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Abstract—In practice, electrification of remote and islanded com-
munities with no connection to the main grid is entangled with
many techno-economic issues. These technical and more importantly
economical challenges often justify the use of Micro-Grids (MGs) as
self-sufficient electrical networks with a group of controllable/non-
controllable consumers and producers in remote and islanded areas.
However, the optimal design of sustainable MGs, even in small
communities, is a complex optimisation problem due to the uncertain
nature of load consumption and renewable production as well
as the non-convex characteristics of network constraints. In this
paper, we propose a model to design sustainable MGs using the
notion of Distributionally Robust Optimisation (DRO) to handle
the uncertainties arising from forecast data wherein the non-convex
AC power flow equations are reformulated into convex constraints.
Furthermore, a three-step approach is introduced to recast the tri-
level DRO-based model into a tractable single-stage Mixed-Integer
Linear Programming (MILP) problem. The proposed approach is
tested on a modified Europrean CIGRE 18-bus test network and its
performance is compared with the stochastic optimisation approach.

Index Terms—Distributionally Robust Optimisation, Investment
Planning, Micro-Grids, Stochastic Optimisation.

I. INTRODUCTION

A. Motivation and Background

Micro-Grids (MGs) have enabled off-grid communities to

economically access electricity without the requirement for poten-

tially high-cost long-distance energy infrastructure. Such systems

have globally enhanced the electrification efforts and resilience

of energy supply. Their sustainability is normally ensured by

the utilisation of various Renewable Energy Sources (RESs).

However, the intermittent power production of RESs adds to the

level of uncertainty in the network. To ensure the reliability of the

islanded MGs, system designs that remain robust to the possible

adverse impacts of uncertainty are crucial. Additionally, the sys-

tem security during system operation should be upheld concerning

the technical limits on under/over voltage and maximum line

flows. The cost-effective design of islanded MGs involves the

solution of optimisation models for investment or reinforcement

planning. Therefore, the handling of different uncertainties is key

to the secure and resilient operation of MGs.

B. Related Research Works

Available research works on non-deterministic investment plan-

ning that account for the uncertainty of load demand and renew-

able power generation in active distribution networks and MGs

include: Stochastic Optimisation (SO) and Robust Optimisation

(RO). SO-based models obtain a solution that is optimal on
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average for all scenarios capturing the uncertainty spectrum [1–4].

The quality of the optimal solution in SO-based models is largely

dependant on the number of available scenarios or historical data.

On the contrary, RO-based models obtain a solution that is optimal

for the worst scenario of a bounded uncertainty set capturing all

realisations of uncertain parameters [5–7]. The uncertainty set is

constructed typically assuming no distributional knowledge about

the underlying uncertainty. RO usually requires less computa-

tional effort compared to SO, but provides highly conservative

solutions that may result in significant over-investment.

Another non-deterministic approach bridging between RO and

SO is based on Distributionally Robust Optimisation (DRO),

where the optimal solution is obtained as the worst-case expected

cost over a family of possible probability distribution functions

(PDF) characterising the uncertain parameters in a bounded ambi-

guity set [8, 9]. The parameters of the ambiguity set are specified

based on available distribution information, including empirical

mean, variances, co-variances, distance from a known distribution

[10]. Hence, the solution provided is robust against inaccuracies

in the probability data. It therefore provides an intermediate and

more practical solution that is less dependant on available data

and less conservative. The recourse decisions in a DRO problem

should adapt to all uncertain outcomes in the ambiguity set,

thus making the problem generally NP hard. The nature of the

ambiguity set is key in facilitating the tractable reformulations that

can be solved by available numerical solvers. Different solution

techniques are presented in the literature to recast DRO problems

into tractable counterparts. Examples include reformulation-based

approaches [11, 12] with affine policies as well as decomposition-

based approaches with cutting planes [10, 13, 14].

