mesocracks) and not crack networks that may appear at the

microscale. Coalescence is not described.

2.2 Crack Obscuration Process

With these three scales, one needs to model how a mesocrack may form from

a microcrack and therefore to model interactions of microcracks with other

mesocracks. Considering the stress field around a crack, a stress relaxation

zone is observed. In this work, this zone is called obscuration (or shielding)

zone. If a microcrack belongs to any of these zones, the stress applied to the

microcrack is less than the remote stress, thus the microcrack cannot form a

mesocrack. Conversely, if the microcrack is not located in a shielding zone,

it forms a mesocrack. Similarly, if a mesocrack falls within the obscuration

zone of another mesocrack, it will not be able to further propagate. This

phenomenon is called obscuration process. In the present case, this process is

binary (i.e., a crack is either completely shielded, or not).

2.3 Continuous Formation

An assumption of continuous formation of cracks is made, namely, the mi-

crocracks form mesocracks during the course of time but not all at the same

time (in the present case, time is equivalent to number of cycles for a constant

amplitude and frequency test). Figure 1 shows the development of cracks in a

homogeneous tensile stress field. At the beginning (i.e., when the number of

cycles N is equal to 0), there are no mesocracks as shown in Figure 1 when
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N0 N1 N2

activated mesocrack

shielded microcrack

propagating mesocrack
and its shielding zone

stopped mesocrack
and its shielding zone

Fig. 1. Depiction of an obscuration process.

N < N0. When the number of cycles increases, microcracks are gradually

created and they eventually form mesocracks with their corresponding obscu-

ration zone. Consequently, some microcracks that belong to shielding zones do

not form new mesocracks. There are also mesocracks that fall into other shield-

ing zones and do not continue to grow (they are stopped). In Figure 1 when

N = N1, there are two propagating mesocracks with their respective obscura-

tion zone and three shielded microcracks in the shielding zone of the biggest

propagating mesocrack. When N = N2, the smallest propagating mesocrack

of the second step (N = N1) is now in the shielding zone of the biggest one;

it cannot keep on propagating and thus stops. Moreover, a new propagating

mesocrack appeared and, in the present case, six microcracks are shielded. If

the number of cycles keeps on increasing and if there is only one active crack

left (i.e., the largest one), at one stage all the field will be obscured. The

weakest link hypothesis [32] then applies, and a Weibull model [33] may be

retrieved.

6



2.4 Microcrack Density

The microstructure of the material is modeled in terms of sites where cracks

may be initiated. These sites are approximated by a Poisson point process of

intensity λt (i.e., their average number per unit surface or length). A power

law is chosen which leads to a Poisson-Weibull model [19,18]

λt (∆σ) = λ0

(

∆σ

σ0

)m

(1)

where m is the Weibull modulus (i.e., it characterizes the scatter in local

fatigue limits or similarly in local yield stress levels), ∆σ the applied stress

variation, and ∆σ0 the scale parameter relative to a reference density λ0 [33].

The considered distribution accounts for microplastic activity close to the ma-

terial surface [25]. For this type of mechanism, it was shown that the power

law (1) is able to model not only the fatigue properties but also dissipa-

tion phenomena [23]. As explained in Section 2.3, continuous formation of

mesocracks corresponds to an incubation “time” (or number of cycles), that

is the time needed by microcracks to initiate and propagate before forming

a mesocrack. Moreover, one is only interested in the formation and propaga-

tion of mesocracks in order to characterize the crack network. Therefore, an

additional parameter is introduced in the formulation of the intensity of the

Poisson point process that allows one to limit the intensity of the process to

mesocracks.

Let λtI be associated with λt but dependent upon the stress variation ∆σ and

the number of cycles N

λtI (∆σ,N) = λt [〈∆σ − ∆σu (N)〉] (2)
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where ∆σu (N) corresponds to an incubation stress related to the incubation

time (see Section 3.2) and where 〈.〉 Macauley’s brackets. Equation (2) shows

that the formation process needs a minimum number of cycles Nmin (i.e., an

incubation time) to form the first mesocrack such that

∆σ − ∆σu (Nmin) = 0. (3)

The continuous formation assumption returns the stress variation ∆σ as a

parameter and the number of cycles N as a variable.