In this paper, a DRO-based model for optimal investment

planning of islanded MGs is proposed. We employ a moment-

based ambiguity set due to its computational tractability as

compared to other techniques [15]. Also, a data-driven approach

is utilised to construct the ambiguity set where the empirical

mean is inferred from historical data of energy consumption and

renewable production profiles.

C. Contributions

The main contributions of this paper are three-fold:

1) We propose a formulation of a DRO-based investment

planning model for islanded MGs in remote areas aimed

at immunising the optimal investment plan against uncer-

tainties in forecasted loads and renewable generations. In

the proposed approach, temporal variations of loads and

renewable generations during the entire planning horizon

are modelled by a sufficient number of representative



days where these representative days are extracted by the

agglomerative hierarchical clustering [16]. Furthermore, a

data-driven ambiguity set is presented in this paper to

characterise the unknown PDFs pertaining to representative

loads and renewable generations.

2) We employ the duality theory and multi-period linear

decision rules (LDRs), respecting the non-anticipativity

nature of the short-term operational decisions, to recast the

proposed DRO-based model into a tractable mixed-integer

linear programming problem (MILP).

3) We benchmark the algorithm performance against a SO-

based model using the CIGRE 18-bus test network. Indices

concerning computational efficiency, investment costs, and

expected operational costs, are presented.

The rest of the paper is organised as follows. Section II

introduces the mathematical formulation for the proposed DRO-

based planning model and the definition of the ambiguity set.

Section III presents the three-step approach proposed to obtain

a tractable robust reformulation of model. The numerical results

assessing the performance of the proposed algorithm are discussed

in Section IV, while conclusions are drawn in Section V.

II. DISTRIBUTIONALLY ROBUST PLANNING MODEL

A. Modeling Preliminaries

Bold letters are used to indicate vectors while entries of vectors

are denoted by regular letters. The transpose of a matrix is denoted

by “′”. This work considers a radial balanced network represented

by a connected graph G(N , E), with N := {0, 1, . . . , N} denoting

the set of network nodes including the substation node 0, and E ⊆
N ×N designating the set of network branches. The distribution

network hosts a number of producers/consumers, where S ⊆ N
indicates the subset of nodes with diesel generators, R ⊆ N
the subset of nodes with RESs, B ⊆ N the subset of nodes

with battery, D ⊆ N the subset of nodes with loads. The set of

nodes with generators is thus obtained by the following set union

M := S ∪ R ∪ B. The set of respective units at node i ∈ N are

given by Si ⊆ S , Ri ⊆ R, Bi ⊆ B, and Di ⊆ D. Cardinallity of

the previously defined sets is denoted by: nd := |D|, ns := |S|,
nb := |B|, nl := |L|, and nr := |R|, respectively. Indices s, r, b
and d are associated with diesel generators, RESs, battery units

and load.

For each generator n ∈ M, variables pnto and qnto represent

active and reactive power injections; superscript “N” denotes the

non-adjustable decisions terms based on forecasted parameters

while superscript “A” relates to the adjustable decisions due to

realisation of the forecast errors. Each node i ∈ N is connected to

an upstream/downstream node iup/idn by a branch with resistance

riidn and reactance xiidn , while N dn is a set of nodes connected

downstream to node i. Piidn /Qiidn denotes the active/reactive

power flow in branch iidn ∈ E while S is the apparent power

flow. The upper/lower limit for quantity • is indicated by •/•.

In this paper, the uncertain active renewable power generations

(r ∈ R) or loads (d ∈ D) at timestep t ∈ T and operating

condition o ∈ O is expressed as:

ũ{r/d}to = uN
{r/d}to +∆ũ{r/d}to (1)

where uN
{r/d}to denotes the expected/forecasted value of the

power while ∆ũ{r/d}to = û{r/d}to−ǔ{r/d}to is the forecast error

where û{r/d}to/ǔ{r/d}to denotes the upward/downward deviation

from the forecast value. As uncertainties of both electricity

consumption and renewable production are considered, ũ{r/d}to

is defined as:

ũto =

{
p̃dto = pNdto + p̂dto − p̌dto, ∀d
p̃rto = pNrto + p̂rto − p̌rto, ∀r

}

, ∀t, o (2)

where p̃dto relates to the uncertain loads and p̃rto relates to the

uncertain renewable generations. In this work, a constant load

power factor is considered where cos θdto =
pN
dto√

(pN
dto

)2+(qN
dto

)2
.