2.5 Horizon

To understand the interaction between existing mesocracks and microcracks,

the horizon [20] is the key element. It describes the change of the size of

obscuration zones of mesocracks in the space versus number of cycles (Fig-

ure 2). Lets us consider a microcrack D that may form a mesocrack after N

cycles. For each number of cycles NI (with Nmin < NI < N), for all the pos-

sible positions of mesocracks, some of them, namely the closest to D, obscure

the microcrack location D. This obscured space corresponds to the horizontal

bold line in Figure 2 and its size is equal to the size of the obscuration zone

Zobs(N−NI), where N−NI correspond to the number of cycles of propagation

of a mesocrack formed at NI cycles and observed after N cycles. The horizon

is the union of all mesocrack positions that obscure D and corresponds to the

white zone in Figure 2. Consequently, for a mesocrack to be formed, its horizon

should not contain any mesocrack. In the present setting, obscuration occurs

at the mesoscopic level because a microcrack shields neither a microcrack nor

a mesocrack, and because only the propagation of mesocracks is taken into
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account in the formation of crack networks.
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Fig. 2. Horizon of a given site location D.

2.6 Obscuration Probability

Apart from shielding effects, the probability of finding Nµ = ν mesocracks

within a uniformly loaded examination domain Ω is expressed in terms of a

Poisson distribution

P (Nµ = ν, Ω) =
[λtI (∆σ,N) Z]ν

ν!
exp [−λtI (∆σ,N) Z] (4)

where Z is the size of the domain Ω so the product λtI (∆σ,N) Z corresponds

to the average number of mesocracks in a domain Ω loaded for N cycles with

a stress variation ∆σ, when shielding effects are not considered. The presence

of one or more mesocracks in the horizon of a microcrack or a mesocrack

induces its obscuration. Hence, one introduces the obscuration probability

Pobs that corresponds to the probability of finding one or more mesocracks in
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this horizon

Pobs (∆σ,N) = 1 − exp
[

−λtI (∆σ,N) Ẑobs (∆σ,N)
]

(5)

where Ẑobs (∆σ,N) is the measure of the horizon also called the mean obscu-

ration zone [20]

Ẑobs (∆σ,N) λtI (∆σ,N) =

N
∫

Nmin

Zobs (∆σ,N − NI)
dλtI

dNI

(∆σ,NI) dNI . (6)

Pobs characterizes the degree of damage (i.e., the fraction of obscured zones)

of the network. By analyzing its value, the state of cracking in the network

can be assessed.

2.7 Mesocrack Density

The density of activated mesocracks (i.e., the propagating and stopped mesoc-

racks taking into account shielding effects) is calculated from the formation

density λtI and the obscuration probability Pobs. This density, denoted by λm,

corresponds to the density of microcracks that meet all the conditions to form

a mesocrack, namely, a number of cycle N greater than the incubation time

and the absence of a shielding zone around its location (i.e., this microcrack

is not obscured by any mesocrack). The increment of mesocrack density λm is

related to that of λtI by

dλm

dN
(∆σ,N) =

dλtI

dN
(∆σ,N) × [1 − Pobs (∆σ,N)] . (7)

The mesocracks that are not obscured by other mesocracks correspond to the

active (i.e., propagating) mesocracks. Let λmP denote the propagation density
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λmP (∆σ,N) = λm (∆σ,N) × [1 − Pobs (∆σ,N)] . (8)

The formed mesocrack density λm may be compared to observations during

inspections of zones where, say, thermal crazing is suspected to occur. How-

ever, the most crucial information is the active mesocrack density λmP that

is critical for the life of a component. This quantity can be estimated only

by comparing two different states of cracking. The presented model is now

applied to analyze experiments on a 304L austenitic stainless steel.

3 Material and Loading Parameters

This work considers only one direction for mesocrack formation and propa-

gation on the surface of the material and a propagation in the depth along a

direction perpendicular to the surface. A set of semi-elliptical cracks of length

2a and depth c is considered, with a = c = 67 µm at crack formation. It

is assumed that the shape of the crack remains semi-elliptical, even though

the aspect ratio c/a may change with the number of cycles since the propa-

gation on the surface depends on the stress profile σyy along the z direction

(Figure 3).

�

✁

✂

✄

☎

Fig. 3. Crack geometry and loading.
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3.1 Weibull Parameters

With a weakest link hypothesis and a power law used to described the microc-

rack density, a two-parameters Weibull law is retrieved to describe the failure

probability for a sample uniformly loaded in the endurance regime (i.e., when

N → +∞)

PF = P (Nµ ≥ 1, Ω) = 1 − P (Nµ = 0, Ω) = 1 − exp (−λtZ) (9)

The Weibull parameters may therefore be determined by analyzing endurance

data for which the majority of the number of cycles is used in the formation of

a mesocrack. An evaluation of the endurance limit of 304L used in the present

study has been obtained by following the staircase method [34]. This method,

originally proposed by Dixon and Mood [35], gives access to an estimate of

the average value σ∞ and the standard deviation σ∞ of the endurance limit.

These two quantities are expressed according to the Weibull model as

σ∞ =
σ0

(λ0Zeff )
1/m

Γ
(

1

m
+ 1

)

(10)

and

σ∞ =
σ0

(λ0Zeff )
1/m

√

Γ
(

2

m
+ 1

)

− Γ2

(

1

m
+ 1

)

(11)

where Zeff is the measure of the effective surface, and Γ the gamma function

defined by

Γ (p) =

+∞
∫

0

tp−1 exp (−t) dt. (12)
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Knowing the experimental values of the average and the standard deviation of

the fatigue limit distribution, it is possible to determine the Weibull modulus

m with the following equation

(

σ∞

σ∞

)2

=
Γ

(

2

m
+ 1

)

Γ2

(

1

m
+ 1

) − 1 (13)

and then any of the two equations (10) or (11) is used to determine the value

of the last undetermined parameter, namely the scale parameter λ0/σ
m
0 . In

this study, m = 20 and σ0 = 451 MPa for a value of λ0 arbitrarily set to

1 crack/mm2.

This analysis shows one of the benefits of the unified framework introduced

herein. In the present section, a weakest link hypothesis was made in conjunc-

tion with the use of a Poisson point process. A Weibull model is then retrieved,

and the parameters of the intensity of the Poisson point process are identical

to classical Weibull parameters. Furthermore, the identified parameters will

be used later on in a situation in which the weakest link hypothesis does not

necessarily apply.

3.2 Incubation Stress

As mentioned in the previous part, microcracks may form mesocracks only

after a certain number of cycles also called “incubation time.” The connection

between this incubation time and the formation density is obtained with the

incubation stress ∆σu (N) [Equation (2)]. The difference between the stress

variation ∆σ and the incubation stress variation ∆σu (N) corresponds to the

13



fatigue limit ∆σ∞

∆σ∞ = ∆σ − ∆σu (N) . (14)

To obtain a random number of cycles for mesocrack formation, one only needs

to consider the Poisson point process whose intensity is directly related with

the previous relationship, via Equation (2). Hence, for a constant mesoscopic

stress variation, and a given number of cycles N , a direct use of the Poisson

point process gives access to the probability of finding Nµ formed mesocracks

in the considered zone. Conversely, for a constant mesoscopic stress varia-

tion, considering all possible probabilities of finding Nµ formed mesocracks

in the considered zone (i.e., from 0 to 1), a distribution of the number of

cycles to crack formation is retrieved. In uniaxial fatigue tests on a homoge-

neously loaded specimen, the difference between the number of cycles to form

a mesocrack NI and the number of cycles to failure NF of the specimen is a

small proportion of this last value, namely

NF − NI

Nf

≪ 1 (15)

In this particular case, considering Equation (14) and a Poisson point process

of intensity given by Equation (2), one obtains for a constant mesoscopic stress

variation:

• a failure probability for a given number of cycles N (i.e., the probability of

finding at least one mesocrack in the considered zone).