Therefore, the uncertain reactive loads are defined as: q̃dto =
tanθdto · p̃dto. Similarly, a constant reactive power control for

RESs is adopted, i.e., − tanϕr · p̃rto ≤ qrto ≤ tanϕr · p̃rto,

where parameter cosϕr is the minimum power factor set by

the system operator. The uncertain reactive power is therefore

defined as: q̃rto = tanϕr · p̃rto. Note that uncertain reactive

power injection/absorption is a function of the uncertain active

power and not required to be defined explicitly.

B. Ambiguity Set Model

The compact form of the tri-level DRO model is presented as:

min
χinv,χopr

{

Θinv(χinv) + max
P∈U

EP (Θ
opr(χopr, ũ))

}

(3)

where Θinv/Θopr are the the investment/operational costs and

χinv/χopr the vectors of investment/operational variables while

EP calculates the expected value of the operational costs. Also, ũ

defines the vector of the uncertain variables while the ambiguity

set U characterises the distribution of the uncertain parameters for

the entire planning horizon and is obtained as a Cartesian product

of the set at each time step for all operating scenarios:

U =
∏

t∈T,o∈O

Uto (4)

where

Uto =







Pto :

EPto
(p̃dto) = pNdto, ∀d

EPto
(p̃rto) = pNrto, ∀r

Pt

{
p̃dto ∈ Vto

p̃rto ∈ Vto

}

= 1,







(5)

In (5) the first and second lines indicate that the mean of

the uncertain parameters is defined by their respective forecast

values while the third line guarantees that all realisations of

uncertainties are within the uncertainty set Vto. We adopt the

polyhedral uncertainty set proposed in [17] where a budget of

uncertainty Γ is used to control the conservatism. Vto is expressed

by constraints:

Vto =







p̃dto = pNdto + p̂dto − p̌dto, ∀d
p̃rto = pNrto + p̂rto − p̌rto, ∀r
0 ≤ p̂dto ≤ p̂dto, 0 ≤ p̌dto ≤ p̌dto, ∀d
0 ≤ p̂rto ≤ p̂rto, 0 ≤ p̌rto ≤ p̌rto, ∀r

0 ≤
(
∑

d∈D

(
p̂dto
p̂dto

+
p̌dto
p̌dto

)

+
∑

r∈R

(
p̂rto
p̂rto

+
p̌rto
p̌rto

))

≤ Γto







(6)

C. Investment Planning Model

We expand the formulation of the proposed DRO-based plan-

ning model in (3) as follows:



1) Objective: The term Θinv(χinv) in (3) is given by:

Θinv =
∑

b∈B

Cb · zb +
∑

s∈S

Cs · zs +
∑

r∈R

Cr · zr (7a)

where Cb/s/r is the investment cost of a particular unit and zb/s/r
is the binary variable indicating the investment status of a unit.

Also, the term Θopr(χopr) in (3) is defined as:

Θopr =
∑

o∈O

∑

t∈T

(
∑

s∈S

Cop
s · psto +

∑

r∈R

Cop
r · prto

+
∑

d∈D

Csh
d · p̃dto · (1− zdto) +

∑

i∈N

ϵ · qauxito

) (7b)

here Cop
s/r is the marginal operational cost of each unit while

Csh
d is the penalty cost of load shedding. Variable zdto is used

to indicate the connection status of a load. To ensure the nodal

reactive power balance, a small cost ϵ has been applied to the

magnitude of reactive power generation denoted by the auxiliary

variable qauxito . In the following, a definition of the constraints

applied to the model is presented.