• a distribution of the number of cycles to failure of the specimen (i.e., the

distribution of the number of cycles for a probability of finding at least one

mesocrack ranging from zero to unity).
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The Wöhler curves give access to the variation of stress versus the number

of cycles to failure with a given failure probability. The probability curve

PF = 0.5 has been estimated, for 304L stainless steal, by considering the

half-life stress variation measured in strain-controlled fatigue tests versus the

number of cycles N25 (i.e., number of cycles for which a 25% decrease of

maximum stress is obtained). These tests were performed at 165◦C and with

ε̇ = 2 × 10−3 s−1 [36,37].

Considering a Poisson point process, such a probability curve corresponds to

a constant value of its intensity [Equation (2)], and thus to a constant value

of ∆σ∞ [Equation (14)]. Therefore, the incubation stress variation ∆σu (N)

may be modeled, say, by a power law [Equation (16)], identified on the change

of the difference between the stress variation and the average endurance limit

(multiplied by two), versus the number of cycles to failure (Figure 4)

∆σu (N) = σdN
−1/η (16)

where σd and η are material parameters (σd = 3.1 × 105 MPa and η = 1.3 for

the considered material). The average endurance limit is estimated for 5×106

cycles with staircase stress-controlled fatigue tests. With this power law, it

is assumed that ∆σu (N → +∞) → 0, which is consistent with the previous

analysis. Therefore, the model describes the high cycle fatigue domain (i.e.,

when 104 < N < +∞) and the endurance domain (i.e., when N → +∞) in

the same framework.
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Fig. 4. Identification of the incubation stress ∆σu as a function of the number of

cycles. The open symbols correspond to half-life stress variations measured dur-

ing strain-controlled tests performed on 304L stainless steel at 165◦C, and with

ε̇ = 2×10−3 s−1 [36,37]. The solid line is a power-law fit by least squares minimiza-

tion.

3.3 Loading Condition

In this study, crack networks are due to thermal fatigue and the loading con-

ditions are identified for the SPLASH configuration [25]. The test consists

in heating in a continuous way by Joule effect a specimen and to sprinkle

distilled water in a cyclic way onto two opposite faces of the specimen. The

temperature variation on the surface of the specimen is about 150◦C and the

duration of sprinkling is 0.25 s each 7.75 s. Maillot [25] carried out thermo-

elastoplastic finite element calculations to determine the mechanical loading

associated with the recorded temperature history. The loading is almost equib-

iaxial and the variation of stress from the coldest instant (T = Tmin) to the

hottest one (T = Tmax) is estimated at every point of the structure. A 3rd

degree polynomial is identified on the calculated stress profile (Figure 5) to

model the depth dependence for z/t ≤ 0.16 of the normal stress
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where ∆σSPLASH = 370 MPa and t is the specimen thickness.
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Fig. 5. Computed stress profile.

3.4 Propagation Law

Crack networks obtained with the previous stress profile are mainly superficial

so the aspect ratio c/a of cracks, which represents the crack shape, is often

small (i.e., less than 0.2). The propagation of this type of cracks was studied by

Wang and Lambert [38]. It is based on the use of weight functions determined

from finite element results and gives the stress intensity factors ∆KIA and

∆KIC associated with semi-elliptical cracks [Figure 6(a)]. A Paris’ law is then

applied to calculate the crack sizes a and c

da

dN
= C (∆KIA)p and

dc

dN
= C (∆KIC)p (18)

where C = 3.74× 10−10 mm/MPa
√

m)−n and p = 4.04 identified at 320◦C for

the 304L stainless steel considered in this study. Only slight modifications of
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these values are obtained for crack propagation tests performed at room tem-

perature [38] and therefore, these parameters are considered constant during

a complete thermal cycle. When the number of cycles is small (i.e., at the

beginning of the load history), the crack is propagating on the surface and

in-depth [Figure 6(b)]. Yet, as soon as the latter reaches a depth such that

the loading becomes compressive, the crack growth rate decreases. The initial

conditions for the crack shape are a = c = 67 µm (i.e., semi circular). Upon

loading, the crack shape remains almost circular during one million cycles,

then tends quickly towards an elliptic shape during the next million cycles

[Figure 6(c)].