2) Power Flow Constraints: A linearized version of the ‘Dis-

tFlow’ model [18] is used to formulate the power flow equations

in (7c)-(7e), where vito denotes the square magnitude of voltage

at each node i ∈ N , time period t ∈ T , and operating condition

o ∈ O:
∑

s∈Si

psto +
∑

r∈Ri

prto +
∑

b∈Bi

(pdchbto − pchbto) + Piupito

−
∑

idn∈Ndn

Piidnto ≥
∑

d∈Di

p̃dto · zdto, ∀i, t, o
(7c)

∑

s∈Si

qsto +
∑

r∈Ri

qrto +Qiupito

−
∑

idn∈Ndn

Qiidnto ≥
∑

d∈Di

q̃dto · zdto, ∀i, t, o
(7d)

viupto = vito + 2 (riupi · Piupito + xiupi ·Qiupito) , ∀i, t, o (7e)

− qauxito ≤
∑

s∈Si

qsto +
∑

r∈Ri

qrto ≤ qauxito , ∀i, t, o (7f)

qauxito ≥ 0, ∀i, t, o (7g)

where superscript “ch/dch” indicates the charge/discharge power

of the battery units. Different generators in the network have the

capability to inject/absorb reactive power. It is required that the

nodal reactive power balance is respected, given the mode of

operation, i.e., injection/absorption. This is ensured when equality

exists between the left-hand-side and right-hand-side of (7d). This

requirement is met using the non-negative auxiliary variable qauxito

in (7f) to which a small cost is applied in the objective function

such that equality in (7d) is maintained.

3) Dispatchable Generation Constraints: Diesel units are

fully dispatchable while renewable units are assumed to be

dispatchable-down within their capacity limits.

0 ≤ psto ≤ ps · zs, −qs · zs ≤ qsto ≤ qs · zs, ∀s, t, o (7h)

− rpdns ≤ psto − ps(t−1)o ≤ rpups , ∀s, t, o (7i)

0 ≤ prto ≤ p̃rto · zr, ∀r, t, o (7j)

− tanϕ · p̃rto · zr ≤ qrto ≤ tanϕ · p̃rto · zr, ∀r, t, o (7k)

Binary variable zs/zr indicates the investment status of the

diesel/renewable unit limited by its maximum active /reactive

power capacity denoted by p/q . The maximum capacity of each

renewable unit is equal to the available usable power of the unit

at a given time. The maximum ramp up/down limits rpups /rpdns
are defined in (7i).

4) Constraints of Battery Units: Constraint (7l) limits

the charging/discharging power of battery units within their

charge/discharge capacities while (7m) prevents simultaneous

charging zch
bto and discharging zdch

bto of the battery given its invest-

ment status zb. The battery state-of-charge (SOC) at each hour

is limited by the maximum/minimum energy limit eb/eb in (7n),

while the initial (eini
bo) and final SOC are set by constraint (7o),

given charging/discharging efficiency ξch
b /ξdch

b .

0 ≤ pdchbto ≤ pdchb · zdchbto , 0 ≤ pchbto ≤ pchb · zchbto, ∀b, t, o (7l)

zdchbto + zchbto ≤ zb, ∀b, t, o (7m)

eb · zb ≤ eini
bo +

t∑

τ=1

(

ξchb · pchbτo −
1

ξdchb

· pdchbτo

)

≤ eb · zb,

∀b, t, o (7n)

∑

t∈T

(

ξchb · pchbto −
1

ξdchb

· pdchbto

)

= 0, ∀b, o (7o)

5) Thermal Loading and Voltage Constraints: Quadratic con-

straint (7p) denotes the secure line loading limits. They are lin-

earized using a piece-wise linear approximation approach defined

in [19], while (7q) defines the limits on nodal voltages.