3.5 Obscuration Zone

By studying the stress field around a penny-crack shaped on a plane submitted

to a unidirectional tensile field perpendicular to its propagation direction, a

stress relaxation appears around the crack [39,40]

Zobs (N) = S [ka (N)]n (19)

where S = 2 and k = 1.334 for a space of dimension n = 1 [41], and S = π

and k = 1.428 for n = 2 [42]. In the present case, the cracks are initiating

only on the surface, thus the obscuration is considered only on the surface

but one must take into account the effect of mesocrack depth on Zobs. A first

approximation is made on this quantity. It is considered that it is equal to the

surface of the crack (i.e., the surface of a semi-ellipse of major axis equal to a

and minor axis equal to c)

Zobs (N) = πa (N) c (N) . (20)

18



S
tr

e
s
s
 i
n

te
n

s
it
y
 f

a
c
to

r 
(M

P
a

.m
1

/2
)

2

4

6

8

10

12

14

0,1 1 10

K
IA

 vs a

K
IC

 vs c

Length a and c (mm)

(a) Stress intensity factors vs. crack

length

0.1

1

10

100

0 2 4 6 8 10

a
c

Number of cycles (x106)

C
ra

c
k
 s

iz
e

 (
m

m
)

(b) Crack sizes vs. number of cycles

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Number of cycles (x106)

E
lli

p
ti
c
it
y
 r

a
ti
o

 c
/a

(c) Aspect ratio vs. number of cycles

Fig. 6. Crack propagation features for a SPLASH loading.

The deeper the crack, the larger the obscuration zone on the surface of the

specimen.

4 Results

In this section, the results of the probabilistic model are presented and com-

pared with results obtained for a more severe loading condition. Some bounds
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are also introduced in order to get analytical expression of the model quanti-

ties.

4.1 SPLASH Conditions

The SPLASH conditions, presented in Section 3.3, are considered. The first

result of this loading condition is the propagation of the first mesocrack de-

scribed in Section 3.4. These results are regarded as parameters of the proba-

bilistic model, necessary for the calculation of the obscuration probability, the

formed and propagating mesocrack densities.

The change of the obscuration probability Pobs [Equation (5)] with the number

of cycles is given in Figure 7(a). Figure 7(b) shows the corresponding changes

of the formed and propagating mesocrack densities λm and λmP . At the be-

ginning, the obscuration probability is equal to zero because of the absence of

mesocracks in the sample and thus no obscuration occurs. Both densities are

also equal to zero. As soon as the number of cycles reaches the minimum num-

ber of cycles (i.e., N = Nmin), when a microcrack forms the first mesocrack,

the three quantities begin to increase. When the first mesocrack is formed,

an obscuration zone appears in its vicinity and the obscuration probability,

which is an increasing function of the size of the obscuration zone, increases.

From this moment on, new mesocracks will continue to form with the creation

of new obscuration zones and previously formed mesocracks will grow, induc-

ing a growth of their associated obscuration zone. This phenomenon is also

accompanied by the arrest of mesocracks that fall into the obscuration zone

of other mesocracks and by the impossibility of some microcracks to form new

mesocracks because of the relaxation stress field in their vicinity.
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First, the number of arrested mesocracks is less than the number of formed

mesocracks, which is confirmed by the increase of the propagating mesocrack

density. The increment of arrested mesocracks compared with the increment of

new mesocracks is justified by the increasing difference between the two densi-

ties [Figure 7(b)]. The maximum of the propagating crack density corresponds

to the number of cycles for which the increment of arrested mesocracks be-

comes greater than that of newly formed mesocracks. From this moment on,

the propagating crack density decreases and tends to zero, the obscuration

probability tends to 1 (i.e., the studied domain becomes more and more ob-

scured) and the mesocrack density saturates.
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Fig. 7. Results of the probabilistic model for a SPLASH loading.

Let us point out that the obscuration probability, the mesocrack and prop-

agating crack densities are related to the surface of the specimen because of

the nature of thermal crazing. However, the propagation itself accounts for

the in-depth variation of the stress field (see Section 3.3).
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4.2 Bounds

Let us derive bounds for the model. An upper bound to the obscuration prob-

ability, and lower bounds to the mesocrack and propagating crack densities

are given. Let us assume that the crack depth c is equal to a maximum value

cmax. From Figure 6(a), if one adopts a threshold value for the stress inten-

sity factor ∆Kth under which the mesocrack is not propagating any more, the

maximum crack depth value cmax reads

cmax = c (∆KI = ∆Kth) . (21)

At the same time, ∆KIA is almost constant for any value of a. This case

corresponds to the propagation of a channeling crack [43], i.e., the surface

crack propagation velocity dã/dN is constant

dã

dN
= C (∆KIAmax)

p = C∆Kp
max (22)

where C and p are parameters of the Paris’ law. With these assumptions, the

half crack size ã becomes

ã = ainit + C∆Kp
max × (N − NI) (23)

where ainit is the initial size of the mesocrack (here, ainit = 67 µm) and the

obscuration probability P̃obs reads

ln
[

1 − P̃obs (N)
]

= I1 + I2 (24)

with

I1 = πcmax [ainit + C∆Kp
maxN ] × [λt (Nmin) − λt (N)] (25)
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and

I2 = −πcmaxC∆Kp
maxmλ0

(

∆σ

σ0

)m

×

(

σd

∆σ

)η


B





σdN
−1/η
I

∆σ
, 1 − η, m









NI=N

NI=Nmin

(26)

where B is the function defined by

B (x, a, b) =

x
∫

0

ta−1 (1 − t)b−1 dt. (27)

A lower bound to the formed mesocrack density λ̃m is obtained by using

Equation (7) in which Pobs is replaced by P̃obs. Similarly, a lower bound to

the propagating mesocrack density λ̃mP is obtained by using Equation (8).

The results presented in Figure 8 are obtained with a maximum crack depth

cmax equal to 3.5 mm and they prove that for a mesocrack size always equal

to its maximum value, the studied domain is obscured faster than in the

case of a normal propagation of mesocracks. The formed mesocrack density

increases in the same way as the reference density but slows down earlier and

saturates at a lower value. For small numbers of cycles (i.e., N < 105), the

propagating crack density and its bound evolve in the same way but the latter

reaches more quickly its maximum value (after 4 × 105 cycles) whereas the

normal propagating crack density needs approximatively 106 cycles to reach

its ultimate level.

4.3 Comparison with a More Severe Loading

The previous results were presented in the case of SPLASH conditions. In

other cases, such as Fast Breeder Reactors (FBR), the temperature on the in-
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Fig. 8. Comparison between the model quantities and their respective bounds

(cmax = 3.5 mm and KIA = 13.5 MPa
√

m).

ternal surface of the pipe is higher as well as temperature gradients under the

surface. Therefore the stress levels may be larger. In this part, one proposes

to apply the model to the case of a higher load level. The associated model

is based on Equation (17) where ∆σSPLASH is replaced by ∆σSPLASH++ with

∆σSPLASH++ > ∆σSPLASH . The obscuration probability tends to 1 faster in

the case of a higher load level [Figure 9(a)]. Moreover, the formed mesoc-

rack density [Figure 9(b)] has higher values compared with those obtained

in the SPLASH loading conditions, and its saturation is faster. The propa-
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Fig. 9. Comparison between SPLASH loading and a higher loading (SPLASH++).

gating crack density [Figure 9(c)] increases faster and reaches a maximum

value greater than in the case of the SPLASH loading conditions. Its decrease

also occurs earlier. Therefore, one concludes that the crack network obtained

with a higher load level is denser than that obtained in the normal loading

conditions, and its saturation is faster.
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4.4 Mesocrack Sizes Distribution

The experimental results [25] give access to the crack network density at sev-

eral time steps. To obtain the distribution of mesocrack sizes, one should know,

at every time, the density of mesocracks that formed at Ni cycles and their re-

spective duration of propagation. The density increment of mesocracks formed

during the time increment dNi is given by

dλ∗

m (Ni) =
dλm

dNi

(Ni) dNi. (28)