(Piupito)
2 + (Qiupito)

2 ≤ (Siupi)
2, ∀i, t, o (7p)

v ≤ vito ≤ v, vto|i=0 = 1, ∀i, t, o (7q)

D. Compact Matrix Formulation

For a clear presentation, the overall formulation can be pre-

sented as a compact matrix expressed below:

min
χinv,χopr

{

Θinv(χinv) + max
P∈U

EP (Θ
opr(χopr, ũ))

}

(8a)

s.t. Aχinv +Bh(χopr, ũ) ≥ q +Qũ, ∀ũ ∈ V (8b)

Constraints (7c)-(7q) are generalised into (8b) where function

h(χopr, ũ) is associated with the effect of the uncertain parame-

ters on the decision variables during system operation, while A,

B, q and Q are constant matrices. Set V is the uncertainty set

defined in (6).

E. Transformation of the Worst-Case Expectation

Based on the definition of the ambiguity set U in (5), the worst-

case expectation in objective of the operational problem in (8a)

can be explicitly represented as:

max
P∈U

EP (Θ
opr(χopr, ũ)) = max

∫

V

Θopr(χopr, ũ) dP (ũ) (9a)

s.t

∫

V

ũ dP (ũ) = uN (dual η) (9b)

∫

V

dP (ũ) = 1 (dual β) (9c)

dP (ũ) ≥ 0, ∀ũ ∈ V (9d)

where the decision variable P (ũ) is the probability distribution

function; while η and β are vectors of dual variables associated

with constraints (9b) and (9c), respectively. Using the duality

theory [20], (9) can be recast into (10) as indicated below:

max
P∈U

EP (Θ
opr) = min

(

β + η′uN
)

(10a)



s.t. β + η′ũ ≥ Θopr(χopr, ũ), ∀ũ ∈ V (10b)

The model can now be represented as:

min
(

Θinv + β + η′uN
)

(11a)

s.t. β + η′ũ ≥ Θopr(χopr, ũ) ∀ũ ∈ V (11b)

Aχinv +Bh(χopr, ũ) ≥ q +Qũ ∀ũ ∈ V (11c)

Note that the model in (11b) contains a bilinear term η′ũ re-

sulting in a non-convex formulation that is NP hard. Additionally,

(11) is intractable due to its infinite-dimensional nature, i.e., it

should be feasible for any realisation of the uncertain parameters

whose coverage is defined by the ambiguity set in (5). In this

work we utilise decision rules and duality theory to recast the

problem to its robust counterpart.

III. SOLUTION APPROACH

In this section, we present a three-step procedure to derive a

tractable robust counterpart for the proposed problem that can be

easily solved by off-the-shelf solvers.

A. Defining the Decision Rules

LDRs restrict the recourse decisions to affine functions of the

uncertain parameters [21]. It is noteworthy to mention that by

its nature, the decision-making process involves multiple stages,

i.e., the decisions made at each time step are dependant on

the decisions made at the previous time steps. Disregarding this

dependency in the decision rule at each time step could violate the

nonanticipativity constraints present in the model. In this work,

these constraints relate to the inter-temporal constraints on the

ramping limits of the generators (7i) and battery state-of-charge

at the end of planning horizon (7n)-(7o).
In the first step, we formulate a nonanticipative LDR for

the independent variables, i.e., hourly active/reactive power in-
jection/absorption of different types of units. The voltage lev-
els, currents, and power flows are dependant on the power
injection/absorption, hence, do not require explicit LDRs. The
active/reactive power policies for each unit n ∈ S ∪ R ∪ B are
thus defined as:

pnto = p
N

nto +

t
∑

k=1

(

∑

d∈D

(

p̂
AD

ndkto · p̂dko − p̌
AD

ndkto · p̌dko

)

+

∑

r∈R

(

−p̂
AR

nrkto · p̂rko + p̌
AR

nrkto · p̌rko

)

) (12a)

qnto = q
N

nto+

t
∑

k=1

(

∑

d∈D

(

q̂
AD

ndkto · p̂dko − q̌
AD

ndkto · p̌dko

)

· tan θdko

+

∑

r∈R

(

− q̂
AD

nrkto · p̂rko + q̌
AD

nrkto · p̌rko

)

· tanφ

)

(12b)

Superscripts “D” and “R” relate to variables associated with

demand-related and renewable-related uncertainty, respectively.

The rule definitions in (12) expressing the effect of the uncertain

parameters can be compactly represented as:

h(χopr, ũ) = χopr,N + χopr,A∆ũ (13)

where χopr,N/χopr,A denotes the vector/matrix of

non-adjustable/adjustable variables. Also, ∆ũ =
(∆ũ1′, ..., ũt′, ...,∆ũT ′) represents the vector of uncertain

parameters for all hours of the planning horizon where the vector

ũt includes all uncertain parameters from hour 1 to t.

The adjustable variables perform as proxies in finding the worst

expected costs. In practice a non-zero value for an adjustable

variable represents a variation from the forecast value, and

consequently, an additional cost in the objective function.

B. Problem Reformulation using LDRs

In the second step, the problem is reformulated by the LDRs.

The rule defined in (13) is then applied to the model as follows:

min
(

Θinv + β + η′uN
)

(14a)

s.t. β ≥ Cχopr,N +Cχopr,A∆ũ− η′ũ, ∀ũ ∈ V (14b)

Aχinv +Bχopr,N − q
≥ Qũ−Bχopr,A∆ũ, ∀ũ ∈ V

(14c)

where Θopr(χopr, ũ) is reformulated as Θopr(χopr, ũ) =
Cχopr,N+Cχopr,A∆ũ. However, the optimisation problem (14)

is still intractable due to the universal quantifier over the vector

uncertain parameters (i.e., ∀ũ ∈ V). To obtain a robust solution

against any realisation of uncertain parameters, a worst-case

reformulation is introduced in this paper using the protection

functions Φ1(ũ) and Φ2(ũ) as given below:

min
(

Θinv + β + η′uN
)

(15a)

s.t. β −Cχopr,N ≥ max
ũ∈V

(
Cχopr,A∆ũ− η′ũ

)

︸ ︷︷ ︸

Φ1(ũ)

(15b)

Aχinv +Bχopr,N − q
≥ max

ũ∈V

(
Qũ−Bχopr,A∆ũ)

︸ ︷︷ ︸

Φ2(ũ)

(15c)

The protection functions Φ1(ũ) and Φ2(ũ) for constraints (15b)

and (15c) depend on the polyhedral uncertainty set V defined in

(6), they can be rewritten as:

Φ1(ũ) = max
ũ∈V

((

Cχopr,Aû− η′û
)

−
(

Cχopr,Aǔ− η′ǔ
)

− η′uN

) (16a)

Φ2(ũ) = max
ũ∈V

((

Qû−Bχopr,Aû
)

−
(

Qǔ−Bχopr,Aǔ
)

+QuN

) (16b)

s.t. 0 ≤ û ≤ û (dual λ) (16c)

0 ≤ ǔ ≤ ǔ (dual π) (16d)

û/û+ ǔ/ǔ = Γ (dual ψ) (16e)

where λ, π and ψ are vectors of the dual variables associated

with constraints (16c)-(16e).

C. Applying Duality Theory

Finally, in the third step, we use duality theory to obtain a

tractable reformulation of the problem. The maximisation prob-

lem in (16a) can be recast into a minimisation problem using the

duality theory as follows:

Φ1(ũ) = min

((

û
′

λ1 + ǔ
′

π1 + Γ′ψ1
)

− η′uN

)

(17a)

s.t. λ1 +
(
1/û

)
′

ψ1 ≥
(

(χopr,A)′C′ − η
)

(17b)



π1 +
(
1/ǔ

)
′

ψ1 ≥ −
(

(χopr,A)′C′ − η
)

(17c)

Similarly, the maximisation problem in (16b) can be recast into

a minimisation problem as follows:

Φ2(ũ) = min

((

û
′

λ2 + ǔ
′

π2 + Γ′ψ2
)

+QuN

)

(18a)

s.t. λ2 +
(
1/û

)
′

ψ2 ≥
(

Q−Bχopr,A
)
′

(18b)