These mesocracks may be obscured by only larger mesocracks (i.e., mesocracks

that were formed before). One associates with λ∗

m the obscuration probability

at N = Ni + Np of the older mesocracks that formed before Ni on the mesoc-

racks that formed at Ni cycles and that have potentially propagated for Np

cycles

ln
[

1 − P i,p
obs (Ni, Np)

]

=−
Ni
∫

Nmin

dλtI

dNI

(NI) Zobs (Np + Ni − NI) dNI . (29)

Thus, the density of mesocracks formed during the time increment dNi and

that have propagated for Np cycles or less is given by

dλi,p
s (Ni, Np) =

dλm

dNi

(Ni) dNi × P i,p
obs (Ni, Np) . (30)

The same type of expression is written for the density of mesocracks formed

during the same time increment and that have propagated for Np +dNp cycles

or less. The difference between these two last quantities will give the increment

of density of mesocracks formed during dNi cycles, at N = Ni cycles, and that

were stopped after a number of cycles of propagation ranging from Np and
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Np + dNp cycles. This density increment is written as

dλi,p
a (Ni, Np) =

∂λi,p
s (Ni, Np)

∂Np

dNp (31)

and since λm does not depend on Np

dλi,p
a (Ni, Np) =

dλm (Ni)

dNi

× ∂P i,p
obs (Ni, Np)

∂Np

dNidNp. (32)
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Fig. 10. Distribution of crack sizes after 5 million cycles for the SPLASH and

SPLASH++ loading conditions.

In Figure 10, the cumulated densities of stopped mesocracks after 5 millions

cycles are shown as functions of the respective half crack sizes [Figure 10(a)]

and depths [Figure 10(b)] for the SPLASH and SPLASH++ loading condi-

tions (in the two cases, after 5 millions cycles, the networks are saturated

so the density of stopped mesocracks corresponds to the network density ob-

served in the SPLASH test for example). These curves show that there is no

crack with a depth greater than 3 mm in the SPLASH case, and 2.5 mm in

the SPLASH++ case (corresponding to a constant value of the cumulative

density). Moreover, all stopped mesocracks associated with the SPLASH++

loading condition have sizes on the surface less than 10 mm, whereas the
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stopped mesocracks associated to the SPLASH condition have sizes around

10-20 mm. These results are in qualitative agreement with the experimental

results that show crack networks denser and having smaller crack sizes in the

case of a stronger loading.

5 Conclusion

A probabilistic model was introduced to account for mesocrack formation,

propagation and arrest. The obscuration probability characterizes the state

of damage of the network. The formed mesocrack density can be compared

directly with actual experimental observations of crack networks. The propa-

gating crack density is the key quantity for evaluating the propagation activity

in the network, namely, the part of the crack distribution that might be fatal

to a structure. All quantities were studied for the particular case of SPLASH

loadings. The results of the model are in good qualitative agreement with

experimental observations since they present a saturation of crack networks

induced by the very small value of the propagating crack density. The arrest

of mesocracks in the depth of the material is also accounted for.

In order to find analytical expressions of the model quantities, bounds were

proposed by choosing simple laws for the change of crack sizes (i.e., the crack

depth and the half-size crack on the surface). These assumptions made it

possible to analytically express the formation and propagation of networks

made of cracks whose depths are constant and equal to the maximum values

observed in the previous case, and for which the surface propagation velocity

is maximum. The resulting crack network is less dense than the SPLASH

network and saturates faster. The influence of a more severe load level was
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studied and the main conclusion was that the larger the stress variation, the

faster the saturation and the denser the crack network with a distribution of

smaller crack sizes.

The cases studied herein do not take into account the various possible orien-

tations of the formed and propagating mesocracks (see Ref. [25] on SPLASH

tests) and, consequently, the shielding conditions between mesocracks of dif-

ferent orientations. In order to compare quantitatively the predictions of the

model and experimental results, the model is currently generalized, by taking

into account all the directions of formation and propagation of mesocracks on

the surface, as well as their different possible interactions. Last coalescence

needs to be accounted for to fully characterize the crack network.
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