π2 +
(
1/ǔ

)
′

ψ2 ≥ −
(

Q−Bχopr,A
)
′

(18c)

Superscripts “1” and “2” are utilised to distinguish between

the dual variables in (17) and (18), respectively. Therefore, the

overall problem is reformulated as:

min
(

Θinv + β + η′uN
)

(19a)

s.t. β −Cχopr,N

≥
(

û
′

λ1 + ǔ
′

π1 + Γ′ψ1
)

− η′uN
(19b)

Aχinv +Bχopr,N − q
≥
(

û
′

λ2 + ǔ
′

π2 + Γ′ψ2
)

+QuN
(19c)

λ1 +
(
1/û

)
′

ψ1 ≥
(

(χopr,A)′C′ − η
)

(19d)

π1 +
(
1/ǔ

)
′

ψ1 ≥ −
(

(χopr,A)′C′ − η
)

(19e)

λ2 +
(
1/û

)
′

ψ2 ≥
(

Q−Bχopr,A
)
′

(19f)

π2 +
(
1/ǔ

)
′

ψ2 ≥ −
(

Q−Bχopr,A
)
′

(19g)

λ1 ≥ 0, π1 ≥ 0, λ2 ≥ 0, π2 ≥ 0 (19h)

The problem formulation in (19) is a single-level MILP problem

that can tractably be solved by various available off-shelf solvers.

IV. CASE STUDIES

A. Test System Setup

The data-driven DRO-based planning model described above is

tested on a modified European CIGRE low-voltage network [22]

sketched in Fig. 1. It is assumed that the network is operated in

islanded mode with no connection to the grid. One diesel unit

(SG) is already installed at node 1. The investment candidates

include three Photo-Voltaic (PV) units PV1 and PV2 and PV3;

three Energy Storage (ES) units denoted ES1 and ES2 and ES3;

three SG units SG1 and SG2 and SG3, with the capacity of each

set at 0.55 MW. Candidate units with subscripts “1”, “2” and “3”

are located at nodes 11, 17 and 18, respectively. The investment

and operational costs are shown in Table. I. For the annualised
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Fig. 1. Modified European CIGRE low voltage network.

TABLE I
INVESTMENT COSTS OF DIFFERENT TECHNOLOGIES

Technology Battery (ES) Solar (PV) Diesel (SG)

Investment Cost [M£/MW] 0.98 0.84 0.54

Annualized Investment Cost [£/MW] 96040 56280 36180

Operation Cost [£/MWh] - 0 150

TABLE II
VARIATION OF INVESTMENT COSTS, DECISIONS, AND OPERATING COSTS

WITH THE BUDGET OF UNCERTAINTY

Investment Decisions

Budget

[Γ]

Investment

Cost [M£]

Operation

Cost [M£]
PV ES SG

Comp.

Time [s]

0 0.0310 0.1283 PV3 - - 108

1 0.0929 0.1607 PV1, PV2, PV3 - - 222

2 0.0929 0.3361 PV1, PV2, PV3 - - 342

3 0.0929 0.4986 PV1, PV2, PV3 - - 452

4 0.0929 0.5404 PV1, PV2, PV3 - - 571

5 0.1102 0.5715 PV1, PV2, PV3 - SG3 683

6 0.1102 0.5848 PV1, PV2, PV3 - SG3 804

7 0.1102 0.5848 PV1, PV2, PV3 - SG3 919

8 0.1102 0.5848 PV1, PV2, PV3 - SG3 1040

costs, an interest rate of 0.053 is assumed, and the life time of ES,

PV, and wind units is set at 15, 30, and 30 years, respectively. The

load and renewable generation profiles have been obtained from

[23] using the UK values in 2019. A 24-hour planning horizon

is considered for each representative day. The computation was

performed in Python using Pyomo [24] to model the optimisation

problem and Gurobi [25] employed as a solver.

B. Optimal Solution Versus Budget of Uncertainty

The robustness and thus conservatism of the model can be var-

ied by the budget of uncertainty. A higher budget of uncertainty

corresponds to the widening of the uncertainty spectrum captured

in the model parameters. In the study network, a maximum

value of nine includes the forecast errors of both the loads

(six) and renewable generations (three) available. In Table II,

the effect of an increase in the budget of uncertainty to the

investment decisions and operating costs is presented considering

two representative days. It should be noted that the case of zero

budget of uncertainty is similar to the stochastic solution of the

problem. Both the total investment and operational costs are seen

to increase with the former reaching a plateau at a value of four

while the latter becomes constant at a value of six. At zero, a

total cost of 0.1503 M£ is recorded compared to a value of 0.695

M£ at the maximum budget of uncertainty. While the maximum

value of the budget of uncertainty captures all potential forecast

errors within the ambiguity set, it can be rather conservative.

C. Optimal Solution Versus Number of Representative Days

By increasing the number of representative days in the am-

biguity set of a DRO problem, the distributional nature of the

uncertainty is better captured. In Fig. 2, the result of variation of

the number of representative days is presented for both the pro-

posed DRO model and the SO model. The budget of uncertainty

for the DRO model is set to four in this case study. The total costs

in the proposed DRO model are shown to reduce with an increase

in the number of representative days with total costs recorded at

0.5139 M£ at four representative days compared to 0.3924 M£

at ten representative days. While the investment costs increase

with more representative days, the operational costs indicate a

decline. Table III presents the investment decisions taken under

DRO and SO uncertainty handling. With more representative

days, the available usable power from the renewable sources

is better represented and thus more usable. Additionally, the

variations in forecasted load profiles are better represented with

the increased operational scenarios i.e., representative days. The

load variations require flexibility in available generation. This
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Fig. 2. Total costs under different number of representative days for DRO and
SO models.

TABLE III
INVESTMENT DECISIONS UNDER DRO AND SO MODELS FOR INCREASING

REPRESENTATIVE DAYS.

DRO SO

Rep. Days Decision Comp. Time [s] Decision Comp. Time [s]

4 PV1, PV2, PV3 109 PV1 44

6 PV1, PV2, PV3 333 PV1 118

8 PV1, PV2, PV3 682 PV1 217

10 PV1, PV2, PV3, SG3 1175 PV1, PV2 476

flexibility requirement is fulfilled by the installation of the SG

unit in the case of ten representative days preventing any load

curtailment. The overall result indicates a lower cost and less

conservative optimal solution with more representative days. On

the other hand, both investment and operational costs in the case

of SO are shown to increase with an increase in the representative

days. Nonetheless, the total costs in the case of DRO are higher

than those with SO as the latter provides a more optimistic

solution while the former presents a more robust solution.

D. Computational Performance

In Table II, it is indicated that an increase in the budget of

uncertainty results in the exponential increment of simulation time

of the DRO problem. A similar result is obtained in Table III

with more representative days considered in the analysis. Both

increments are due to the widening of the uncertainty spectrum

captured in the model parameters, i.e., the applied budget of

uncertainty, and in the available data, i.e., the representative

operation scenarios. However, as compared to the SO model (see

Table III), the computational time in the case of the DRO is much

greater. A compromise between the data captured and the model

parameters must be made to minimise the computational effort.

V. CONCLUSION

In this paper, we have presented a DRO-based MILP planning

model for the design of islanded MGs. A moment-based ambi-

guity is utilised to represent the inherent uncertainty in load and

renewable power generation. We propose a three-step approach to

reformulate the model into a tractable optimisation problem using

LDRs and duality theory. The model is applied to a low-voltage

CIGRE network and planning decisions are analysed against the

budget of uncertainty, available distributional information mod-

elled by various representative days and additionally compared

to the SO model. Future investigations will consider the use of

a decomposition solution approach and the variation in type of

distributional support provided in the ambiguity set and its impact

on the level of conservativeness of the optimal solution.
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